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Abstract— In this paper, we study a class of linear-quadratic
mean-field-type difference games with coupled affine inequality
constraints. We show that the mean-filed-type equilibrium can
be characterized by the existence of a multiplier process which
satisfies some implicit complementarity conditions. Further,
we show that the equilibrium strategies can be computed by
reformulating these conditions as a single large-scale linear
complementarity problem. We illustrate our results with an en-
ergy storage problem arising in the management of microgrids.

I. INTRODUCTION

Stochastic dynamic games offer a mathematical frame-
work for modeling dynamic decision-making scenarios that
involve multiple players interacting in uncertain environ-
ments. Mean-field-type dynamic games (MFTDGs) are a spe-
cific class of stochastic games that allow for the inclusion of
not just the state and control terms, but also their distributions
in the objective functionals and state dynamics [1], [2]. As
a result, MFTDGs, when the mean and variance terms are
considered, are related to the mean-variance paradigm devel-
oped by H. Markowitz [3]. MFTDGs differ from mean-field
games [4] by accounting for inherent heterogeneities and
finite decision-makers, unlike the approximation provided
by mean-field games for problems with many symmetric
players. MFTDGs have been increasingly utilized to model
real-world engineering problems arising in water networks
[5], smart-grids [6] and pedestrian flow [7]; see [2] and [8]
for a detailed coverage.

MFTDGs have been solved using various approaches in
the literature, including the stochastic maximum principle
[9], dynamic programming [10], and direct method [11],
[12]. In [13], the authors studied MFTDGs involving equality
constraints on the control variables. Multi-agent decision
problems in engineering and economics require incorporating
inequality constraints on state and control variables like
capacity, saturation, and budget constraints. The dynamic
nature of these constraints poses technical challenges in
characterizing admissible controls and establishing solv-
ability conditions for equilibria, distinguishing them from
unconstrained counterparts. Despite the significance of these
challenges, the literature on MFTDGs involving inequality
constraints is scarce, to the best of our knowledge.

This paper proposes a solution for linear-quadratic MFT-
DGs with inequality constraints. We focus on a discrete-
time setting with finite horizon, scalar state dynamics, and
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quadratic objectives. Our approach incorporates coupled
affine inequality constraints on the mean values of state and
control variables. Using the direct method, also known as
completion of squares, we establish a connection between the
existence of a solution for these MFTDGs and the existence
of a multiplier process satisfying implicit complementarity
conditions. By leveraging an approach similar to [14], we
transform these existence conditions into the solvability of
a single large-scale linear complementarity problem, thereby
providing a computational method for solving these games.
The proposed approach can be easily extended to matrix-
valued settings.

This paper is organized as follows. In Section II, we
introduce a class of MFTDGs with coupled affine inequality
constraints. In Section III, we provide conditions for the
existence of an equilibrium in these games. In Section IV, we
present an approach for reformulating these conditions as a
linear complementarity problem. In Section V, we illustrate
our method with numerical simulations and finally Section
VI concludes.

Notation: We denote the transpose of any vector a or
matrix A by a′ and A′ respectively. The identity matrix and
the matrix of zeros are represented by I and 0, respectively,
with dimensions determined from the context. E[x] denotes
the expected value of x. Let A ∈ Rn×n be partitioned as
n= n1+ · · ·+nK . We represent [A]i j as the ni×n j sub-matrix
associated with indices ni (row) and n j (column). We denote
the column vector [v′1, · · · ,v′n]′ by col(vk)

n
k=1 and the row

vector [v1 · · · vn] by row(vk)
n
k=1. The block diagonal matrix

obtained by taking the matrices M1, · · · ,MK as diagonal
elements in this sequence, is represented by ⊕K

k=1Mk. We
represent the Kronecker product operation by ⊗. We call two
vectors x,y ∈Rn complementary if x≥ 0, y≥ 0 and x′y = 0,
and we compactly denote these conditions by 0≤ x⊥ y≥ 0.

II. PRELIMINARIES

In this section we introduce a class of N-player scalar
finite-horizon mean-field-type difference game with inequal-
ity constraints (MFTDGC). We denote the set of players by
N= {1,2, · · · ,N}, the set of time instants or decision stages
by K = {0,1, ...,K}. We define the following two sets as
Kl :=K\{K} and Kr :=K\{0}. At each time instant k ∈Kl ,
each player i∈N chooses an action ui

k ∈R and influences the
evolution of state variable xk ∈R according to the following
discrete-time linear dynamics

xk+1 = akxk + ākE[xk]+ ∑
i∈N

(bi
kui

k + b̄i
kE[u

i
k])+ ck +σkwk,

(1a)
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where the initial state x0 is a scalar random variable with
known finite mean and known finite variance, and ak, āk,
bi

k, b̄i
k, ck, σk ∈ R, i ∈ N. wk ∈ R denotes a stochastic

disturbance with zero-mean and finite variance. We assume
that the decisions of each player i ∈ N additionally satisfy
the following mixed affine coupled inequality constraints

m̄i
kE[xk]+ ∑

j∈N
n̄i j

k E[u
j
k]+ pi

k ≥ 0, (1b)

where m̄i
k, n̄i j

k , pi
k ∈Rsi , k ∈Kl . We denote the set of players

excluding the player i by −i := N \{i}. At any instant k ∈Kl
the collection of actions of all players excluding player i is
denoted by u−i

k := col(u1
k , · · · ,u

i−1
k ,ui+1

k , · · · ,uN
k ). The profile

of actions, also referred to as a strategy, of player i ∈ N is
denoted by ui := col(ui

k)
K−1
k=0 , and the strategy of all players

except player i is denoted by u−i := col(u−i
k )K−1

k=0 . Each player
i ∈ N while choosing their actions seeks to minimize the
following interdependent stage additive cost functional

