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Abstract— The problem of achieving disturbance attenuation
while maximizing energy efficiency in multidomain power
networks is considered. Recent results generalizing principles
from thermodynamics, in particular those associated with the
second law and exergy are used as a basis to define a cost
function. A full-information H∞ approach is used to guarantee
a prescribed level of disturbance attenuation, and a secondary,
energy-oriented optimization is carried out over the degree
of freedom associated with the non-uniqueness of the H∞
solution. The secondary problem is non-convex, requiring a
global search. A comprehensive simulation example is included
demonstrating the superiority of the optimized controllers, in
particular relative to the the central solution of H∞ control.

I. INTRODUCTION AND PROBLEM SETTING

The use of energy-inspired methods for control has marked
the development of our field since the times of Lyapunov
until the successes of passivity-based techniques of the 20th
century and beyond. Control for energy (e.g., for its effi-
cient management) is a more recent development, and it is
receiving renewed attention across many application domains
such as energy-aware robotics, microgrids, energy harvesting
and more. The first law of thermodynamics (FLT), or energy
conservation, provides a common measure of efficiency, η1,
defined as the proportion of work extracted from a process
relative to a maximal amount which includes this work and
the losses. This measure is immediately applicable to power
transfer among systems of any nature: thermal, mechanical,
electrical, and so on.

The second law of thermodynamics (SLT) implies that no
system may achieve η1 = 1 and restricts the direction of
heat transfer from hot to cold bodies. In the thermal, fluid and
chemical domains, thermodynamic optimization (also known
as entropy generation minimization, EGM) is a mature field
seeking to reduce the irreversibilities responsible for sub-
maximal efficiency. Some of the methodologies of EGM are
indeed optimal control problems [1]. Because the SLT is more
restrictive than the FLT, efficiency figures based on the former
are more realistic benchmarks of achievable performance than
η1.

Although the SLT is thought to apply to all aspects of the
natural world, the macroscopic models used to describe elec-
trical, mechanical and more generally Hamiltonian systems
elude a meaningful notion of entropy, a concept central to the
SLT. This is because in Hamiltonian systems instantaneous
power may flow “backwards”, that is, from low- to high-
energy subsystems. A formalization of thermodynamics under
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a dynamical systems approach was undertaken by Haddad
and co-workers [2]. The dynamics of interconnected systems
which store energy and exchange power with each other and
with an external environment are considered without speci-
fying a physical domain, which affords considerable gener-
ality. The above restriction on the direction of power flow
is adopted on an axiomatic basis, thus excluding lectrome-
chanical power transmission networks and other Hamiltonian
systems. Recently, Richter [3] showed that power flow direc-
tionality relative to the ordering of energies among subsystems
exists for periodic trajectories, using cyclic averages of power
and energy rather than instantaneous quantities. The prop-
erty of energy cyclo-directionality (ECD) was introduced and
characterized for linear multi-domain power networks using
frequency-domain tools.

ECD is the basis for a characterization of power transmis-
sion in a broad class of physical systems with concepts and
methods borrowed from thermodynamics. In [3], ECD is used
to recover results paralleling the SLT and its implications on
efficiency. These findings provide a pathway to methodolo-
gies to optimize efficiency by means of design parameters
or control, as in EGM, but beyond the confines of classical
thermodynamics.

This paper explores the effect of control on efficiency under
a standard full-information H∞ disturbance attenuation ap-
proach. The primary control objective is to guarantee a level
γ of disturbance attenuation in the H∞ sense for the closed-
loop mapping disturbances to a performance output. As it is
well-known, the solution for a controller meeting this objective
is not unique, leaving an unspecified degree of freedom Y ,
which must be a stable linear transfer matrix of appropriate
dimensions such that ||Y ||∞ < γ [4].

The secondary objective is to improve efficiency by choice
of Y , in particular relative to the central solution Y = 0. An
indicator of inefficiency, ζ(Y, ω,w), inspired by the SLT and
based on the results of [3] is used, which depends on the fre-
quency ω and the disturbance w. A min-max approach is used,
where maximization is across disturbance input directions and
minimization over a frequency range is done either under a
peak criterion or an integral measure.

