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Abstract— Information design involves a designer with the
goal of influencing players’ actions in an incomplete information
game through signals generated from a designed probability
distribution so that its objective function is optimized. We
consider a setting in which the designer has partial knowledge
on players’ payoffs, and wants to maximize social welfare.
We address the uncertainty about players’ preferences by
formulating a robust information design problem against the
worst-case payoffs. When the players have quadratic payoffs
that depend on the actions and an unknown payoff-relevant
state, and signals on the state that follow a Gaussian dis-
tribution, the information design problem under quadratic
design objectives can be stated as a semidefinite program
(SDP) [1]. Given this fact, we consider ellipsoid perturbations
over payoff coefficients in linear-quadratic-Gaussian (LQG)
games. We show that we can obtain a similar SDP formulation
that approximates the social welfare maximization via robust
information design. Numerical experiments identify the relation
between the uncertainty level on players’ payoffs and the
optimal information structures.

I. INTRODUCTION

An incomplete information game is comprised of multiple
players who take actions to maximize their utilities which
depend on actions of other players and unknown states.
Incomplete information games are used to model federated
edge learning [2], electricity spot market [3], cyber-defense
in EV charging [4] and traffic flow in communication or
transportation networks [5], [6].

Information design problem entails decision over informa-
tiveness of signals given to players regarding the payoff state
so that induced actions maximize a system level objective.
Information designer as an entity commits to an optimal
probability distribution of signals conditional on the payoff
states before state realization (for an example in pandemic
control see Fig. 1). The selected distribution maximizes the
designer’s objective and adheres to equilibrium constraints.
Various entities such as social media companies [7], ad-
vertisements platforms [8] and public health agencies [9]
could be considered as information designers. In control
systems, information design is employed for routing games
[10], vehicle-to-vehicle communication [11], and queue man-
agement under heterogeneous users [12].

In this paper, we propose a robust optimization approach to
the information design problem considering the fact that the
designer cannot know the players’ payoffs exactly. Indeed,
while the designer may be knowledgeable about the payoff
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Designer

Fig. 1. Information designer sends (dashed arrows) optimally designed
signals on the risks of infection from an emerging infectious disease to the
players who can be susceptible (blue), infected (red) or recovered (green),
so that they follow the recommended health measures, e.g. social distancing
or masking that reduce the risk of an outbreak. An individual’s infection
or disease transmission risk is determined by its contacts (shown by solid
edges)–see Example 2. For instance, player 1 (susceptible) has one infected
neighbor (player 5) that it can contract the disease from.

relevant random state, it may have uncertainty about the pay-
off coefficients of the players. For instance, in the pandemic
control example in Fig. 1, while the public health department
may have near-certain information about the potential risks
of a disease or intervention, it may not know how the society
weights the risks and benefits in their decision-making. Here,
we assume the designer has partial knowledge about the
players’ payoffs, and wants to perform information design
over the payoff relevant states.

When the payoffs of the players are unknown, the designer
cannot be sure of the rational behavior under a chosen
information structure. We formulate this problem as a robust
optimization problem where the designer chooses the “best”
optimal information structure for the worst possible realiza-
tion of the payoffs. That is, we do not make any assumptions
on the distribution of the players’ payoff coefficients. Specif-
ically, we assume the players have linear-quadratic payoffs
with coefficients unknown by the designer. We further as-
sume that the payoff relevant states and signals generated
by the designer come from a Gaussian distribution. In this
setting, we show that the robust information design with the
goal to maximize social welfare can be approximated with a
SDP given ellipsoid perturbations on the payoff coefficients
(Theorem 2). The SDP formulation provides a distribution
over the actions that the designer can send as signals. The
approximation stems from the loss of the the obedience
condition (incentive compatibility) on the actions suggested
by the designer for the realizations of the payoffs other than
the worst-case.
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In Bayesian persuasion, in which there is a single player
[13], robustness is explored in the worst-case, online and var-
ious other settings [14], [15], [16], [17], [18]. For instance,
[19] considers information design where the designer learns
unknown payoffs via auctions. Instead, here we consider the
multi-player setting, i.e., information design, and assume the
game is unknown. In our setting, the designer maximizes the
worst-case objective given rational behavior.
Notation: We use Ai,j to denote the element in the ith
row and jth column of matrix A. We use • to represent
the Frobenius product, e.g., A • B =