Ji(ui,u−i) = 1
2 qi

K(xK)
2 + 1

2 q̄i
KE[xK ]

2 + 1
2 ∑

k∈Kl

(
qi

k(xk)
2

+ q̄i
kE[xk]

2)+ 1
2 ∑

k∈Kl

∑
j∈N

(
ri j

k (u
j
k)

2 + r̄i j
k E[u

j
k]

2), (1c)

where qi
k, q̄

i
k ∈ R, k ∈ K and ri j

k , r̄
i j
k ∈ R, k ∈ Kl .

Remark 1. From (1a), the expected state dynamics is given
by

E[xk+1] = (ak + āk)E[xk]+ ∑
i∈N

(bi
k + b̄i

k)E[u
i
k]+ ck. (2)

As E[E[xk](xk−E[xk])] = 0 and E[E[u j
k](u

j
k−E[u j

k])] = 0, the
expected objective can also be represented with mean and
variance terms of state and control variables as follows

E[Ji(ui,u−i)] = 1
2 qi

KE[
(
xK−E[xK ]

)2
]+ 1

2 (q
i
K + q̄i

K)E[xK ]
2

+ 1
2 ∑

k∈Kl

(
qi

kE[(xk−E[xk])
2]+ (qi

k + q̄i
k)E[xk]

2)
+ 1

2 ∑
k∈Kl

∑
j∈N

(
ri j

k E[(u
j
k−E[u j

k])
2]+ (ri j

k + r̄i j
k )E[u

j
k]

2). (3)

The constraints given by (1b) are coupled i.e., at every
stage k ∈ Kl , the control actions u−i

k of players in −i
impose a restriction on player i’s control action ui

k. Collecting
the constraints of all the players, and by eliminating the
expectation of state variable using (2), we get

M̃k
(
(ak−1 + āk−1) · · ·(a0 + ā0)E[x0]+ (ak−1 + āk−1) · · ·

× (a1 + ā1)B̄0E[u0]+ · · ·+(ak−1 + āk−1)B̄k−2E[uk−2]

+ B̄k−1E[uk−1]
)
+ N̄kE[uk]+pk ≥ 0, (4)

where M̃k := col(m̄i
k)

N
i=1, N̄k := col(row(n̄i j

k )
N
j=1)

N
i=1, B̄k :=

row(bi
k + b̄i

k)
N
i=1, E[uk] = col(E[ui

k])
N
i=1 and pk = col(pi

k)
N
i=1.

The joint feasible strategy space of the players is given by

R(E[x0]) := {(ui,u−i) ∈ RKN : (4) holds ∀k ∈ Kl}. (5)

Using (5), the admissible strategy space of player i ∈ N for
a given E[x0] ∈ R and u−i is given by

Ui(u−i) := {ui ∈ RK : (ui,u−i) ∈ R(E[x0])}. (6)

Next, we have the following assumption.

Assumption 1. (i) For a given E[x0] ∈R, the joint admis-
sible strategy set R(E[x0])⊆ RKN is non-empty.

(ii) All the elements of the vector n̄ii
k ∈Rsi are non-zero for

all k ∈ Kl and i ∈ N.
(iii) For each player i ∈ N, qi

k, qi
k + q̄i

k ≥ 0, k ∈ K and rii
k ,

rii
k + r̄ii

k > 0, k ∈ Kl .

Item (i) is required to guarantee the existence of a solution
of (1a) satisfying (1b), for a given E[x0] ∈ R. Item (ii) is
required to satisfy the constraint qualification conditions.
Item (iii) is a technical assumption which can be relaxed;
see Remark 3.

The non-cooperative outcome, that is, mean-field-type
Nash equilibrium associated with MFTDGC, described by
(1), is defined as follows.

Definition 1. For a given E[x0] ∈ R, an admissible strategy
profile (ui?,u−i?)∈ R(E[x0]) is a mean-field-type generalized
Nash equilibrium (MFTGNE) for MFTDGC, if for each
player i ∈ N the following condition holds

E[Ji(u
i?,u−i?)]≤ E[Ji(u

i,u−i?)], ∀ui ∈ Ui(u−i?). (7)

In this letter, we seek to obtain conditions for the existence
of MFTGNE for MFTDGC.

III. MAIN RESULT

In this section, we present a characterization of MFTGNE
for MFTDG. To this end, we employ the direct method,
which involves a five-step procedure for finding the solution.

