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Abstract— This paper addresses the cooperative output reg-
ulation via error feedback for a class of switched linear multi–
agent systems with asynchronous intermittent transmissions. A
leader–follower multi–agent scheme is proposed, where a virtual
leader is modeled as an exosystem, and the followers are
represented by a class of switched linear systems. A novel
hybrid distributed control law is proposed, effectively ensuring
leader synchronization. The approach allows heterogeneous
agent dynamics, and the switching signal between subsystems is
modeled in the hybrid framework. The stability and regulation
of the multi–agent system with the hybrid distributed control
law are analyzed as a complete system. The effectiveness of the
contribution is demonstrated through an illustrative example.

I. INTRODUCTION

In recent years, multi–agent systems (MASs) have at-
tracted growing attention for their effectiveness in performing
complex tasks, offering cost–efficient and simplified alterna-
tives compared to single–agent systems. Preliminary studies
on the consensus and formation of leader–follower MASs
are proposed in several works to overcome the problems of
indirect availability of the leader’s trajectory, obstacles, and
different dynamics between agents [1]–[4].

An approach with high relevance within the field of the
consensus problem in heterogeneous leader–follower MASs
is the application of output regulation techniques with dis-
tributed control laws. This approach, identified as the cooper-
ative output regulation (COR) problem, focuses on the leader
modeled as an exosystem within the framework of output
regulation theory. Subsequent studies have applied regulation
theory to continuous–time MASs in diverse contexts. Dis-
tributed observers for the COR problem in linear MASs were
developed in [5]–[7], and the challenges of nonlinear systems
and unknown parameters were tackled in [8]. Approaches for
discrete MASs are also addressed in [9], [10]. However, few
results have focused on the case where inter–agent communi-
cation occurs intermittently. Although there are COR results
with intermittent inter–agent communication using event–
triggering approaches [11]–[14], this focuses on the design
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of efficient consensus mechanisms to reduce communication
exchanges, which is not usually possible in systems with
intermittent and low–rate transmission.

These problems are even worse when the structural change
in the system dynamics cannot be compensated by robust
output control theory, this change can be modeled as a
switched linear system (SLS). The works of [15], [16] have
presented approaches for output regulation of SLSs, while
[17] addressed the COR problem with SLSs via full–state
feedback. However, most of these works are focused on
the continuous–time COR and on approaches for switched
linear multi–agent systems (SLMASs). To the best of the
authors’ knowledge, no results are available in the literature
that addresses the COR problem for SLMASs with asyn-
chronous intermittent transmissions. This work fills this gap
by designing a novel hybrid distributed control law for the
COR problem of SLMASs that only require error feedback
on intermittent asynchronous measurements, bounded by a
maximum time window. This novel proposal allows the
agents to be heterogeneous, admitting varying dynamics,
provided that the output dimension remains consistent across
all agents. The switching signal between subsystems has also
been modeled under the hybrid framework.

This paper is organized as follows. Section II provides
preliminary results on the observer design for SLS with
intermittent measurements. In Section III, the COR prob-
lem for a class of SLMASs with asynchronous intermittent
transmissions is formulated, and solved in Section IV. The
effectiveness of the result is demonstrated through an exam-
ple in Section V. Finally, Section VI presents conclusions
and future work suggestions.

A. Notations

N0, R, and R+ represent the sets of positive integers
including zero, real numbers, and non–negative real numbers,
respectively. Given a set X, co{X} denotes the convex hull
of X. In partitioned symmetric matrices, the symbol ⋆
represents symmetric blocks.

II. PRELIMINARY RESULTS

A continuous SLS can be denoted as follows

ẋ(t) = Arx(t) +Bru(t),

y(t) = Cx(t),
(1)

where r ∈ {1, · · · , h}, x ∈ Rn is the system state,
u ∈ Rm is the system input and y ∈ Rp is the system
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output. Furthermore, Ar ∈ Rn×n and Br ∈ Rn×m are
known matrices, switching according to a known switching
signal σt : [t0,∞) → {1, · · ·h}, where C ∈ Rp×n is a known
and constant matrix.