Pm
i=1

Pm
j=1 Ai,jBi,j

for A 2 Rm⇥m and B 2 Rm⇥m. We represent the set
of m ⇥ m symmetric and symmetric positive semi-definite
matrices using Pm and Pm

+ , respectively. tr(·) denotes the
trace of a matrix. I and O indicate the identity and zero
matrices, respectively. 1 is a column vector of all ones.

II. GENERIC ROBUST INFORMATION DESIGN PROBLEM
FOR WELFARE MAXIMIZATION

An incomplete information game involves a set of n 2 N+

players belonging to the set N := {1, . . . , n}, each of which
selects actions ai 2 Ai to maximize the expectation of its
payoff function u✓

i (a, �) where a ⌘ (ai)i2N 2 A is the
action profile, � ⌘ (�i)i2N 2 � is the payoff state vector,
and ✓ 2 ⇥ is a payoff parameter. Players know the payoff
parameter ✓, but they do not know the payoff state �. Player
i forms expectation about the payoff state � based on the
prior on the state  and its signal/type !i 2 ⌦i.

The information designer does not know the payoff pa-
rameter ✓, but is more informed about the payoff state �
than the players. Specifically, an information designer aims
to maximize a system level objective function f✓ : A⇥� !
R, e.g., social welfare, that depends on the actions of the
players (a), and the state realization (�) by deciding on an
information structure ⇣ belonging to the set of probability
distributions over the signals Z . That is, ⇣ is a conditional
probability on the signals {!i}i2N given the payoff state
vector �, i.e., (P (!

�� �)) belonging to the space of all
such conditional probability distributions Z . The information
structure determines the fidelity of signals {!i}i2N that will
be revealed to the players given a realization of the payoff
state vector �.

We introduce social welfare as a design objective.
Definition 1 (Social Welfare): Social welfare design ob-

jective is the sum of individual utility functions,

f✓(a, �) =
nX

i=1

u✓
i (a, �). (1)

Social welfare is a common design objective used in con-
gestion [6], global [20] or public goods games [9].

We represent the incomplete information game given ✓ 2
⇥ and a prior  on the state � by the tuple G✓ :=
{N ,A,�, {u✓

i }i2N , {!i}i2N , ⇣, }. We use G⇥ := {G✓ :
✓ 2 ⇥} to refer to the set of possible games.

A strategy of player i maps each possible value of the
private signal !i 2 ⌦i to an action si(!i) 2 Ai, i.e., si :
⌦i ! Ai. A strategy profile s = (si)i2N is a Bayesian Nash

equilibrium (BNE) with information structure ⇣ of the game
G✓, if it satisfies the following inequality

E⇣ [u
✓
i (si(!i), s�i, �)|!i] � E⇣ [u

✓
i (a

0
i, s�i, �)|!i], (2)

for all a0i 2 Ai,!i 2 ⌦i, i 2 N , and s�i = (sj(!j))j 6=i is
the equilibrium strategy of all the players except player i, and
E⇣ is the expectation operator with respect to the distribution
⇣ and the prior  . We denote the set of BNE strategies in a
game G✓ with BNE(G✓).

In this paper, the designer does not make any distributional
assumptions on the payoff parameter ✓, and aims to select
the best signal distribution for the worst case scenario, i.e.,

min
✓2⇥

max
⇣2Z

E⇣ [f
✓(s, �)] s.t. s 2 BNE(G✓). (3)

The outer optimization problem in (3) evaluates to the de-
signer’s objective under the worst possible payoff parameter
realization, and BNE actions given a signal distribution ⇣.
The designer wants to do the best it can to maximize the
system objective assuming the realization of the worst-case
scenario. We note that the information design problem is
not a Stackelberg (leader-follower) game, since the players
are not strategic against the designer’s strategy and objective
[13].