Theorem 1. Let Assumption 1 holds. Assume there exist a
multiplier process {µ i?

k ∈ Rsi , i ∈ N, k ∈ Kl} satisfying the
following complementarity conditions

0≤
(
m̄i

k + ∑
j∈N

n̄i j
k δ

j
k

)
E[x?k ]+ ∑

j∈N
n̄i j

k δ̄
j

k + pi
k ⊥ µ

i?
k ≥ 0, (8)

where {x?k , k ∈ Kl} evolves as follows

x?k+1−E[x?k+1] = Ak(x?k−E[x?k ])+σkwk, x?0 = x0, (9a)

E[x?k+1] = ĀkE[x?k ]+
(

∑
j∈N

(b j
k + b̄ j

k)δ̄
j

k + ck
)
, (9b)

with Ak := ak+∑ j∈N b j
kη

j
k , Āk :=

(
ak+ āk+∑ j∈N(b

j
k+ b̄ j

k)δ
j

k

)
and for each i ∈ N, {η i

k,δ
i
k, δ̄

i
k, k ∈ Kl} satisfy the following

algebraic equations

rii
k η

i
k +bi

kα
i
k+1 ∑

j∈N
b j

kη
j

k +bi
kα

i
k+1ak = 0, (10a)

(rii
k + r̄ii

k )δ
i
k +(bi

k + b̄i
k)ᾱ

i
k+1 ∑

j∈N
(b j

k + b̄ j
k)δ

j
k

+(bi
k + b̄i

k)ᾱ
i
k+1(ak + āk) = 0, (10b)

(rii
k + r̄ii

k )δ̄
i
k +(bi

k + b̄i
k)ᾱ

i
k+1 ∑

j∈N
(b j

k + b̄ j
k)δ̄

j
k

+(bi
k + b̄i

k)
(
ᾱ

i
k+1ck +β

i
k+1
)
− n̄ii

k
′
µ

i?
k = 0, (10c)

where α i
k, ᾱ i

k and β i
k for k ∈ Kl are obtained by solving the

following backward difference equations

α
i
k = α

i
k+1(Ak)

2 + ∑
j∈N

ri j
k (η

j
k )

2 +qi
k, (11a)
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ᾱ
i
k = ᾱ

i
k+1(Āk)

2 + ∑
j∈N

(ri j
k + r̄i j

k )(δ
j

k )
2 +(qi

k + q̄i
k), (11b)

β
i
k = Ākβ

i
k+1 + ∑

j∈−i

(
(ri j

k + r̄i j
k )δ

j
k + Ākᾱ

i
k+1(b

j
k + b̄ j

k)
)
δ̄

j
k

−
(
m̄i

k + ∑
j∈N

n̄i j
k δ

j
k

)′
µ

i?
k + Ākᾱ

i
k+1ck, (11c)

with boundary conditions α i
K = qi

K , ᾱ i
K = qi

K + q̄i
K and β i

K =
0. Then, the MFTGNE strategy of each player i ∈N is given
by

ui?
k −E[ui?

k ] = η
i
k(x

?
k−E[x?k ]), (12a)

E[ui?
k ] = δ

i
kE[x

?
k ]+ δ̄

i
k. (12b)

Furthermore, the expected equilibrium cost of player i ∈
N is given by E[Ji(ui?,u−i?)] = 1

2 α i
0E[(x0 − E[x0])

2] +
1
2 ᾱ i

0E[x0]
2 + β i

0E[x0] + γ i
0, where γ i

k for k ∈ Kl is obtained
from the following backward difference equation with bound-
ary condition γ i

K = 0.

γ
i
k = γ

i
k+1− 1

2 β
i
k+1(b

i
k + b̄i

k)δ̄
i
k +

1
2 ∑

j∈−i
(ri j

k + r̄i j
k )(δ̄

j
k )

2

+ 1
2

(
∑
j∈N

(b j
k + b̄ j

k)δ̄
j

k + ck
)(

ᾱ
i
k+1
(

∑
j∈−i

(b j
k + b̄ j

k)δ̄
j

k + ck
)

+2β
i
k+1
)
− 1

2 µ
i?
k
′(

2 ∑
j∈N

n̄i j
k δ̄

j
k − n̄ii

k δ̄
i
k +2pi

k
)

+ 1
2 α

i
k+1(σk)

2E[(wk)
2]. (13)

Proof. First, it is straightforward to verify that when all
the players use strategies, given by (12), then {x?k , k ∈ K},
given by (9), is the generated state trajectory. Due to (8),
the inequality constraints (1b) hold for all players with
the strategy profile (ui?,u−i?). This implies, (ui?,u−i?) ∈
R(E[x0]) or ui? ∈ Ui(u−i?), and in particular, Ui(u−i?) 6= /0.
Consider any admissible strategy profile ui ∈ Ui(u−i?), and
let {xk, k ∈ K} be the corresponding state trajectory. Using
(12) for all players in −i, in (1a), (2), and (1b) we obtain
the following relations

E[xk+1] =
(
ak + āk + ∑

j∈−i
(b j

k + b̄ j
k)δ

j
k

)
E[xk]

+ (bi
k + b̄i

k)E[u
i
k]+

(
∑
j∈−i

(b j
k + b̄ j

k)δ̄
j

k + ck
)
, (14a)

E[xk+1]
2 =

(
ak + āk + ∑

j∈−i
(b j

k + b̄ j
k)δ

j
k

)2E[xk]
2

+(bi
k + b̄i

k)
2E[ui

k]
2 +
(

∑
j∈−i

(b j
k + b̄ j

k)δ̄
j

k + ck
)2

+2
(
ak + āk + ∑

j∈−i
(b j

k + b̄ j
k)δ

j
k

)
(bi

k + b̄i
k)E[xk]E[ui

k]

