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Abstract— This work proposes a data-driven framework to
synthesize safety controllers for nonlinear systems with finite
input sets and unknown mathematical models. The proposed
scheme leverages new notions of multiple control barrier certifi-
cates (M-CBC) and provides controllers ensuring the safety of
systems with confidence 1. While there may not exist a common
control barrier certificate with a fixed template, our proposed
technique adaptively partitions the state set to potentially find
M-CBC of the same template for different regions. In the
proposed data-driven framework, we first cast our proposed
conditions of M-CBC as a robust optimization program (ROP).
Given that the unknown model appears in some of the con-
straints of the ROP, we propose a sampling approach for
collecting data and provide a scenario optimization program
(SOP) associated with the proposed ROP. We solve the resulted
SOP and construct M-CBC together with safety controllers
for the unknown system with 100% correctness guarantee. We
apply our results to a nonlinear jet engine compressor with
unknown dynamics to illustrate the efficacy of our data-driven
approach. In the case study, we show that while there exists no
common polynomial-type control barrier certificate of a given
degree, there exist polynomial-type M-CBC of the same degree
by partitioning the state set to different regions.

I. INTRODUCTION

Formal methods have become popular, over the past
two decades, for providing formal analyses over complex
dynamical systems. In general, providing formal verification
and controller synthesis frameworks for complex systems to
enforce high-level logic properties, e.g., those expressed as
linear temporal logic (LTL) formulae [1], is very challenging.
This is mainly due to (i) continuity of state sets, (ii) dealing
with complex logic requirements, and (iii) lack of closed-
form mathematical models in many real-world applications.

To alleviate the aforementioned difficulties, one promising
approach, proposed initially in [2], [3], is to employ barrier
certificates as a discretization-free approach for the formal
verification and controller synthesis of dynamical systems.
In particular, barrier certificates are some Lyapunov-like
functions whose level sets separate an unsafe region from
system’s trajectories originating from a given set. As a result,
the existence of such a function provides a (probabilistic)
safety certificate for the system. Over the past decade,
barrier certificates have been extensively utilized for formal
verification and controller synthesis of non-stochastic [4], [5]
and stochastic systems [6]–[8], to name a few.
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Unfortunately, the above-mentioned results require know-
ing the precise models to provide corresponding analyses.
Accordingly, one cannot leverage those techniques when
the model of the system is unknown, which is the case in
many real-life applications. To tackle this difficulty, there
have been some indirect data-driven techniques based on
systems identification to approximate underlying dynamics
followed by model-based analysis approaches (see [9]–[11]).
However, those techniques are mainly limited to linear or
some particular classes of nonlinear systems and acquiring
a precise model for complex systems is generally computa-
tionally expensive (see e.g., [12, and references herein]). Due
to the underlying difficulty, the main goal of this work is to
develop a direct data-driven technique to bypass the system
identification phase and directly construct a barrier certificate
by collecting data from trajectories of the unknown system.

The main contribution of this work is to propose a data-
driven technique to synthesize safety controllers for nonlinear
systems with finite input sets and unknown mathematical
models. In general, there may not exist any common con-
trol barrier certificate of a fixed template together with its
corresponding controller for the whole range of the state
set to enforce the safety of the system. In this work, we
propose a new technique to adaptively partition the state set
and construct multiple control barrier certificates (M-CBC)
for different regions. We first cast our new conditions of M-
CBC as a robust optimization program (ROP). Given that
the unknown model appears in some of the constraints of
the ROP, we provide a scenario optimization program (SOP)
associated with the ROP by proposing a sampling approach
and collecting data from the system. By solving the acquired
SOP, we construct M-CBC together with safety controllers
for the unknown system with 100% correctness guarantee.
We show the efficacy of our proposed results over a nonlinear
jet engine compressor with unknown models.

Related Work. In the past few years, several studies
have been performed on the formal analysis of unknown
dynamical systems via direct data-driven approaches. Ex-
isting results include: data-driven learning of control laws
ensuring stability of nonlinear polynomial-type models [13];
stability verification of unknown switched linear systems via
data [14]; data-driven synthesis of state-feedback controllers
to make a compact polyhedral set including the origin invari-
ant [15], [16]; and data-driven approaches for the verification
and controller synthesis of unknown dynamical systems via
control barrier certificates [17]–[19], to name a few.