In the case when the system’s output is measured
asynchronously, system (1) can be reformulated in a hy-
brid framework [18], allowing for modeling the subsystem
switching and asynchronous output measurements as a hy-
brid SLS of the form

ẋ(t) = Arx(t) +Bru(t), t ∈ R+ \ T,
x(t+k ) = x(tk), tk ∈ T,

y(tk) = Cx(tk), tk ∈ T,

(2)

with appropriate states and dimensions, where the output
information values y(tk) = Cx(tk) are only available for
feedback. Note that the state x(t) evolves according to
the differential equation with initial condition x(tk) when
t ∈ [tk, tk+1), called the flow dynamics, which undergoes a
jump when tk ∈ T, called the jump dynamics [18].
In this setting, for complete solutions, one considers an un-
bounded ordered set T := {t0, t1, · · · } of strictly increasing
time instants tk ∈ R+, k ∈ N0 as an admissible time basis,
satisfying the property

0 < τmin ≤ tk+1 − tk ≤ τmax < ∞, ∀k ∈ N0, (3)

where τmin, τmax are the least rational lower and upper
bounds of the sequence {tk+1 − tk}. Thus, the following
hybrid observer is designed

˙̂x(t) = Arx̂(t) +Bru(t), t ∈ R+ \ T,
x̂(t+k ) = x̂(tk) +G

(
y(tk)− Cx̂(tk)

)
, tk ∈ T,

(4)

where r ∈ {1, · · · , h} and G ∈ Rn×p is a common gain
matrix to be designed. Note that this observation structure
allows us to estimate the state x(t) even in the moments
between samples by using only the measurements of the
output y(tk). The observation error between (2) and (4) is
defined as ε := x− x̂ such that the hybrid dynamics

ε̇(t) = Arε(t), t ∈ R+ \ T,
ε(t+k ) = (In −GC)ε(tk), tk ∈ T,

(5)

is asymptotically stable by designing an appropriate common
matrix G. Note that the time–driven mechanism that triggers
the asynchronous output measurements can be modeled
according to [19] as a hybrid system of the form

τ̇(t) = −1, t ∈ R+ \ T,
τ(t+k ) ∈ [τmin, τmax], tk ∈ T,

(6)

with τ ∈ R≥0 having the form of a sawtooth wave with neg-
ative ramp and variable amplitude between τmin and τmax,
where τmin also serves as a minimum dwell time for the
switched subsystems. The switching signal r ∈ {1, · · · , h}
can also be modeled as a hybrid system mechanism of the
form

ṙ(t) = 0, t ∈ R+ \ T,
r(t+k ) ∈ {1, · · · , h}, tk ∈ T.

(7)

The equation (7) exhibits the possibility that if a jump
occurs in the system and it subsequently returns to the same
value, as denoted by r(t+k ) = r(t), then a mode transition
without switching to another subsystem occurs. Therefore,
the stability analysis of the composite system (5)–(6) is
demonstrated through the following Theorem.

Theorem 1: Let T be an admissible time basis with
τmin ≤ τmax two given positive rational scalars. If there exist
a common symmetric positive definite matrix Υ ∈ Rn×n and
a common gain matrix G ∈ Rn×p such that the inequalities

(In −GC)⊤eA
⊤
r δΥeArδ(In −GC)− Υ < 0 (8)

hold for all r ∈ {1, · · · , h} and all δ ∈ [τmin, τmax], then the
origin of the composite system (5)–(6) is globally uniformly
asymptotically stable and the switching between subsystems
occurs only during the asynchronous output measurements. ⋄

Proof: Case 1: Hybrid error system with no switching
subsystems.
Consider the following Lyapunov function candidate for the
hybrid error system (ε, τ) defined by

Vo(ε, τ) = ε⊤eA
⊤
o τΥeAoτε, (9)

with Ao being a constant matrix of the set of matrices
{A1, · · · , Ah}, the results of [19] show that the variation
of Vo(ε, τ) during flows is V̇o(ε, τ) = 0, while the variation
of Vo(ε, τ) during jumps is