As observed in the simulation results, the optimal choice
of Y may produce negative power consumption from the
controlled sources, with the load still receiving net power. This
corresponds to an enhanced level of power extraction from
the disturbances, enabling self-powered operation [5]. Surplus
power may even be extracted away from the system and used
elsewhere, without detriment to the primary control objective.
The results of this paper can thus be interpreted as a method
to “make disturbances pay for their own rejection” through the
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optimization of a pertinent efficiency. In contrast to [5], the the
benchmark here is the net result of energy harvesting from the
disturbance and consumption from the controller, which is not
required to be passive or realizable with physical components.

II. ENERGY CYCLO-DIRECTIONALITY AND EXERGY
EFFICIENCY

As in [3], [6], we consider a network N of ns subsystems
which store energy, exchange power with interconnected sub-
systems, receive (or return) power to controlled sources and
disturbances, dissipate power to the exterior and transfer power
to elements external toN , categorized as “loads”. Irrespective
of subsystem dynamics, it is assumed that an instantaneous
power balance holds:

Ėi = Si − σi +
∑

j∈I,j 6=i
φij − φLi, i, j ∈ I (1)

where Ei ≥ are the energies of the subsystems indexed by
I = {1, 2, . . . ns}, σi ≥ 0 is the power dissipation to the
environment, φij is the net power received by subsystem i
from j 6= i and φLi and Si are the net rate of work performed
on the exterior and the net external power supply received,
respectively. Si includes power injected both by control inputs
and disturbances. Further, we assume that the subsystems
admit periodic trajectories, with well-defined cyclic averages:

Assumption 1: There exist periodic solutions for the quan-
tities in Eq. 1 with period T and frequency ω = 2π/T .
Furthermore, the quantities Si = 1

T

∮
Si(t)dt,

σi = 1
T

∮
σi(t)dt, φij = 1

T

∮
φij(t)dt and φLi =

1
T

∮
φLi(t)dt exist and are finite. Then the average power

balance below holds:

0 = Si − σi +

ns∑
j=1,j 6=i

φij − φLi (2)

Definition 1: [3] N is said to satisfy energy cyclo-
directionality (ECD) if for a periodic solution there exist finite
γij > 0 such that

φij(Ei − γijEj) ≤ 0 (3)

for all i, j ∈ I, i 6= j.
ECD generalizes the idea of power transmission being directed
from high-energy towards low-energy subsystems, which is
connected to the SLT [6]. For systems satisfying the passivity
condition φij ≥ 0, ECD reduces to finding γij satisfying
(Ei − γijEj) ≤ 0. For subsystems with linear time-invariant
dynamics, the average energies Ēi(v, ω) are quadratic on the
inputs v, and it can be shown [3] that a uniform lower bound
for γij across ω > 0 may be found from

γij,crit = sup
ω>0

sup
v 6=0

Ei(v, ω)

Ej(v, ω)
(4)

by solving a generalized eigenvalue problem [3].

A. Exergy Efficiency

The following two subsections summarize the findings
of [3]. A binary partition I = Iq ∪ Ip is used to aggregate the
subsystems within N into just two. This is done to facilitate
consideration for port-Hamiltonian systems, which naturally
divide energy storage into two generalized kinds: potential and
kinetic, indexed respectively with q and p. Thus

0 = δQk + φqp − φLk (5)

for k ∈ {q, p}, where δQk =
∑
i∈Ik(Si − σi), φLk =∑

i∈Ik φLi and

φqp =
∑
i∈Iq

∑
j∈Ip

φij = −
∑
i∈Ip

∑
j∈Iq

φij (6)

In classical thermodynamics, entropy S is defined by

dS =
dU
T

+
dW
T

where T is the temperature, U is the internal energy and W
is the work done on the surroundings. Here, a generalized
interpretation is made by identifying E = U and φL =
dW/dt and using shifted and weighted energies instead of
temperatures as normalizing denominators. For the periodic
averages under consideration we have

∮
dE = 0 and we define

Sr =
φLq
dq

+
φLp
dp

(7)

where dk = c + βkEk, for arbitrary c, βk > 0, k ∈ {q, p}.
It is straightforward to show [3] that the total average power
transferred to the load φL ,