+2
(
ak + āk + ∑

j∈−i
(b j

k + b̄ j
k)δ

j
k

)(
∑
j∈−i

(b j
k + b̄ j

k)δ̄
j

k + ck
)

×E[xk]+2(bi
k + b̄i

k)
(

∑
j∈−i

(b j
k + b̄ j

k)δ̄
j

k + ck
)
E[ui

k], (14b)

E[
(
xk+1−E[xk+1]

)2
] =
(
ak + ∑

j∈−i
b j

kη
j

k

)2E[(xk−E[xk])
2]

+ (bi
k)

2E[(ui
k−E[ui

k])
2]+ (σk)

2E[(wk)
2]

+2
(
ak + ∑

j∈−i
b j

kη
j

k

)
bi

kE[(xk−E[xk])(ui
k−E[ui

k]), (14c)

(
m̄i

k + ∑
j∈−i

n̄i j
k δ

j
k

)
E[xk]+ n̄ii

kE[u
i
k]+ ∑

j∈−i
n̄i j

k δ̄
j

k + pi
k ≥ 0.

(14d)

Next we use the direct method to complete the proof.
Step 1 – (Defining a guess functional): We first define a
quadratic guess functional of the following form

f i(k,xk) =
1
2 α

i
k(xk−E[xk])

2 + 1
2 ᾱ

i
kE[xk]

2 +β
i
kE[xk]+ γ

i
k.

Step 2 – (Telescopic sum of the guess functional): Upon
taking the telescopic sum of f i(k,xk) over k ∈ K we obtain

f i(0,x0) = f i(K,xK)− ∑
k∈Kl

(
f i(k+1,xk+1)− f i(k,xk)

)
= 1

2 α
i
K(xK−E[xK ])

2 + 1
2 ᾱ

i
KE[xK ]

2 +β
i
KE[xK ]+ γ

i
K

− 1
2 ∑

k∈Kl

(
α

i
k+1(xk+1−E[xk+1])

2−α
i
k(xk−E[xk])

2)
− 1

2 ∑
k∈Kl

(
ᾱ

i
k+1E[xk+1]

2− ᾱ
i
kE[xk]

2)
− 1

2 ∑
k∈Kl

(
β

i
k+1E[xk+1]−β

i
kE[xk]+ γ

i
k+1− γ

i
k
)
. (15)

Step 3 – (Difference between the cost and the guess
functional): Next, using the expressions (3), (14a)-(14c) and
(15) we compute E[Ji(ui,u−i)− f i(0,x0)] as follows

E[Ji(ui,u−i?)− f i(0,x0)] =
1
2 (q

i
K−α

i
K)E[

(
xK−E[xK ]

)2
]

+ 1
2 (q

i
K + q̄i

K− ᾱ
i
K)E[xK ]

2−β
i
KE[xK ]− γ

i
K

+ 1
2 ∑

k∈Kl

(
(Ci

k +
(Bi

k)
2

Ai
k
)E[(xk−E[xk])

2]+ (Li
k +

(F i
k )

2

Di
k
)E[xk]

2

+ ∑
k∈Kl

(
Mi

k +µ
i?
k
′(

m̄i
k + ∑

j∈−i
n̄i j

k δ
j

k

)
+

F i
k Gi

k
Di

k

)
E[xk]

+ ∑
k∈Kl

(
Ni

k +µ
i?
k
′(

∑
j∈−i

n̄i j
k δ̄

j
k + pi

k
)
+ 1

2
(Gi

k)
2

Di
k

)
+ ∑

k∈Kl

( 1
2 Ai

kE[(u
i
k−E[ui

k])
2]+Bi

kE[(xk−E[xk])(ui
k−E[ui

k])]
)

+ ∑
k∈Kl

( 1
2 Di

kE[u
i
k]

2 +
(
F i

kE[xk]+Gi
k +µ

i?
k
′
n̄ii

k
)
E[ui

k]
)
, (16)

where Ai
k := rii

k +α i
k+1(b

i
k)

2, Bi
k := α i

k+1

(
ak +∑ j∈−i b j

kη
j

k

)
bi

k,
Ci

k :=
(
qi

k +∑ j∈−i ri j
k (η

j
k )

2
)
+α i

k+1

(
ak +∑ j∈−i b j

kη
j

k

)2−α i
k−

(Bi
k)

2

Ai
k

, Di
k := rii

k + r̄ii
k + ᾱ i

k+1(b
i
k + b̄i

k)
2,

F i
k := ᾱ i

k+1

(
ak + āk +∑ j∈−i(b

j
k + b̄ j

k)δ
j

k

)
(bi

k + b̄i
k),

Gi
k := (bi

k + b̄i
k)
(

ᾱ i
k+1

(
∑ j∈−i(b

j
k + b̄ j

k)δ̄
j

k + ck
)
+ β i

k+1

)
−

µ i?
k
′n̄ii

k , Li
k := (qi

k + q̄i
k) + ∑ j∈−i(r

i j
k + r̄i j

k )(δ
j

k )
2 − ᾱ i

k +

ᾱ i
k+1

(
ak + āk +∑ j∈−i(b

j
k + b̄ j

k)δ
j

k

)2− (F i
k )