∆Vo(ε, τ) = ε⊤
(
(In −GC)⊤eA

⊤
o δΥeAoδ(In −GC)− Υ

)
ε,

for all δ ∈ [τmin, τmax]. Therefore, condition (8) when
Ar = Ao is necessary to ensure that ∆Vo(ε, τ) < 0 and,
since V̇o(ε, τ) = 0, the composite system (5)–(6) is globally
uniformly asymptotically stable (GUAS) at the origin if
the sufficient Lyapunov conditions for persistent jumping
systems ( [18], Proposition 3.24) are met. These conditions
are completed if the condition k ≥ γr(t)−Nr is fulfilled with
γr(t) = t

τmax
and Nr = 1, where k ∈ N0 is the subscript

of tk ∈ T, γr is a class–κ∞ function, and Nr ≥ 0 is a
constant. This implies that hybrid arcs originating from ε(0)
during a jump with form

ε(tk) = (In−GC)eAo(tk−tk−1) · · · (In−GC)eAo(t1−t0)ε(0),
(10)

as well as hybrid arcs during a flow with form ε(t) =
eAo(t−tk)ε(tk) are valid solutions for (5).
Case 2: Hybrid error system with switching subsystems.
For the case of switching, a Common Lyapunov function
[20, Theorem 2.1] with form (9) can be constructed for each
r ∈ {1, · · · , h} subsystem, such that the set of inequali-
ties (8) must be fulfilled for all r ∈ {1, · · · , h} and all
δ ∈ [τmin, τmax]. Now, for simplicity, consider the case of
switching only between two subsystems a, b with switching
time sequence 0 = t0 < ta < tb = ∞. Therefore, a hybrid
arc that switches and jumps during the critical time point ta
has the form

ε(ta) = (In −GC)eAa(ta−ta−1) · · · (In −GC)eAa(t1−t0)ε(t0),

(11)



which is a valid solution of (5) with form (10). Furthermore,
the hybrid arcs evolving after this switching have the form

ε(tk) = (In −GC)eAb(tk−tk−1) · · · (In −GC)eAb(ta+1−ta)ε(ta)

(12)
during jumps or ε(t) = eAb(t−tk)ε(tk) during flows, which
are also valid solutions of (5). Now, suppose that there exists
a hybrid arc with the switch of subsystems during a flow. In
the absence of jumps during the evolution, the hybrid arc has
the form

ε(t) = eAb(t−ta)eAa(ta−t0)ε(0), (13)

while for cases with jumps in the preceding subsystem, the
hybrid arc takes the form

ε(t) = eAb(t−ta)eAa(ta−ta−1) · · · (In −GC)eAa(t1−t0)ε(0),
(14)

which are not valid solutions for (5) due to r(t) switching
the subsystems only at asynchronous measurement times, as
detailed in (7). Therefore, the switching between subsys-
tems only during an asynchronous output measurement is
a necessary condition for fulfilling the persistent jumping
conditions. This completes the proof.

Remark 1: Since inequality (8) has infinite solutions due
to δ ∈ [τmin, τmax] its solution can be derived by means
of a polytopic overapproximation under a finite number of
f = 2n linear matrix inequalities (LMIs) [19]. ⋄

III. THE COOPERATIVE OUTPUT REGULATION FOR
SLMASS

In the following, a heterogeneous MAS is considered,
consisting of a leader labeled as ‘agent 0’ and N agents
referred to as ‘followers.’ Since the output of each agent
can only be measured in asynchronous intermittent intervals,
the dynamics of each ith follower, for i = 1, · · · , N , are
described by the following hybrid linear system