∑
φLk is subject to the upper-

bounds

φL = φLmax,k − dkX g ≤ φLmax,k, k = q, p

if the entropy generation rate X g is nonnegative:

X g =
φpq∆qp

(dqEq + c)(dpEp + c)
≥ 0 (8)

where ∆qp = γeEq − Ep. Clearly, the ECD property ensures
X g ≥ 0, and in this paper we take βq = γe and βp = 1. The
quantity dkX g represents the difference between actual and
maximal work, and it is referred to as exergy destruction rate.
An exergy-based efficiency η2, also known as SLT efficiency,
is then defined, referenced to the q subsystem:

η2 =
φLq

φLq + φLmax,q
=

1

1 + ζ
, ζ =

φpq∆qp

(Ep + c)φL
(9)

The quantities participating in ζ depend on ω and input direc-
tions, and ζ is unaffected by input scaling when c = 0.

B. Linear Network Model

N is an interconnection of sources (including control and
disturbance inputs), generalized energy-storing inertial (I) and
capacitive (C) elements, dissipative (R) elements and external
loads, which may in turn contain elements of these types.
Augmented with any dynamics associated with the loads, the
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augmented network Nx is assumed to have the state-space
representation:

ẋ = Ax+B1w +B2u (10)

in which xT = [qTx pTx ] has the generalized displacements
qx of all C-elements and the generalized momenta px of all I-
elements, with l ≥ 1 disturbance inputs in vectorw andm ≥ 1
control channels in u. Matrix A is assumed strictly Hurwitz. If
the load contains energy-storing elements, the corresponding
states are included in x above. However, consistently with
Section II, Ep and Eq correspond to energy storage elements
within N only. The generalized potential and kinetic energies
associated with any arbitrary subset of q and p variables
assembled in vectors qn and pn are given by

Eq(qn) =
1

2
qTnC

−1qn, and Ep(pn) =
1

2
pTnL

−1pn

where C = diag {Ci} � 0 and L = diag {Li} � 0
contain the corresponding generalized capacitance and inertia
parameters. The average power transmitted to the load, φL,
and φpq are calculated from corresponding effort and flow
variables e and f , which are outputs of Eq. 10 in the general
linear form Cx+D1w +D2u.

III. CYCLIC AVERAGE FORMULAS

In Eq. 10, the disturbance and control inputs can be stacked
to form input vector vT = [wT uT ]. The generalized momenta
and displacements p and q of the energy-storage elements
withinN are components of x, thus p = Cpx and q = Cqx for
some matrices Cp and Cq . Their Laplace transforms are then

P (s) = CpGx(s)V (s) and Q(s) = CqGx(s)V (s)

where Gx(s) = [Gxw(s) Gxu(s)], with Gxw(s) = (sI −
A)−1B1 and Gxu(s) = (sI − A)−1B2. For a sinusoidal
component of p with amplitude Pmax,i and frequency ω, the
average kinetic energy over one period is given by Ep,i =
1

4Li
P 2
max,i. Similarly, the average potential energy is Eq,j =

1
4Cj

Q2
max,j . Summing across all such coordinates, the follow-

ing formulas give the total average energies:

Ep(ω) =
1

4
V ∗Mpo(ω)V, Eq(ω) =

1

4
V ∗Mqo(ω)V (11)

where the i-th entry of V is the phasor Viejβi for Vi real and
non-negative and βi real [7], and

Mpo(ω) = G̃x(jω)CTp L
−1CpGx(jω) (12)

Mqo(ω) = G̃x(jω)CTq C
−1CqGx(jω) (13)

We use G̃ to denote the adjoint,GT (−s) andW ∗ to denote the
complex-conjugate transpose of signalW (s) at s = jω. Drop-
ping frequency dependence from the notation, the weighted
energy difference involved in ECD can be written as

∆qp , γe(Eq −
1

γe
Ep) =

γe
4
V ∗∆oV (14)

where ∆o = Mqo − 1
γe
Mpo The average power exchanged

across the p-q interface can be calculated with

φpq(ω) =
1

2
Re (e∗φfφ) (15)

where eφ and fφ are the corresponding effort and flow vari-
ables, assumed to be related to the state x by eφ = Ceφx
and fφ = Cfφx for some matrices Ceφ and Cfφ. It is
straightforward to show that