2

Di
k

,

Mi
k := ∑ j∈−i(r

i j
k + r̄i j

k )δ
j

k δ̄
j

k −µ i?
k
′(m̄i

k +∑ j∈−i n̄i j
k δ

j
k

)
+
(
ak +

āk + ∑ j∈−i(b
j
k + b̄ j

k)δ
j

k

)(
ᾱ i

k+1

(
∑ j∈−i(b

j
k + b̄ j

k)δ̄
j

k + ck
)
+

β i
k+1

)
−β i

k−
F i

k Gi
k

Di
k

and

Ni
k := 1

2 ∑ j∈−i(r
i j
k + r̄i j

k )(δ̄
j

k )
2 − µ i?

k
′(

∑ j∈−i n̄i j
k δ̄

j
k + pi

k

)
+

1
2 α i

k+1(σk)
2E[(wk)

2] + 1
2 ᾱ i

k+1

(
∑ j∈−i(b

j
k + b̄ j

k)δ̄
j

k + ck
)2

+

β i
k+1

(
∑ j∈−i(b

j
k + b̄ j

k)δ̄
j

k + ck
)
+ γ i

k+1− γ i
k−

1
2
(Gi

k)
2

Di
k

.
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Step 4 – (Incorporation of inequality constraints and
completion of squares): We add and subtract the term
∑k∈Kl

µ i?
k
′(
(m̄i

k +∑ j∈−i n̄i j
k δ

j
k )E[xk]+ n̄ii

kE[u
i
k]+∑ j∈−i n̄i j

k δ̄
j

k +
pi

k

)
to the right-hand-side of the expression E[Ji(ui,u−i)−

f i(0,x0)] in (16). Then, we perform the completion of
squares of the terms involving (ui

k − E[ui
k]) and E[ui

k] as
follows

1
2 Ai

kE[(u
i
k−E[ui

k])
2]+Bi

kE[(xk−E[xk])(ui
k−E[ui

k])]

= 1
2 Ai

kE
[(
(ui

k−E[ui
k])+

Bi
k

Ai
k
(xk−E[xk])

)2
]

− 1
2
(Bi

k)
2

Ai
k
E[(xk−E[xk])

2], (17a)

1
2 Di

kE[u
i
k]

2 +
(
F i

kE[xk]+Gi
k
)
E[ui

k]

= 1
2 Di

k
(
E[ui

k]+
1

Di
k

(
FkE[xk]+Gi

k
))2− 1

2
(F i

k )
2

Di
k
E[xk]

2

− F i
k Gi

k
Di

k
E[xk]− 1

2
(Gi

k)
2

Di
k
. (17b)

After performing the above calculations we obtain

E[Ji(ui,u−i?)] = E[ f i(0,x0)]+ ∑
k∈Kl

µ
i?
k
′(
(m̄i

k + ∑
j∈−i

n̄i j
k δ

j
k )E[xk]

+ n̄ii
kE[u

i
k]+ ∑

j∈−i
n̄i j

k δ̄
j

k + pi
k
)
+ 1

2 (q
i
K−α

i
K)E[

(
xK−E[xK ]

)2
]

+ 1
2 (q

i
K + q̄i

K− ᾱ
i
K)E[xK ]

2−β
i
KE[xK ]− γ

i
K

+ 1
2 ∑

k∈Kl

(
Ci

kE[(xk−E[xk])
2]+Li

kE[xk]
2 +2Mi

kE[xk]+2Ni
k
)

+ 1
2 ∑

k∈Kl

Ai
kE
[(
(ui

k−E[ui
k])+

Bi
k

Ai
k
(xk−E[xk])

)2]
+ 1

2 ∑
k∈Kl

Di
k
(
E[ui

k]+
1

Di
k

(
F i

kE[xk]+Gi
k
))2

. (18)

Step 5 – (Verification of MFTGNE (7)): Next, using the
definitions of Ai

k, Bi
k, Di

k, F i
k and Gi

k in (10) it is easy to verify
that η i

k = −Bi
k/Ai

k, δ i
k = −F i

k/Di
k and δ̄ i

k = −Gi
k/Di

k. Then,
using (11) and (13), it is verified that the terms Ci

k, Li
k, Mi

k and
Ni

k are zero for k ∈Kl (see the online supplementary version
[15] for these straightforward but lengthy calculations).

Next, as α i
K = qi

K , ᾱ i
K = qi

K + q̄i
K , β i

K = 0, γ i
K = 0, the

expression (18) is simplified as follows

E[Ji(ui,u−i?)] = E[ f i(0,x0)]+ ∑
k∈Kl

µ
i?
k
′(
(m̄i

k + ∑
j∈−i

n̄i j
k δ

j
k )

×E[xk]+ n̄ii
kE[u

i
k]+ ∑

j∈−i
n̄i j

k δ̄
j

k + pi
k
)

+ 1
2 ∑

k∈Kl

Ai
kE
[(
(ui

k−E[ui
k])−η

i
k(x̄k−E[xk])

)2]
+ 1

2 ∑
k∈Kl

Di
k
(
E[ui

k]−δ
i
kE[xk]− δ̄

i
k
)2
. (19)

If ui is set as ui? (given by (12)) in (19), then we know
{x?k , k ∈K} is the corresponding state trajectory which satis-
fies the complementarity condition (8) and evolves according
to (9). Then, the second term on the right-hand-side of the
expression in (19) vanishes. Besides this, the third and the
fourth terms also vanish as ui? satisfies (12). So, we have

E[Ji(ui?,u−i?)] = E[ f i(0,x0)]. (20)

From Assumption 1.(i), every admissible ui ∈Ui(u−i?) satis-
fies (m̄i

k+∑ j∈−i n̄i j
k δ

j
k )E[xk]+ n̄ii

kE[u
i
k]+∑ j∈−i n̄i j

k δ̄
j

k + pi
k ≥ 0.