We denote the optimal solution to (3) by ⇣⇤. Given the
robust optimal information structure ⇣⇤, the information
design timeline is given in the following:

1) Designer notifies players about ⇣⇤
2) Realization of the payoff parameter ✓ and payoff state

�, and subsequent draw of signals wi, 8i 2 N from
⇣⇤(!, �)

3) Players take action according to BNE strategies under
information structure ⇣⇤ in game G✓.

The generic robust information design problem in (3) is not
tractable in general. In the following we make assumptions
on the payoff structure and the signal distribution to attain a
tractable formulation.
A. Linear-Quadratic-Gaussian (LQG) Games

An LQG game corresponds to an incomplete information
game with quadratic payoff functions and Gaussian informa-
tion structures. Specifically, each player i 2 N decides on
its action ai 2 Ai ⌘ R according to a payoff function

u✓
i (a, �) = �Hi,ia

2
i � 2

X

j 6=i

Hi,jaiaj + 2�iai (4)

where A ⌘ Rn and � ⌘ Rn that is a quadratic function of
player i’s action, and is bilinear with respect to ai and aj , and
ai and �. We collect the coefficients of the quadratic payoff
function in a matrix H = [Hi,j ]n⇥n. The payoff parameter
✓, unknown to the designer in (4), is the coefficients matrix
H , i.e. ✓ ⌘ H . We note that the utility in (4) can have other
terms that depend on a�i or �, but not on player i’s action
ai.

Payoff state � follows a Gaussian distribution, i.e., � ⇠
 (µ,⌃) where  is a multivariate normal probability distri-
bution with mean µ 2 Rn and covariance matrix ⌃. Each
player i 2 N receives a private signal !i 2 ⌦i ⌘ R. We
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define the information structure of the game ⇣(!|�) as the
conditional distribution of ! ⌘ (!i)i2N given �. We assume
the joint distribution over the random variables (!, �) is
Gaussian; thus, ⇣ is a Gaussian distribution.

Next, we provide two examples of LQG games.
Example 1 (Beauty Contest Game): Payoff function of

player i is given by

u✓
i (a, �) = �(1� ✓)(ai � �)2 � ✓(ai � ā�i)

2, (5)

where ✓ 2 [0, 1] and ā�i =
P

j 6=i aj/(n� 1) represents the
average action of other players. The first term in (5) repre-
sents the players’ urge to take actions close to the payoff state
�. The second term accounts for players’ tendency towards
taking actions in compliance with others. The constant ✓
gauges the importance between the two terms. The payoff
captures settings where the valuation of a good depends on
both the performance of the company and what others think
about its value [20].

Example 2 (Social Distancing Game): Player i’s action
ai 2 R+ [ {0} is its social distancing effort to avoid the
infectious disease contraction/transmission (see also Fig. 1).
The risk of infection depends on unknown disease specific
parameters, e.g., severity, infection rate, and the social dis-
tancing actions individuals in contact with player i. We define
the payoff function of player i as follows,

u✓
i (a, �) = �Hi,ia

2
i � (1� �iai)ri(a, �) (6)

where the risk of infection is ri := � � 2
P

i 6=j Hi,jaj , 0 <
�i < 1 is the risk reduction coefficient. In the definition
of risk ri, � denotes the risk rate of the disease such as
infection rate or severity, and Hi,j determines the contacts
of player i and the intensity of the contacts. The first term in
(6) represents the cost of social distancing. The second term
in (6) denotes the overall risk of infection that scales with
the player’s social distancing efforts.
In the examples above, there is a common payoff state, i.e.,
�i = � for i 2 N .

Next we state the main structural assumption on the
unknown payoff parameter H of the LQG game.