ẋi(t) = Ar,ixi(t) +Br,iui(t) + Piw(t), t ∈ R+ \ T,
xi(t

+
k ) = xi(tk), tk ∈ T,

yi(tk) = Cixi(tk), tk ∈ T,
(15)

where xi ∈ Rni is the follower state, ui ∈ Rmi is
the follower control input, and yi ∈ Rp is the follower
output. Furthermore, Ar,i ∈ Rni×ni and Br,i ∈ Rni×mi are
known matrices, switching according to a known switching
signal σt : [t0,∞) → {1, · · ·h}, where r ∈ {1, · · · , h}
while Ci ∈ Rp×ni and Pi ∈ Rni×q are constant and
known matrices. The leader dynamics are described within
the hybrid framework by the following dynamical system

ẇ(t) = Sw(t), t ∈ R+ \ T,
w(t+k ) = w(tk), tk ∈ T,

yr(tk) = Qw(tk), tk ∈ T,

(16)

where w ∈ Rq is the state of the virtual leader, yr ∈ Rp

is the leader reference, S ∈ Rq×q is a known constant
neutral matrix and Q ∈ Rp×q is a known and constant
matrix. Given the heterogeneous nature of the MAS, the

following Assumption ensures uniformity in the dimension
of the output mapping for each agent.

Assumption 1: rank(Ci) = p, i = 1, · · · , N . ⋄
The communication among the N+1 agents, when available,
is represented by a directed graph GN+1, which is assumed
to be free of self–loops, and with a spanning tree rooted
on the virtual leader. For further details on the graph theory
used, please refer to [1], [2]. Each follower is driven by
the following hybrid distributed controller to ensure leader
synchronization and achieve COR

żi(t) = Fr,izi(t), t ∈ R+ \ T,
zi(t

+
k ) = Eizi(tk) +Giei(tk), tk ∈ T,

ui(t) = Hr,izi(t), t ∈ R+,

(17)

where r ∈ {1, · · · , h}, zi ∈ Rνi is the state, Fr,i, Hr,i are
switching real matrices to be designed, Ei, Gi are constant
real matrices to be designed, and ei ∈ Rp for i, j = 1, · · · , N
is the tracking error of each agent defined as

ei(tk) :=
1
ρ̄i

∑N
j=1 dij

(
ỹi(tk)− ỹj(tk)

)
+ di0

(
ỹi(tk)− yr(tk)

)
,

(18)
which is measured only at asynchronous time instants tk such
that only the values ei(tk) are available for feedback. Here,
dij represents the elements in the unit weighted adjacency
matrix D of the directed graph GN of the followers, while di0
denotes the weight from the leader to the ith follower. Ad-
ditionally, ρ̄i denotes the cardinality of the ith agent, which
refers to the number of neighborhoods (including the leader),
and ỹi(tk) is defined as ỹi(tk) := yi(tk) − C̄izi(tk), where
C̄i = (Ci 0).
The Cooperative impulsive output Regulation Problem via
Error Feedback (CIORPEF) is formulated as follows. Given
the i = 1, · · · , N followers with form (15) and with virtual
leader (16), both evolving in time respecting the condition
(3), find, if possible, a hybrid distributed controller (17) such
that, for all i = 1, · · · , N followers with r ∈ {1, · · · , h}
subsystems, the following conditions are guaranteed

(Si) The equilibrium point (xi, zi) = (0, 0) of the hybrid
feedback system ζi(t) :=

(
xi(t)

⊤ zi(t)
⊤)⊤ without

perturbations, i.e., with w = 0,

ζ̇i(t) = ALr,i
ζi(t), t ∈ R+ \ T,

ζi(t
+
k ) = LLiζi(tk) + Ḡiei(tk), tk ∈ T,

(19)

with

ALr,i
=

(
Ar,i Br,iHr,i

0 Fr,i

)
, Ḡi =

(
0
Gi

)
, LLi

=

(
Ini

0
0 Ei

)
,

(20)
is GUAS under a switching law σt : [t0,∞) →
{1, · · ·h}. ⋄

(Ri) The solution xcli(t) :=
(
xi(t)

⊤ zi(t)
⊤ w(t)⊤

)⊤
of

the closed–loop system

ẋcli(t) = Aclr,ixcli(t), t ∈ R+ \ T,
xcli(t

+
k ) = Lclixcli(tk) + G̃iei(tk), tk ∈ T,

(21)



with

Aclr,i =

Ar,i Br,iHr,i Pi

0 Fr,i 0
0 0 S

 , G̃i =

 0
Gi

0

 ,

Lcli = diag
(
Ini

, Ei, Iq
)
,

(22)
is such that limt→∞ ei = 0 uniformly under a switching
law σt : [t0,∞) → {1, · · ·h}, and for each initial
condition (x0i , z0i , w0) ∈ Rni+νi+q . ⋄

The following Assumptions are necessary to solve the
CIPORPEF.