φpq(ω) =
1

4
V ∗Gφpq (jω)V (16)

where Gφpq
= G̃x(CTeφCfφ + CTfφCeφ)Gx. A similar but

longer formula for the average power exchanged with the load
can be derived from

φL(ω) =
1

2
Re (e∗LfL) =

1

4
V ∗GφL

(jω)V (17)

where the effort and flow variables across the load interface
are assumed to be outputs of the form eL = CeLx + DeLw
and fL = CfLx+DfLw.

IV. FULL-INFORMATION H∞ CONTROL

The standard infinite-horizon, full-information control sys-
tem [4] considers the plant of Eq. 10 and a performance output
z of the form

z =

[
Cx
Du

]
(18)

with the assumptions that (A,B2) is stabilizable, (C,A) has
no unobservable modes on the imaginary axis and DTD = I .
Let Rzw(s) denote the closed-loop transfer function from the
disturbance to the performance output. Then (Theorem 6.3.6
in [4]) the control signal

u = −BT2 Px+ Y (w − γ−2BT1 Px) (19)

with Y varying in the set of stable linear transfer functions
such that ||Y ||∞ < 1 generates all closed-loop systems such
that ||Rzw|| < γ if and only the algebraic Riccati equation

PA+ATP − PFP + CTC = 0

with F = B2B
T
2 − γ−2B1B

T
1 has a solution P ≥ 0 such that

A− FP is asymptotically stable.
The controller corresponding to Y = 0 is designated as

the central solution. This choice arises from the solution of
a secondary optimization problem known as minimum entropy
H∞ control [8]. In this paper we exploit the non-uniqueness
of the H∞ solution by minimizing a measure having a direct
connection to the efficiency of power transmission within and
across system boundaries. From Eq. 9, ζ is shown below to be
suitable to define an optimization objective. Specifically, either
a min-max-max or a min-area-max criterion is used below to
obtain an optimization cost from ζ(Y, ω,w).

A. Assumptions

The following assumption reflects current knowledge about
the ECD property. It is not overly restrictive, as judged from
the complexity of the system used in the simulation example
and the effectiveness of the optimization. This assumption will
be relaxed in future work.

Assumption 2: 1) The boundaries of the p and q subsystems
and the load subsystem can be chosen so that all inputs (control
and disturbances) enter either the q or the p subsystem only.
Without loss of generality, assume that the p subsystem is
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the one devoid of inputs. 2) The p and load subsystem are
dissipative relative to the supply rates φpq = eTφ fφ and φL =

eTLfL, respectively. Further, the load subsystem is assumed to
be strictly dissipative.
This assumption implies that the corresponding average pow-
ers are non-negative. ECD then reduces to the existence of γe
such that ∆qp ≥ 0 for ω ≥ 0 [3]. Also, the load power is
strictly positive under this assumption, so that ζ is well-defined
and non-negative.

Remark: Mpo(ω) are Mqo(ω) are real, symmetric and at
least positive semidefinite. If they become singular at some
ω, the constant c of Section II-A can be used to shift average
energies above zero.

V. MAIN RESULTS

The following results first ensure that the ECD property
is feedback-invariant, that is, it holds as Y is varied. An
algorithm based on line searches in a frequency range of
interest is presented as a viable solution for low-dimensional
problems and used to prove the concept.

Lemma 1: Under the control law of Eq. 19, ζ is given by

ζ(Y, ω,w) =
W ∗R̃GφpqRW

W ∗R̃GφL
RW

W ∗R̃∆oRW

W ∗R̃MpoRW
(20)

where
R =

[
I
Φ

]
(21)

with Φ = (I +KyGxu)−1(Y −KyGxw), Ky = K1 + Y K2

and K1 = BT2 P , K2 = γ−2BT1 P . Moreover,

X(s) = Gx(s)R(s)W (s) (22)
Proof: Consider the open-loop expression for ζ:

ζ(ω) =
V ∗Gφpq

V

V ∗GφL
V

V ∗∆oV

V ∗MpoV

where V ∗ = [W ∗ U∗]. Substitute Eq. 19 into Eq. 10 and take
the Laplace transform to solve for the state X(s) :

X(s) = (I +Gxu(s)Ky(s))−1Gx(s)[I Y T (s)]TW (s)

Use the above and the well-known MIMO identity

Ky(s)(I +Gxu(s)Ky(s))−1 = (I +Ky(s)Gxu(s))−1Ky(s)

to find U(s) = Φ(s). Then Eq. 20 follows. To show Eq. 22,
write X(s) as

X(s) =
[
(sI −A)−1 +B2Ky(s))−1(B1 +B2Y (s))

]
W (s)

Using the same identity and algebraic manipulations, the term
in square brackets can be shown to be equal to

Gxw(s)+Gxu(s)(I+Ky(s)Gxu(s))−1(Y (s)−Ky(s)Gxw(s))

which is Gx(s)R(s). That is, closed-loop formulas arise from
open-loop expressions by using the feedback transformation
V = RW .

Theorem 1: (Feedback invariance of ECD) The ECD prop-
erty holds in closed-loop for any Y if it holds in open-loop.
Moreover, let the critical constants from Eq. 4 in open- and
closed-loop be γe,o and γe,Y , respectively. Then γe,o ≥ γe,Y .

Proof: Let R(ω, v) denote the ratio of average energies
in Eq. 4. Suppose ECD holds in open-loop and let V ∈ Cl+m.
Then there exists γe,o > 0 such that

γe,o = sup
ω

max
v 6=0
R(ω, v) <∞

Since Mpo and Mqo are Hermitian, the range of R is a closed
interval Iλ = [λ(ω), λ(ω)] whose ends are the minimum and
maximum generalized eigenvalues of (Mpo,Mqo) [9], [10]
and

max
v 6=0
R(ω, v) = max

V ∗V≤κ2
R(ω, v)

for any κ > 0. Take κ = σ(R(ω)), the maximum singular
value of R(ω) and define the set

β = {V ∈ Cl+m : 0 < V ∗V ≤ κ2}

In the closed-loop problem, for each ω we must find
maxv 6=0R(ω, v) under the restriction V = R(ω)W ,W ∈ Cl,
w 6= 0. That is, we consider

max
w 6=0
R(ω,R(ω)W ) = max

0<W∗W≤1
R(ω,R(ω)W )

The range ofR(ω, v) under these restrictions is a subset of Iλ,
which guarantees finiteness of supω R(ω, v), establishing the
ECD property in closed-loop. Define the set

βR = {V ∈ Cl+m : V = R(ω)W,W ∈ Cl, 0 < W ∗W ≤ 1}

so that in closed-loop we seek γe,Y =
supω maxv∈βR

R(ω, v).
To show the inequality, we claim that βR  β. Let V ∈ βR.

Then ∃W such that V = R(ω)W with 0 < W ∗W ≤ 1, and

V ∗V = W ∗R∗(ω)R(ω)V ≤ σ2(R(ω)) = κ2

therefore V ∈ β proving the inclusion. Further, R(ω) is a tall
matrix, so dim(col(R(ω)) ≤ l < l + m. Then we can always
pick V̂ ∈ Cl+m such that V̂ /∈ col (R(ω)) and there is no W
such that V̂ = R(ω)W . Thus v̂ /∈ βR, proving the claim.

Therefore maxV ∈βR
R(ω, v) ≤ maxV ∈βR(ω, v) and tak-

ing the supremum over ω proves the desired inequality.
Remark: ECD holds with γe,o both in open- and closed-loop.
For optimization purposes, however, it is convenient to use the
smaller γe,Y corresponding to each candidate Y . A very large
γe hides the information contained in the ∆qp factor, making
optimization less effective.