Assumption 1: We assume the following affine perturba-
tion structure on the payoff matrix H ,

Hi,j = [H0]i,j + vi,j✏i,j , 8i, j 2 N (7)

where H0 is the nominal payoff matrix, vi,j 2 R, is an
element of the unknown perturbation matrix v 2 Rn⇥n

which covers a given closed and convex perturbation set V
such that 0 2 V and ✏i,j is the constant shift.
We note that while the actual payoff parameters H are
unknown to the designer, they are known by the players.
The designer only knows the nominal payoff matrix H0,
potentially obtained from past data.

B. From signal to action distributions

We define the distribution of actions induced by the infor-
mation structure under a given strategy profile as follows.

Definition 2 (Action distribution): An action distribution
is the probability of observing an action profile a 2 A when

players follow a strategy profile s under ⇣, which can be
computed as

�(a|�) =
X

!:s(!)=a

⇣(!|�). (8)

According to the definition, the probability of observing the
action profile a is the sum of the conditional probabilities
of all signal profiles ! under ⇣ that induce action profile a
given the strategy profile s.

Definition 3 (Equilibrium action distribution set): The
set of equilibrium action distributions induced by BNE
strategies under an information structure ⇣ 2 Z for game
G✓ is

B✓(⇣) = {� : � satisfies (8) for s 2 BNE(G✓) given ⇣ 2 Z}.
(9)

We begin by stating the BNE condition in (2) by a set
of linear constraints for LQG games given the payoff matrix
H—see Proposition 3 in [1] for a derivation.

Lemma 1: Define the covariance matrix X 2 P 2n
+ as

X :=


var(a) cov(a, �)
cov(�, a) var(�)

�
. (10)

For a given payoff matrix H where H + HT is positive
definite, the BNE condition in (2) can be written as the
following set of equality constraints,

X

j2N
Hi,jXi,j �Xi,n+i = 0, i 2 N (11)

where Xi,j = cov(ai, aj) for i  n, and j  n, and
Xi,n+i = cov(ai, �i).
The condition in (11) ensures that X is a Bayesian correlated
equilibrium (BCE)—see [21] for a definition. When ✓ is
known, we can state the designer’s maximization problem
in (3) as the determination of an action distribution sub-
ject to the constraint that actions belong to B✓(⇣), i.e.,
max�2B✓(⇣) E�[f(a, �)]. Indeed, we can state the design
problem as a SDP using X in (10) as the decision variable,
subject to the BCE constraints in (11)—see [1]. In such
a case, the players would not benefit from deviating from
the recommended actions because they would satisfy the
obedience condition as per the revelation principle, see [21,
Proposition 1]. However, this principle does not apply in the
setting where ✓ is chosen adversarially. Next, we address this
issue in the finite scenario and ellipsoid perturbation settings.

III. ROBUST INFORMATION DESIGN UNDER FINITE
SCENARIOS

In the following, we express the robust information design
problem under a finite set of scenarios as a mixed integer
SDP using action distributions.

Theorem 1 (Finite-case): Suppose Assumption 1 holds.
Let the design objective f✓(a, �) be quadratic in its argu-
ments with the coefficients stored in matrix F 2 R2n⇥2n,
i.e., f✓(a, �) = [a �]TF [a �]. Assume the design objec-
tive coefficients do not depend on H . Consider a finite
perturbation vector with C scenarios, and let vc 2 Rn⇥n

refer to perturbation vectors corresponding to one of the
scenarios c 2 C = {1, . . . , C}. The following mixed-integer
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SDP formulation relaxes the BCE conditions in the robust
information design problem (3):

min
yc2{0,1},c2C

max
X2P 2n

+

F •X (12)

s.t.
CX

c=1

yc = 1, (13)

yc(R0,l •X +
X

(i,j)2Yl

[vc]i,j✏i,jXi,j) = 0, 8l 2 N , c 2 C

(14)
Mk,l •X = cov(�k, �l), 8k, l 2 N with k  l, (15)

where X is defined in (10), R0,l 2 P 2n, l 2 N is given as:

[R0,l]i,j =

8
>>>>>>>><

>>>>>>>>:

[H0]l,l if i = j = l,

[H0]l,j/2 if i = l, 1  j  n, j 6= l,

�1/2 if i = l, j = n+ l,

[H0]i,l/2 if j = l, 1  i  n, i 6= l

�1/2 if j = l, i = n+ l,

0 otherwise,

(16)

and Mk,l 2 P 2n is given as:

[Mk,l]i,j =

8
>>><

>>>:

1/2 if k < l, i = n+ k, j = n+ l,

1/2 if k < l, i = n+ l, j = n+ k,

1 if k = l, i = n+ k, j = n+ l,

0 otherwise,
(17)

and Yl refer to the elements of the perturbation vector with

Yl := {{i, j} : i = j = l _ i = l, 1  j  n, j 6= l

_ j = l, 1  i  n, i 6= l}. (18)
Proof: We can express the expected quadratic objective

using the Frobenius product as follows,

E�[f(a, �)] = E�

⇥ ⇥
aT , �T

⇤
F


a
�

� ⇤
(19)

= F •X (20)

where F =


[F ]1,1 [F ]1,2
[F ]1,2 [F ]2,2

�
2 P 2n, and note that [F ]i,j

denotes the i, jth n⇥ n submatrix.
Let c⇤ be the worst-case scenario from the perspective of

the designer. The designer chooses X⇤ that maximizes its
objective F •X subject to rational behavior of players in the
worst case scenario. As per Lemma 1, we have

X

j2N
Hi,jX

⇤
i,j �X⇤

i,n+i = 0, 8i 2 N (21)

X

j2N
([H0]i,j + [vc⇤ ]i,j✏i,j)X

⇤
i,j �X⇤

i,n+i = 0, 8i 2 N .

(22)

We rewrite (22) in terms of matrices R0,l, 8l 2 N as in
(16) and X as in (10) to obtain (14). Minimization over
yc, {1, 2, .., C} enforces the constraint c⇤ among the set of
constraints in (14) to be selected. Constraint (15) corresponds
to the assignment of var(�) to [X]2,2. Constraint (15) is not

affected by perturbations to H. While X⇤ satisfies the BCE
condition in (11) for c⇤, it does not satisfy it for c 2 C \ c⇤.

According to the formulation in (12)-(15), the solution
entails finding the covariance matrix X that maximizes
F • X for the worst possible scenario. We note that an
alternative equivalent formulation can entail C covariance
matrices, i.e., X1, . . . , XC , and leave out the integer variables
{yc}c=1,...,C .

The formulation in (12)-(15) relaxes the BCE condition
for scenarios that are not the worst-case. For illustration
purposes, consider C = 2 scenarios. Assume c = 1 is the
worst case scenario, i.e., y1 = 1 and y2 = 0. In such a
case, X⇤ will be a BCE for c = 1 exactly, while the BCE
condition in (11) will be approximately satisfied for c = 2.
Specifically, we have
X

j2N
([H0]i,j + [v2]i,j✏i,j)X

⇤
i,j �X⇤

i,n+i =

X

j2N
([H0]i,j + [v2]i,j✏i,j + [v1]i,j✏i,j � [v1]i,j✏i,j)X

⇤
i,j �X⇤

i,n+i

(23)

=
X

j2N
([v2]i,j✏i,j � [v1]i,j✏i,j)X

⇤
i,j > 0, 8i 2 N . (24)

We can interpret this relation as the optimal solution X⇤

being an approximate BNE for the good scenario c = 2.
Remark 1: The standard robust optimization problem in

(3) requires that X⇤ is feasible for every ✓ 2 ⇥. The
formulation for this problem would entail getting rid of
the integer variables from the formulation in (12)-(15), i.e.,
yc = 1 for each (14) and removing (13). This formulation
may restrict the feasibility region drastically, as is often
the issue with robust optimization problems with equality
constraints [22].