Assumption 2: The system

ẋi(t) = (Ar,i +Br,iKr,i)xi(t), t ∈ R+ \ T,
xi(t

+
k ) = xi(tk), tk ∈ T,

of each ith follower, where i = 1, · · · , N , has a common
Lyapunov function [20] for r ∈ {1, · · · , h}, where Kr,i ∈
Rmi×ni ensures that the pair (Ar,i, Br,i) is stabilizable. ⋄

Assumption 3: There exist mappings xss,i = Πr,iw,
zss,i = Σr,iw for each ith follower, where i = 1, · · · , N
and r ∈ {1, · · · , h}, satisfying the following equations

Πr,iS = Ar,iΠr,i +Br,iΓr,i + Pi,

0 = CiΠr,i −Q,

Σr,iS = Fr,iΣr,i,

Γr,i = Hr,iEiΣr,i.

(23)

⋄
In addition to these assumptions, classical output regula-
tion problems for discrete systems with a fixed sampling
time δ typically include a detectability assumption of pairs(
eĀr,iδ, C̄i

)
where

Ār,i =

(
Ar,i −Br,iΓr,i

0 S

)
, C̄i =

(
Ci 0

)
. (24)

However, in the asynchronous and impulsive approach, this
assumption is impractical due to δ ∈ [τmin, τmax]. Since
conditions for fulfilling inequalities with form (8) also derive
similar detectability requirements, this feature is embedded
in the main result, where a finite set of LMIs are satisfied,
thus fulfilling the conditions of Theorem 1. The following
presents the main result for solving the CIORFEP.

IV. SOLUTION OF THE COR FOR SLMASS

Theorem 2: Suppose that Assumptions 1–3 hold for each
follower, and let T be an admissible time basis with τmin ≤
τmax two given positive rational scalars. Furthermore, let
{Xr,i,1, Xr,i,2, · · · , Xr,i,fi} be a finite set of fi = 2ni+q

matrices for r ∈ {1, · · · , h} and i = 1, · · · , N, such that
eĀr,i[τmin,τmax] ∈ co{Xr,i,1, Xr,i,2, · · · , Xr,i,fi}. If there ex-
ist a symmetric positive definite matrix Υi ∈ R(ni+q)×(ni+q),
a matrix Ji ∈ R(ni+q)×p and a matrix Di ∈ R(ni+q)×(ni+q)

for all r ∈ {1, · · · , h}, for each i = 1, · · · , N and for every
li ∈ {1, · · · , fi} solving the following LMI−Di −D⊤

i Di − JiC̄i X⊤
r,i,li

Υi

⋆ −Υi 0
⋆ ⋆ −Υi

 < 0, (25)

then the CIORPEF is solvable by the hybrid distributed
controller (17) only if the switching between subsystems
occurs during jumps, with Gi = D−1

i Ji ∈ R(ni+q)×p,
Gi1 ∈ Rni×p, Gi2 ∈ Rq×p and

Fr,i = diag(Ar,i +Br,iKr,i, S), Ei = diag(Ini
, Iq),

Gi =
(
G⊤

i1 G⊤
i2

)⊤
, Hr,i =

(
Kr,i Γri

)
,

(26)
if and only if Πa,i = Πb,i for a, b ∈ {1, · · · , h}. ⋄

Proof: For the stability property (Si), each controller
state is partitioned as zi =