A. Optimization Problem

At a given frequency ω, ζ(Y, ω,w) is the product of
two Rayleigh quotients (ratios of positive-definite quadratic
functions). A min-max approach is adopted, given that w is
uncertain. The inner, maximization problem is to find the
worst-case direction of w and the corresponding value of ζ.
A separate maximization of each ratio corresponds to a well-
known Rayleigh quotient problem [9], [10], with a direct solu-
tion given by the eigenvector corresponding to the maximum
generalized eigenvalue of the matrices in the numerator and
the denominator, as done to find γe for ECD. The direction
maximizing ζ, however, will generally not coincide with the
maximizing eigenvector of either Rayleigh quotient.
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This problem is indeed non-convex and NP-hard, and also
found in sum-rate maximization for relay networks [11]. These
features make it challenging to associate ζ with singular values
or system norms. When dimensionality (reflected in m and
l) is low, a search across frequencies and input directions is
practically feasible and accurate to any desired resolution. This
process yields

ζ(Y, ω) = max
W∗W 6=0

ζ(Y, ω,w) (23)

from which an optimization cost is obtained as described next.

VI. OVERVIEW OF THE ALGORITHM

At each frequency, maximization over input directions is
performed by parameterizing w such that ||w|| = 1. For w
of dimension l, l − 1 parameters are needed. For l = 2,
wT = [cos(s) sin(s)] is taken with s ∈ [−π, π] and any
desired spacing.

An adaptive feature is included to reduce the width of the
interval for s. Since the maximizing wi at one frequency is
expected to remain close to the maximizing direction wi−1
at the previous frequency, the interval may be narrowed to
a small neighborhood of wi−1. Should s reach either end
of this reduced interval, the search can temporarily revert to
[−π, π]. This process determines the frequency distribution of
the worst-case values of ζ(Y, ω,w) over a chosen frequency
range W , as in Eq. 23. To obtain a cost, a peak (H∞-like)
approach may be used, yielding an objective function to be
minimized with respect to Y :

J∞(Y ) = max
ω∈W

ζ(Y, ω) (24)

Alternatively, an integral approach (H2-like) corresponds to
the cost function

J2(Y ) =

∫
ω∈W

ζ(Y, ω)dω (25)

which becomes just a summation due to the finiteness of W .
Y of a fixed order may be parameterized, for instance, by
including its poles and the zeroes and gains of each Y (i, j),
i ∈ m, j ∈ l in a search vector to be passed to any suitable
global optimization algorithm.

VII. SIMULATION EXAMPLE

The electromechanical system of Fig. 1 consists of two DC
motors i = 1, 2 with resistancesRi, inductances Li and torque
constants αi. Rotational inertias Ji are considered only for
the load disks. Viscous damping coefficients bi and ci are
included for the motor and load, respectively. Two capacitors
Ci are connected in parallel with current sources ui, which are
the control inputs. Gear ratios ni are considered between the
motors and the load disks, which are coupled by a torsional
spring of constant k. Finally, disturbance torques wi, shown
as τdi in the figure act on the motor shafts. A mathematical
model is constructed using generalized displacements q and
momenta p as components of the state vector x. The model
description and parameter values are available through the
code accompanying this paper.
Control objectives: The primary objective is to maintain the

Fig. 1. Twin electromechanical drive used in the simulation example.

Fig. 2. Bond graph and network connectivity for the twin electromechanical
drive of the simulation example.

relative rotation between the disks small in the presence of
disturbances (i.e., to limit the torque on the spring to some safe
level) while penalizing excessive control currents. This objec-
tive is addressed by using qL = θ1 − θ2 in the performance
output zT = [ρqL DTuT ]. D = I was taken and the results
below follow from choosing ρ = 10.

The secondary objective is to maximize the power transmit-
ted to the load while extracting the most power from the dis-
turbances, so that the power consumption from the controlled
sources is reduced. In this example the average power trans-
mitted to the load corresponds to viscous friction on the load
shafts and it can be interpreted as “useful” work (this friction
could arise, for example, from stirring a viscous liquid in some
production process). Whenever the power consumption from
the sources is negative, “self-powered” operation has been
achieved with a system which also complies with a primary
regulation objective. In this case, the surplus power could be
extracted, for instance by tapping current from the capacitors.