IV. ROBUST WELFARE MAXIMIZING INFORMATION
DESIGN UNDER ELLIPSOID UNCERTAINTY

We assume the following ellipsoidal structural form for
the perturbation vectors in (7) for l 2 N ,

Vl = Ball⇢ = {v : ||vl||2  ⇢, vl = {[vl]i,j}{i,j}2Yl
}, (25)

where ⇢ � 0 and Yl is given in (18). Under convex
continuous uncertainty sets as the one above, the number of
scenarios C is infinite. Thus, the formulation in Theorem
1 where we enforce BCE constraints in (11) exactly for
the worst-case scenario, and annul the other cases using
integer variables is not viable. Moreover, enforcing the BCE
constraints in (11) for all perturbations v 2 Vl may limit the
solution space drastically as per Remark 1. Instead, here we
relax the BCE constraint in (11) as follows

|
X

j2N
Hi,jXi,j �Xi,n+i|  ↵, i 2 N (26)

where ↵ � 0 is a finite constant. This relaxation guarantees
an approximate tractable solution to the information design
problem in which the designer aims to maximize social
welfare under ellipsoidal perturbations.
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Theorem 2: Consider the social welfare in (1) as the
designer’s objective f✓(a, �). Assume H is given by (7) and
perturbation vectors vl, 8l 2 N exhibit ellipsoid uncertainty
(25). Consider the following SDP for ↵ � 0:

max
X2P 2n

+ ,t
t (27)

s.t. F0 •X � n2⇢

2n� 1

vuut
nX

i=1

nX

j=1

(✏i,jXi,j)2 � t, (28)

R0,l •X + ⇢
s X

(i,j)2Yl

(✏i,jXi,j)2  ↵, 8l 2 N (29)

�R0,l •X + ⇢
s X

(i,j)2Yl

(✏i,jXi,j)2  ↵, 8l 2 N (30)

Mk,l •X = cov(�k, �l), 8k, l 2 N with k  l, (31)

where F0 =


�H0 I
I O

�
2 R2n⇥2n, and the matrices R0,l

and Mk,l are as defined in (16) and (17), respectively. If the
worst-case scenario is realized and ↵ = 0, then the designer’s
objective value F •X⇤, where X⇤ is an optimal solution to
(27)-(31), attains the optimal objective value for (3).

Proof: We can express the social welfare objective in

(1) in the form F • X with F =


�H I
I O

�
–see [23]. We

start by writing the social welfare objective as a constraint
F •X � t under ellipsoid uncertainty:

F •X = F0 •X +
nX

i=1

nX

j=1

vi,j✏i,jXi,j � t (32)

where t represents the designer’s objective value. In the
above summation, all elements of the perturbation matrix v
are involved. Given the assumption of ellipsoid perturbations
in (25), it is guaranteed that v is within a ball of radius
n2⇢
2n�1 , i.e. v 2Ball n2⇢

2n�1

. We can write (32) as a minimization
problem that aims to find the worst case scenario:

min
||v|| n2⇢

2n�1

nX

i=1

nX

j=1

vi,j✏i,jXi,j  F0 •X � t (33)

Solution to (33) is the tractable robust constraint given in (28)
[22, Section 1.3]. Next, we substitute H in (7) into (26),

|
X

j2N
([H0]ij + vij✏ij)Xi,j �Xi,n+i|  ↵ 8i 2 N , v 2 Vl.

(34)
We can rewrite (34) in terms of matrices R0,l, 8l 2 N and
X as in (10):

|R0,l •X +
X

(i,j)2Yl

vi,j✏i,jXi,j |  ↵, 8l 2 N . (35)

We split the absolute value into two linear constraints (pos-
itive and negative sides). When we write the maximization
problem over the uncertain constraint (35) for the positive
side, we have

max
||vl||⇢

X

(i,j)2Yl

vi,j✏i,jXi,j  ↵�R0,l •X, 8l 2 N (36)

where Yl is given in (18). Solution to (36) gives the tractable
constraint (29) [22, Section 1.3]. Repeating the same steps
for the negative side yields (30). Constraint (31) enforces
assignment of known covariance matrix of payoff states,
cov(�) to the corresponding parts of X .