(
z⊤i1 z⊤i2

)⊤ ∈ Rνi , where zi1 ∈
Rni and zi2 ∈ Rq , νi = n + q. Now, note that the error
signal (18), for each ith agent i = 1, · · · , N, involves

ei(tk) = ỹi(tk) = Ci

(
xi(tk)− zi1(tk)

)
,

such that each hybrid feedback system (19) becomes

ζ̇i(t) = ALr,i
ζi(t), t ∈ R+ \ T,

ζi(t
+
k ) = ELiζi(tk), tk ∈ T,

(27)

where ζi =
(
x⊤
i z⊤i1 z⊤i2

)⊤
and

ALr,i =

Ar,i Br,iKr,i Br,iΓr,i

0 Ar,i +Br,iKr,i 0
0 0 S

 ,

ELi
=

 Ini
0 0

Gi1Ci Ini −Gi1Ci 0
Gi2Ci −Gi2Ci Iq

 .

(28)

To analyze the stability of (19), the coordinate trans-
formation ζ̃i is used, where ζ̃i =

(
ζ̃⊤i1 ζ̃⊤i2 ζ̃⊤i3

)⊤
=(

x⊤
i (zi1 − xi)

⊤ z⊤i2
)⊤

, so obtaining the dynamics

˙̃
ζi(t) = ÃLr,i

ζ̃i(t), t ∈ R+ \ T,
ζ̃i(t

+
k ) = ẼLi

ζ̃i(tk), tk ∈ T,
(29)

where

ÃLr,i =

Ar,i +Br,iKr,i Br,iKr,i Br,iΓr,i

0 Ar,i −Br,iΓr,i

0 0 S

 ,

ẼLi
=

Ini 0 0
0 Ini −Gi1Ci 0
0 −Gi2Ci Iq

 .

Assumption 2 ensures that each dynamics ζ̃i1 is asymptoti-
cally stable with a common Lyapunov function, maintaining
GUAS behavior through switchings. Furthermore, the dy-
namics of ζ̄i =

(
ζ̃⊤i2 ζ̃⊤i3

)⊤
are given by

˙̄ζi(t) = Ār,iζ̄i(t), t ∈ R+ \ T,
ζ̄i(t

+
k ) = (Ini+q −GiC̄i)ζ̄i(tk), tk ∈ T.

(30)

Note that (30) has the dynamic structure of (5), such that
similar conditions (8) for (30) are embedded via a polytopic
overapproximation in the set of LMIs (25) that ensure the
existence of Gi = D−1

i Ji ∈ R(ni+q)×p and thus, Theorem
1 holds. Therefore, each switched system (30) is GUAS
with switching between subsystems only at the asynchronous



output measurements. Consequently, (29) is GUAS. This
implies that also (19) is GUAS, thus verifying the stability
condition.
For the regulation (Ri), the first two equations of (23) for
each i = 1, · · · , N hold by Assumption 3, note that the
second equation of (23) can only be satisfied if and only if
Πa,i = Πb,i, for a, b = 1, · · · , h. Furthermore, the last two
equations of (23) that constitute the internal model principle
are fulfilled with Σr,i :=

(
0 Iq

)⊤
.

Moreover, the matrices (22) of the closed–loop system (21)
become

Aclr,i =


Ar,i Br,iKr,i Br,iΓr,i Pi

0 Ar,i +Br,iKr,i 0 0
0 0 S 0
0 0 0 S

 ,

Lcli = I(2ni+2q), G̃i =
(
0 Gi 0

)⊤
,

(31)

with xcli =
(
x⊤
i z⊤i1 z⊤i2 w⊤)⊤. Now, defining the error

system ξr,i :=
(
ξ⊤r,i1 ξ⊤r,i2 ξ⊤r,i3

)⊤
for i = 1, · · · , N , where

ξr,i1 = xi−Πr,iw, ξr,i2 = zi1 and ξr,i3 = zi2−w, one gets

ξ̇r,i(t) = Aξr,iξr,i(t), t ∈ R+ \ T,

ξr,i(t
+
k ) = Eξr,iξr,i(tk) +

(
0
ei

)
, tk ∈ T,

where Aξr,i = ALr,i
, Eξr,i = I(2ni+q). Now, defining

ξr,G1
:= (ξ⊤r,11, · · · , ξ⊤r,N1)