Further, the multipliers in (8) satisfy µ i?
k ≥ 0 for all k ∈ Kl .

This implies, the second term on right-hand-side of the
expression in (19) is non-negative. Besides this, as Ai

k,D
i
k > 0

for all k ∈ Kl the third and the fourth terms are also non-
negative. Consequently, comparing (19) and (20), we obtain

E[Ji(u
i?,u−i?)]≤ E[Ji(u

i,u−i?)], ∀ui ∈ Ui(u−i?).

As the choice of player i is arbitrary, the above condition
holds for each player i ∈ N. So, from Definition 1, the
strategy profile {ui?

k , i ∈ N, k ∈ Kl} given by (12) is indeed
a MFTGNE. �

Remark 2. Using the algebraic equations (10), at each stage
k ∈ Kl , we note that the variables {η i

k,δ
i
k, δ̄

i
k, i ∈ N} can

be solved interms of the variables {α i
k+1, ᾱ

i
k+1,β

i
k+1, i ∈

N}. Then, using these solutions in the backward difference
equations (11) the variables {α i

k, ᾱ
i
k,β

i
k, i ∈ N} are evalu-

ated. So, starting with the boundary conditions α i
K = qi

K ,
ᾱ i

K = qi
K + q̄i

K and β i
K = 0, and using the above mentioned

recursive procedure the variables {α i
k, ᾱ

i
k,β

i
k,η

i
k,δ

i
k, δ̄

i
k, k ∈

Kl , i ∈ N} are determined. In particular, from (10c) and
(11c), the variables {δ̄ i

k,β
i
k, k ∈ Kl , i ∈ N} contain linear

terms involving the multipliers {µ i?
k , k ∈K, i ∈N}. Further,

substituting {δ̄ i
k, k ∈ Kl , i ∈ N} in (9), the MFTGNE state

trajectory {x?k , k ∈ K} is expressed linearly in terms of the
multipliers {µ i?

k , k ∈ K, i ∈ N}. Upon eliminating these
state variables in (8) we obtain (implicit) complementarity
conditions involving only the multiplies and E[x0] (which
is known). In Section IV, under a few assumptions on the
problem data, we illustrate the above mentioned procedure
towards determining the multipliers.
Remark 3. Assumption 1.(iii) can be relaxed with a less
stringent condition by requiring that the solutions {α i

k, ᾱ
i
k, i∈

N, k ∈ K} of the backward difference equations (11a)-
(11b) are such that Ai

k = rii
k +α i

k+1(b
i
k)

2 and Di
k = rii

k + r̄ii
k +

ᾱ i
k+1(b

i
k+ b̄i

k)
2 are positive for all k∈Kl and i∈N. We notice

that {α i
k, ᾱ

i
k, i ∈ N, k ∈ K} depend only on the problem

data associated with state dynamics (1a) and objectives (1c).
So, using the recursive procedure mentioned in Remark 2,
the required positivity condition can be verified numerically
using the problem data; see also Remark 5.
Remark 4. From Remark 3 and (18), we have that player
i’s expected cost function is a strictly convex function in her
decision variables ui.

IV. SOLVABILITY

In this section, we present an approach for reformu-
lating the equations (8)-(11) as single large-scale linear
complementarity problem. This procedure is based on [14],
and involves elimination of state variables in the equations
(8)-(9); see also Remarks 2 and 3. Due to space con-
straints, we provide only a brief overview of this approach
(see the online supplementary version [15] for details).
We define all the notations used in this section as fol-
lows: Rk := ⊕N

i=1rii
k , R̄k := ⊕N

i=1(r
ii
k + r̄ii

k ), Bk := ⊕N
i=1bi

k,
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B̄k :=⊕N
i=1(b

i
k + b̄i

k), Bk := row(bi
k)

N
i=1, Nk :=⊕N

i=1n̄ii
k , M̄k :=

col(m̄i
k +∑ j∈N n̄i j

k δ
j

k )
N
i=1, αk := col(α i

k)
N
i=1, ᾱk := col(ᾱ i

k)
N
i=1,

ηk := col(η i
k)

N
i=1, βk := col(β i

k)
N
i=1, δk := col(δ i

k)
N
i=1, δ̄k :=

col(δ̄ i
k)

N
i=1, µ?

k := col(µ i?
k )N

i=1, Λk := Rk +B′kαk+1Bk, Λ̄k :=
R̄k + B̄′kᾱk+1B̄k, [P1

k ]i j = (ri j
k + r̄i j

k )δ
j

k + Ākᾱ i
k+1(b

j
k + b̄ j

k)

for i 6= j, [P1
k ]ii = 0, P2

k = ⊕N
i=1(m̄

i
k + ∑ j∈N n̄i j

k δ
j

k )
′, P3

k =
col(Ākᾱ i

k+1)
N
i=1. Next, for all k ∈ Kl , we aggregate the

variables as x?K = col(x?k)
K−1
k=0 , E[x?K] = col(E[x?k ])

K−1
k=0 , u?K =

col(u?k)
K−1
k=0 , E[u?K] = col(E[u?k ])

K−1
k=0 , µ?