When ↵ = 0 and H is such that ||v||2 = n2⇢
2n�1 , the

designer’s objective is equal to the solution to (3) with H in
(7).
It is easy to check that no information disclosure Xno =

O O

O var(�)

�
is a feasible solution even when ↵ = 0—

see [1] for the derivation of Xno. As noted in Remark
1, formulation with ↵ = 0 may be too restrictive. When
↵ > 0, the incentive compatibility of the solution X⇤ is
compromised, but the set of feasible solutions increases. We
also note that the BCE conditions in (11) for the scenarios
that are not the worst case are not satisfied, as was the case
in the finite scenarios setting.

Given an optimal solution X⇤, the designer can draw
actions from a Gaussian distribution with mean 0 and co-
variance matrix X⇤, and send these values to the players as
signals.

V. NUMERICAL EXPERIMENTS

We consider a designer that wants to maximize the so-
cial welfare of n = 5 players. The designer knows the
nominal payoff matrix given as follows: [H0]i,i = 5 for
i 2 {1, . . . , 5}, and [H0]i,j = �1 for i 6= j, i, j 2
{1, 2, .., 5}. The variance of the unknown payoff state � is
given as follows: var(�)i,i = 5 for i = {1, . . . , 5}, and
var(�)i,j = 0.5 for i 6= j, i, j 2 {1, 2, ., 5}. We consider
ellipsoid perturbations with ⇢ 2 {0.7, 1, 1.3, .., 3.4} and let
↵ = 0.1. Given the setup, we solve (27)-(31) in order to
obtain the optimal information design X⇤.

We analyze the effects of shifts ✏i,j defined in (7) by
assuming the diagonal elements and off-diagonal elements
of shift matrix are homogeneous, i.e., ✏i,i = ✏1 and ✏i,j = ✏2
for all i, j = 1, . . . , n for constants ✏1 and ✏2.

In order to systematically analyze the effects of the shifts,
we fix the off-diagonal shifts to a small value ✏2 = 0.001,
and vary the diagonal shift ✏1 2 {0.03, 0.04, 0.05, .., 0.12}.
Fig. 2(a) shows that as the uncertainty ball radius ⇢ and
diagonal shift ✏1 increases, the optimal information structure
remains a partial information disclosure but gets closer to
the no information disclosure. Fig. 2(b) shows that social
welfare decreases under increasing uncertainty.

We can discuss Fig. 2 in terms of the beauty contest game,
which is a supermodular game. If we consider the common
goods in the beauty contest game as a stock, we see that
a social welfare maximizing information designer, i.e. the
company whose stock is traded releases less information
about the stock value �, when the uncertainty about its
shareholders’ payoffs H increase.

VI. CONCLUSION

The paper considered the problem of designing informa-
tion structures in incomplete information games when the
designer does not know the game payoffs exactly. This is
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(a) ||X⇤ �Xno||F

(b) Optimal objective value

Fig. 2. Contour plots of (a) normalized Frobenius matrix norm
distance ||X⇤ �Xno||F between the optimal covariance matrix
(X⇤) and no information disclosure covariance matrix (Xno), and
(b) optimal objective value with respect to uncertainty ball radius
⇢ and diagonal shift ✏1 to coefficient matrix H under a symmetric
supermodular game with social welfare objective. Optimal solution
X

⇤ approaches to no information disclosure as ⇢ and ✏1 increase.

a common situation in many real-world settings, where the
game payoffs are often uncertain due to various factors such
as imperfect modeling, or unknown parameters. Specifically,
we considered the information design for the setting when
the unknown payoff parameters are adversarially chosen.
For the robust information design problem, we developed
a SDP formulation given quadratic payoffs, Gaussian signal
distributions, ellipsoid perturbations to the unknown payoff
parameters, and social welfare as the design objective. Nu-
merical experiments show that the designer would choose
to reveal less information about the payoff states to the
players as its uncertainty about the players’ payoffs grow.
This suggests that in situations where the game payoffs are
highly uncertain, it may be preferable to not disclose any
information, rather than risk providing misleading informa-
tion.
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