⊤, Ar,G := diag(Ar,1, · · · , Ar,N ),

ξr,G2
:= (ξ⊤r,12, · · · , ξ⊤r,N2)

⊤, Br,G := diag(Br,1, · · · , Br,N ),

ξr,G3
:= (ξ⊤r,13, · · · , ξ⊤r,N3)

⊤, CG := diag(C1, · · · , CN ),

Γr,G := diag(Γr,1, · · · , Γr,N ), Kr,G := diag(Kr,1, · · · ,Kr,N ),

SG := IN ⊗ S, GG1 := diag(G11, · · · , GN1),

InG
:= diag(In1 , · · · , InN

), GG2 := diag(G12, · · · , GN2),

MG := ρ̄G(M⊗ Ip), IqG := IN ⊗ Iq,

M := L+ diag(d10, · · · , dN0), ρ̄G := diag
(

1

ρ̄1
, · · · , 1

ρ̄N

)
⊗ Ip.

Then, the overall closed-loop error system, defined by ξr,G :=(
ξ⊤r,G1

ξ⊤r,G2
ξ⊤r,G3

)⊤
can be arranged as follows

ξ̇r,G(t) = Aξr,Gξr,G(t), t ∈ R+ \ T,
ξr,G(t

+
k ) = EξGξr,G(tk), tk ∈ T,

(32)

where

Aξr,G =

Ar,G Br,GKr,G Br,GΓr,G

0 Ar,G +Br,GKr,G 0
0 0 SG

 ,

EξG =

 InG
0 0

GG1MGCG InG
−GG1MGCG 0

GG2
MGCG −GG2

MGCG IqG

 .

(33)

The coordinate transformation ξ̃r,G is applied for the stability
analysis of (32) where ξ̃r,G =

(
ξ̃⊤r,G1

ξ̃⊤r,G2
ξ̃⊤r,G3

)⊤
=(

ξ⊤r,G1
(ξr,G2

− ξr,G1
)⊤ ξ⊤r,G3

)⊤
, so obtaining the rear-

ranged dynamics
˙̃
ξr,G(t) = Ãξr,G ξ̃r,G(t), t ∈ R+ \ T,

ξ̃r,G(t
+
k ) = ẼξG ξ̃r,G(tk), tk ∈ T,

(34)

where

Ãξr,G =

Ar,G +Br,GKr,G Br,GKr,G Br,GΓr,G

0 Ar,G −Br,GΓr,G

0 0 SG

 ,

ẼξG =

InG
0 0

0 InG
−GG1MGCG 0

0 −GG2MGCG IqG

 .

Assumption 2 ensures that the system dynamics ξ̃r,G1
is

asymptotically stable. Furthermore, the dynamics of ξ̄r,G =

(ξ̃⊤r,G2
ξ̃⊤r,G3

)⊤ can be written in block form as

˙̄ξr,G(t) =

(
Ar,G −Br,GΓr,G

0 SG

)
ξ̄r,G(t), t ∈ R+ \ T,

ξ̄r,G(t
+
k ) =

(
InG+qG −

(
GG1MG

GG2MG

)
(CG 0)

)
ξ̄r,G(tk), tk ∈ T.

(35)
Since the directed graph GN+1 includes a spanning tree
rooted in the virtual leader, and without loss of generality,
system (35) can be reorganized such that MG takes a lower
triangular block form with identity matrices in its diagonal so
that Theorem 1 holds. Furthermore, the solution to the LMIs
(25) guarantees the existence of the block matrix gain Ḡ

G

such that (35) is GUAS. Consequently, (34) is also GUAS,
implying that the overall error vector eG :=

(
e⊤1 , · · · , e⊤N

)⊤
with the form eG = −MGCGξ̃r,G2

, and composed of each
tracking error (18) asymptotically converges to zero, satisfy-
ing the regulation condition. This completes the proof.