K = col(µ?
k)

K−1
k=0 , cK =

col(ck)
K−1
k=0 , δ̄K = col(δ̄k)

K−1
k=0 , pK = col(pk)

K−1
k=0 , wK =

col(wk)
K−1
k=0 , ηK = ⊕K−1

k=0 ηk, δK = ⊕K−1
k=0 δk, M̄K = ⊕K−1

k=0 M̄k,
N̄K =⊕K−1

k=0 N̄k. Let ψ(k,τ) and φ(k,τ) be the state transition
matrices associated with the system dynamics (9a) and (9b),
respectively i.e., ψ(k,τ) = Ak−1Ak−2 · · ·Aτ for any k > τ

and ψ(k,τ) = I for k = τ , φ(k,τ) = Āk−1Āk−2 · · · Āτ for any
k > τ and φ(k,τ) = I for k = τ . Using these, we define
[P1

K]kτ = B̄′k+1

(
IN ⊗φ(τ−1,k)

)
P1

τ−1, [P2
K]kτ =−B̄′k+1

(
IN ⊗

φ(τ−1,k)
)
P2

τ−1, [P3
K]kτ =−B̄′k+1

(
IN⊗φ(τ−1,k)

)
P3

τ−1 for
τ > k, [P1

K]kk = Λ̄k, [P2
K]kk = N′k, [P3

K]kk = −B̄′kᾱk+1 and
[P1

K]kτ = 0, [P2
K]kτ = 0, [P3

K]kτ = 0 for τ < k, [Ψ0]k =
ψ(k−1,0), [Ψ1]kτ = ψ(k−1,τ)στ−1, for k > τ , [Ψ1]kτ = 0
for k ≤ τ , [Φ0]k = φ(k− 1,0), [Φ1]kτ = φ(k− 1,τ)B̄τ−1,
[Φ2]kτ = φ(k− 1,τ) for k > τ and [Φ1]kτ = 0, [Φ2]kτ = 0
for k ≤ τ with k,τ ∈ Kr.

Using the above notations for all i∈N, (12) can be written
compactly for all k ∈ Kl as

u?K−E[u?K] = ηK(x?K−E[x?K]), (21a)
E[u?K] = δKE[x?K]+ δ̄K. (21b)

Similarly, for all i ∈ N, (10) are given by

Λkηk =−B′kαk+1ak, (22a)
Λ̄kδk =−B̄′kᾱk+1(ak + āk), (22b)
Λ̄kδ̄k =−B̄′kᾱk+1ck− B̄′kβk+1 +N′kµ

?
k . (22c)

Further, the vector form representation of (11c) is given
by βk = (IN⊗ Āk)βk+1 +P1

k δ̄k +P2
kµ

?
k +P3

kck = ∑
K−1
τ=k

(
IN⊗

φ(τ,k)
)(
P1

τ δ̄τ +P2
τµ

?
τ +P3

τ cτ

)
, along with boundary condi-

tion βK = 0. Using this in (22c), and collecting all the terms
for k ∈ Kl we obtain

P1
Kδ̄K = P2

Kµ
?
K+P3

KcK. (23)

We have the following assumption.

Assumption 2. The matrices {Λk, Λ̄k, k∈Kl} are invertible.

In (23), P1
K is a upper triangular matrix (as [P1

K]kτ = 0 for
τ < k) with Λ̄k, k ∈Kl as the block diagonal elements. From
Assumption 2, the matrix P1

K is also invertible. Then, from
(23) we have

δ̄K = (P1
K)
−1P2

Kµ
?
K+(P1

K)
−1P3

KcK. (24)

Similarly, the equilibrium trajectory (9) and the complemen-
tarity condition (8) for all k ∈ Kl are represented as

x?K−E[x?K] =Ψ0(x0−E[x0])+Ψ1wK, (25a)
E[x?K] =Φ0E[x0]+Φ1δ̄K+Φ2cK, (25b)
0≤ M̄KE[x?K]+ N̄Kδ̄K+pK ⊥ µ?

K ≥ 0. (25c)

Theorem 2. Let Assumptions 1 and 2 hold. Then, the
MFTGNE strategy profile for MFTDG is given by

u?K−E[u?K] = ηKΨ0(x0−E[x0])+ηKΨ1wK, (26a)
E[u?K] = Fµ?

K+P, (26b)

with µ?
K being the solution of the following single large-scale

linear complementarity problem

LCP : 0≤Mµ?
K+Q⊥ µ?

K ≥ 0, (27)

where M = (M̄KΦ1 + N̄K)(P
1
K)
−1P2

K, Q = M̄KΦ0E[x0] +(
(M̄KΦ1 + N̄K)(P

1
K)
−1P3

K + M̄KΦ2
)
cK + pK, F = (δKΦ1 +

I)(P1
K)
−1P2

K, P = δKΦ0E[x0] +
(
(δKΦ1 + I)(P1

K)
−1P3

K +
δKΦ2

)
cK.