A bond graph representation (Fig. 2) is a good visualization
of power flows and the distribution of energy storage, dissipa-
tion and conversion elements. Through its causal notation, it
also provides information about the structure of the system’s
dynamics [12]. Figure 2 also defines the boundaries of the
p, q and load subsystems and the connectivity of the power
network. The p subsystem and the load are dissipative, while
the controlled sources and the disturbances are connected to
the q subsystem only. These features meet Assumption 2.
Moreover, only the q subsystem is connected to an external
load (this is incidental but not required).

The primary suboptimal H∞ was solved using the stan-
dard Riccati equation method [4] with performance levels γ
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reduced by iteration. A near-optimal value of γ was selected
and the corresponding feedback gains K1 and K2 calculated.
For the secondary objective, a search among Y of second order
with m = 2 inputs and l = 2 outputs was conducted. Two
zeroes and one gain for each entry, along with two poles of
U make for 14 search parameters. Upper and lower bounds
were placed to limit the gains, the bandwidth and to ensure
left-half plane poles. A log-spaced set W of 100 frequencies
between 0.1 and 100 rad/s is used in the algorithm compute ζ
for Y candidates, normalizing by ||Y ||∞. The maximization
over input directions w was done by a line search with w =
[cos(s) sin(s)]T for s ∈ [−π, π] with a spacing of 0.05 rad.
The adaptive feature considerably reduces the width of this
interval and results in a faster search.

The problem was solved using J∞ and again using J2. The
optimizer computes γe,crit for each candidate Y instead of
using the larger, open-loop value that guarantees ECD for any
Y (Theorem 1). Matlab’s patternsearch was found to
be very efficient in finding the solutions. Their corresponding
γe,crit were found to be very close to each other and to
the value corresponding to Y = 0. The largest value was
used to evaluate all three solutions uniformly. Figure 3 shows
the magnitude of ζ (arbitrarily scaled) for the central and
optimized controllers. The optimized solutions are seen to be
most effective below certain frequency. The two solutions offer
similar worst-case performances, however their parameters are
very different, as it could be shown by plotting the singular
values of Y .
Discussion: Table I shows a balance of average power for
each solution as determined by a time-domain simulation in
two cases: first, for ω = 1 rad/s and sinusoidal disturbances,
each controller was tested with its respective worst-case input
direction (amplitude ratio). Separately, white noises past low-
pass filters with cutoff frequencies of 1 rad/s were applied to
each channel in w. The total power input Sq in Eq. 2 was
split into contributions from the control input, Su, and the
disturbance Sw.

The FLT efficiencies η1 = φL/Sq are, as expected, very
low when the worst-case directions corresponding to each Y
are used. The optimized solutions, however, have higher η1
and extract a large amount of power from the disturbances,
allowing them to return power to the source, making self-
powered operation feasible. With the noise input, disturbances
appear in all directions, and the central controller is more
efficient under the η1 criterion.

The FLT may not the best criterion to evaluate the results,
since it does not consider the benefit of “selling” the surplus
power. An economics-oriented extraction efficiency is a more
sensible measure:

ηx ,
φL − Su
Sw

= 1− Σ σi

Sw
(26)

The numerator of the definition contains the net utility and the
denominator the available resource. When the losses exceed
the power extracted from the disturbances (as in the first row
of the table), the utility is negative. The upper limit to ηx is
1. Table I shows a remarkable superiority of the optimized

Fig. 3. Worst-case ζ for the optimized and central controllers

Worst-case Su Sw σ SL η1(%) ηx(%)
Central 24.5 10.9 34.8 0.57 1.56 < 0
Peak-optimized -67.0 285.9 210.2 8.30 3.8 26.3
Area-optimized -29.0 165.6 130.7 5.50 4.1 20.8

White noise Su Sw σ SL η1(%) ηx(%)
Central -6.20 99.7 58.0 35.3 37.78 41.65
Peak-optimized -21.9 77.0 49.7 5.30 9.61 35.37
Area-optimized -22.5 89.0 50.7 15.7 23.54 42.85

TABLE I
TIME-DOMAIN SIMULATION RESULTS AT ω = 1 RAD/S AND WITH A

LOW-PASS FILTERED WHITE NOISE. POWER IS SHOWN IN MILLIWATTS.

controllers relative to this measure. The results also shows
that the approach introduced here is not equivalent to plain
minimization of losses or maximization of η1.
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