V. SIMULATION RESULTS

Consider a heterogeneous MAS composed of three fol-
lowers, as shown in the communication graph of Figure 1.

0

1

2 3

Fig. 1. Communication topology graph.

Each agent is considered as an SLS in the form (15) given
by the following subsystem structures

A1,1 =


1 2 3 6
9 −2 4 0
0 0 1 −3
7 4 −1 −1

 , A1,2 =

 1 2 4
4 −6 3

−5 4 −2

 , B1,1 =


0 0
0 0
1 2
7 0

 , Br,2 =

0 0
1 −3
2 1

 , P1 =


0 −0.1
0.2 0

−0.8 −0.2
0.6 0.3

 ,

A2,1 =


1 2 3 6
9 −2 4 0
4 −2 5 1
6 2 5 −3

 , A2,2 =

 1 2 4
4 −6 3
3 2 −1

 , B2,1 =


0 0
0 0
4 0
0 1

 , B1,3 =


0 0
0 0
0 1

−1 3

 , P2 =

−0.2 0.4
0.6 0
0.5 −0.1

 ,

A1,3 =


−3 −1 0 −2
−3 1 −1 3
1 4 −2 1
3 −2 −2 −1

 , A3,2 =

 1 2 4
4 −6 3
1 −3 −1

 , C1 =


0 1
0 2
0 0
1 0


⊤

, B2,3 =


0 0
0 0

−2 4
0 1

 , P3 =


0 −0.1
0.2 0

−0.3 −0.2
0.6 0.3

 ,

A2,3 =


−3 −1 0 −2
−3 1 −1 3
1 −5 −2 1
1 −1 0 1

 , C2 =

1 0
1 2
0 0

⊤

, C3 =


1 −3
0 2
0 1
1 0


⊤

,

where the asynchronous output measurements and the signal
r ∈ {1, · · · , h} to switch between subsystems are transmitted
according to (6) with τmin = 0.01s and τmax = 0.1s. Both



sequences are shown in Figure 2. Note that switching during
systems transient is permissible due to Assumption 2. The
initial conditions for each agent are x1(0) = (1 0 −1 3)⊤,
x2(0) = (5 1 − 6)⊤ and x3(0) = (3 7 − 9 2)⊤. The
virtual leader is modeled by (16) with

S =

(
0 1

−α2 0

)
, Q =

(
β 0
0 −β/α

)
,

with initial condition w(0) = (1 0)⊤, where α = π is the
frequency and β = 3 the amplitude. The initial conditions
for (17) are z1(0) = (0 1 − 1 2 1 − 1)⊤, z2(0) = (1 −
2 3 0 − 1)⊤ and z3(0) = (1 2 − 2 0 − 1 1)⊤. Note
that the condition of Theorem 2 involving Πa,i = Πb,i for
a, b ∈ {1, · · · , h} is fulfilled such that one can find Γr,i for
the distributed controllers (17), where the gains Kr,i for i =
1, · · ·N and r = {1, · · · , h} were computed using the Linear
Quadratic Regulator (LQR) with matrices QKr,i = Ini

and
RKr,i = 0.01. Furthermore, the gains Gi were calculated by
solving a finite set of LMIs (25) (see Remark 1).

The tracking error norms ei and the MAS output trajec-
tories are shown in Figures 2 and 3, respectively. Agents
track the signal of the virtual leader, achieving regulation
and asymptotic error stabilization to zero.

Fig. 2. Top: Time windows of the time-driven transmission mechanism
(6); Center: Switching between subsystems commanded by the switching
signal mechanism (7); Bottom: Tracking error norm of followers.

Fig. 3. Cooperative output regulation of the MAS.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel approach to the COR problem in
SLMASs, particularly under intermittent measurements, is
introduced and analyzed. Its effectiveness in maintaining
cooperative regulation despite measurement irregularities is

showcased through simulations. Future research directions
include exploring robust COR in switched linear systems,
adapting the framework to nonlinear systems, and examining
the impact of time–varying delays [21].
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