Proof. Substituting (25a) in (21a) results in (26a). Us-
ing (25b) in (21b) and (25c) we get E[u?K] = (δKΦ1 +
I)δ̄K + δK(Φ0E[x0] +Φ2cK) and 0 ≤ (M̄KΦ1 + N̄K)δ̄K +
M̄KΦ0E[x0] + M̄KΦ2cK + pK ⊥ µ?

K ≥ 0. Finally, using the
expression for δ̄K from (24) in the above equations we obtain
(26b) and (27), respectively. �

Remark 5. We note that equations (22) are a matrix repre-
sentation of the algebraic equations (10) at stage k ∈Kl , with
Λk = Rk +B′kαk+1Bk and Λ̄k = R̄k + B̄′kᾱk+1B̄k. Following
the recursive procedure outlined in Remarks 2 and 3, the
invertibilty of these matrices at every stage k∈Kl , as required
by Assumption 2, can be verified using the problem data
without the need for solving the LCP.

Remark 6. We note that the LCP given by (27) is an
implicit representation of (8)-(9). Further, if the LCP has
multiple solutions, then, from Theorem 1, each one of these
solutions constitutes a MFTGNE. The existence conditions
and numerical methods for the LCP have been extensively
studied in the optimization community; see [16] for details.

V. NUMERICAL ILLUSTRATION

G1

u1
k

G2

u2
k

S Lk

Fig. 1. A microgrid with two generators and one storage unit

In recent years, game theory has been extensively used
to analyze energy storage issues that arise in microgrid
management; see [17] and [18]. Motivated by these studies,
we consider a simplified microgrid model, as shown in Fig.
1. The model comprises two generators, G1 and G2, with
generation levels u1

k and u2
k , respectively. These generators

supply power to a time-varying load represented by Lk,
through transmission lines. A storage unit, S, is installed
near the load, which can either store surplus generator output
(through charging) or supply the load (through discharging)
when demand is not met. Let xk denote the storage level at
time instant k, and its evolution due to charging and discharg-
ing be given by xk+1 = axk +∑

2
i=1 biui

k − Lk +σwk, where
a ∈ (0,1) and b1,b2 ∈ (0,1) account for the natural storage
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Fig. 2. Panel (a) depicts time varying load and generator outputs, and
panel (b) depicts the battery storage level and disturbance signal.

depreciation and transmission line losses respectively. We
assume that the uncertainties in power generation and storage
device operation are modeled by the disturbance process
wk, k ∈ K. We consider the following constraints

Storage: x≤ E[xk+1] = a E[xk]+
2

∑
i=1

bi E[ui
k]−Lk, (28a)

Generation: ui ≤ E[ui
k]≤ ūi, i = 1,2. (28b)

The mixed (coupled) constraint (28a) indicates the reserve
level of the storage unit, that is, the mean storage level
cannot go below x. Further, (28b) represent the operational
constraints of the generators, that is, the mean/expected
production level E[ui

k] of each generator i = 1,2 cannot
go above ūi and below ui. The generating units seek to
minimize their production costs which are proportional to
their generation levels. Further, they try to minimize vari-
ance in their generation levels. The generating units wish
not to have high storage levels when they are able to
meet the demand, and also wish to reduce the variance of
the storage level. We assume there are no terminal costs.
So, the cost functional of each generating unit i = 1,2 is
given as Ji = 1

2 ∑k∈Kl

(
qi

kE[(xk−E[xk])
2]+(qi

k+ q̄i
k)E[xk]

2
)
+

1
2 ∑k∈Kl

(
rii

kE[(u
i
k−E[ui

k])
2]+ (rii

k + r̄ii
k )E[u

i
k]

2
)
.

For numerical illustration, we consider the following pa-
rameter values: rii

k = 0.5, r̄ii
k = 2.5, qi

k = 3.5, q̄i
k = 0.5,

i = 1,2, k ∈ Kl , a = 0.9, b1 = 0.90, b2 = 0.94, x = 1.5,
u1 = 1.5, u2 = 0.5, ū1 = 4.5, ū2 = 7, K = 140, σ = 0.2,
x0 = 3 (deterministic). We consider the disturbance signal
wk, k ∈ Kl to be a white Gaussian noise process. For
the chosen parameter values, we note that the conditions
required in Assumption 2 are satisfied. We used the freely
available PATH solver (available at https://pages.cs.
wisc.edu/˜ferris/path.html) for solving the LCP
(27). Fig. 2a illustrates the time varying load and generator
production levels. We observe that the generators vary their
production levels while satisfying the generation constraints
(28b). Fig. 2b illustrates the battery storage levels and
the disturbance signal. In particular, we observe that when
E[xk+1]−E[xk] = (a−1)E[xk]+b1E[u1

k ]+b2E[u2
k ]−Lk < 0,

the storage unit discharges towards meeting the demand

and thereby reaches its reserve level x, satisfying the mixed
coupled constraint (28a).

VI. CONCLUSION

We have characterized the solution for a class of linear-
quadratic MFTDGs with coupled affine inequality con-
straints. This involves a multiplier process satisfying implicit
complementarity conditions. By reformulating these condi-
tions as a single large-scale linear complementarity problem,
we enable computation of these solutions. A numerical
example has illustrated our proposed approach. In future
work, we aim to generalize the constraint structure to include
state and control terms, alongside their mean terms. Further,
we also plan to explore the problem in the continuous-time
formulation.
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