It is worth mentioning that the results in [15], [16] provide
data-driven synthesis of state-feedback controllers to make
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the whole state set invariant. In comparison, we propose
here a less conservative approach by adaptively partitioning
the state set and constructing multiple CBC together with
corresponding safety controllers for different regions. The
data-driven results in [17] are only tailored to nonlinear
polynomial-type systems, whereas our data-driven controller
synthesis framework here is applicable to any class of
nonlinear systems which are locally Lipschitz continuous.
Note that the data-driven approaches in [18], [19] come with
a probabilistic confidence level, whereas we propose here a
deterministic sampling technique to construct M-CBC from
data together with a safety controller with 100% correctness
guarantee. As another pivotal difference, the proposed results
in [17]- [19] provide a common control barrier certificate for
unknown systems, whereas we develop here a new notion of
multiple control barrier certificates which is more general.

II. DISCRETE-TIME NONLINEAR CONTROL SYSTEMS

A. Notation

We denote sets of nonnegative and positive integers by
N := {0, 1, 2, . . .} and N+ := {1, 2, 3, . . .}, respectively.
Moreover, symbols R, R+, and R+

0 denote, respectively, sets
of real, positive, and nonnegative real numbers. Symbols Rn
and Rn×m are used to denote, respectively, an n-dimensional
Euclidean space and the space of real matrices with n rows
and m columns. The Euclidean norm of x ∈ Rn is denoted
by ‖x‖. For any symmetric matrix P ∈ Rm×n, we have
‖P‖ :=

√
λmax(P>P ), where λmax(·) is the maximum

eigenvalue. Given N column vectors xi ∈ Rni , ni ∈ N+,
and i ∈ {1, . . . , N}, x = [x1; . . . ;xN ] denotes a column
vector of the dimension

∑
i ni.

B. Discrete-Time Nonlinear Control Systems

Now, we define discrete-time nonlinear control systems
(dt-NCS) as the underlying model in this work.

Definition 2.1: A discrete-time nonlinear control system
(dt-NCS) is characterized by

Σ : x(k + 1) = f(x(k), ν(k)), k ∈ N, (1)

where:
• X ⊆ Rn is the state set;
• U = {u1, u2, . . . , um} with ui ∈ Rm̄, i ∈ {1, . . . ,m},

is the finite input set, and ν : N → U is the input
sequence;

• f : X×U → X is the transition map which is assumed
to be unknown.

We denote the state trajectory of dt-NCS at time k ∈ N,
under the input trajectory ν(·), and starting from x0 by
xx0,ν(k).

In the next section, we provide a new notion of multiple
control barrier certificates for discrete-time nonlinear control
systems in (1).

III. MULTIPLE CONTROL BARRIER CERTIFICATES

In general, constructing common control barrier certifi-
cates for the whole range of the state set is conservative. To
alleviate this conservatism, we adaptively partition the state

set of dt-NCS in (1) and propose a new notion of multiple
control barrier certificates (M-CBC) to be constructed in
different regions, as formalized in the next definition.

Definition 3.1: Consider a dt-NCS Σ in (1) and let X =
∪Ni=1Xi, with Xi ⊆ X being a partition element where
Xi ∩ Xj = ∅ for any i 6= j. Consider X0, Xu ⊆ X as
initial and unsafe sets of dt-NCS, respectively. A collection
of functions Bi : Xi → R is called multiple control barrier
certificates (M-CBC) for Σ with respect to an input set
U = {u1, u2, . . . , um}, if ∀i ∈ {1, . . . , N}:

∀x ∈ Xi ∩X0, Bi(x) ≤ γi, (2)
∀x ∈ Xi ∩Xu, Bi(x) ≥ λi, (3)
∀j ∈ {1, . . . , N}, λi > γj , with λi, γj ∈ R, (4)

and ∀x ∈ Xi,∃u ∈ U, ∃j ∈ {1, . . . , N}, such that:

f(x, u) ∈ Xj =⇒ Bj(f(x, u)) ≤ Bi(x). (5)
It is worth emphasizing that condition (5) does not take

into account all pairs (i, j) since the state trajectory of the
system may not necessarily enter other cells in one-step tran-
sition. Note that one can construct a set-valued controller C :
X → 2U based on Bi(x) as C(x) = {u ∈ U

∣∣Bj(f(x, u)) ≤
Bi(x), for some j ∈ {1, . . . , N} where f(x, u) ∈ Xj} for
any x ∈ Xi. Since f is unknown, we explain in Section IV
how this controller is designed based on data collected from
the system’s trajectories.

In the next definition, we present the main safety problem
for dt-NCS Σ.

Definition 3.2: Consider a dt-NCS Σ. Given a safety
specification ϕ = (X0, Xu), where X0, Xu ⊆ X with
X0 ∩ Xu = ∅, Σ is called safe, denoted by Σ |= ϕ, if all
trajectories of Σ started from the initial set X0 ⊆ X never
reach the unsafe set Xu ⊆ X .

The next theorem, inspired by [2, Theorem 3], shows
the usefulness of M-CBC in Definition 3.1 for ensuring the
safety of dt-NCS as in Definition 3.2.

Theorem 3.3: Consider a dt-NCS Σ as in (1) with a
partition over its state set as X = ∪Ni=1Xi. Suppose a
collection of functions Bi : Xi → R, i ∈ {1, . . . , N}, is M-
CBC for Σ as in Definition 3.1. Then one has xx0,ν(k) /∈ Xu

for any x0 ∈ X0 and any k ∈ N under the input trajectory
ν(k) ∈ C(x(k)), ∀k ∈ N.

Proof: We show the proof by contradiction. Assume
there exists a collection of functions Bi satisfying condi-
tions (2)-(5). Suppose xx0,ν starts at some x0 ∈ Xi∩X0 for
some i ∈ {1, . . . , N} and reaches Xj ∩ Xu for some j ∈
{1, . . . , N}. According to (2)-(3), we have Bi(x(0)) ≤ γi
and Bj(x(k)) ≥ λj for some k ∈ N. Since Bi is M-CBC
and using (5), one can recursively show λj ≤ Bj(x(k)) ≤
Bi(x(0)) ≤ γi. This contradicts condition λj > γi in (4),
which completes the proof.

Remark 3.4: Note that in order to ensure the safety of
the system via the results of Theorem 3.3, one can start
partitioning the state set with an arbitrary N and then search
for M-CBC satisfying conditions (2)-(5). If the required
conditions for some cells are not satisfied, those particular
cells can be partitioned more such that conditions (2)-(5)
may eventually be fulfilled.
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IV. DATA-DRIVEN FRAMEWORK

In this section, we aim at constructing M-CBC using
data collected from trajectories of systems. In our data-
driven setting, we fix the structure of M-CBC as Bi(qi, x) =∑zi
l=1 q

l
ip
l
i(x) with user-defined (potentially nonlinear) basis

functions pli and unknown coefficients qi = [q1
i ; . . . ; qzii ] ∈

Rzi . It is worth mentioning that basis functions pli can be
considered to have any arbitrary form, e.g., they can be
monomials over x if one is interested in the polynomial-type
M-CBC.

To fulfill conditions (2)-(5) in Definition 3.1, we recast
our problem as the following robust optimization program
(ROP):

min
[d1;...;dN ;η]

η,

s.t. ∀i ∈ {1, . . . , N} :

∀x ∈ Xi ∩X0,Bi(qi, x)− γi ≤ ηi, (6a)
∀x ∈ Xi ∩Xu,−Bi(qi, x) + λi ≤ ηi, (6b)
∀j ∈ {1, . . . , N}, γj − λi ≤ ηi (6c)
∀x ∈ Xi,∃u ∈ U,∃j ∈ {1, . . . , N}:
f(x,u)∈Xj =⇒Bj(qj ,f(x,u))−Bi(qi,x) ≤ ηi, (6d)
ηi ≤ η, (6e)

di = [γi;λi; q
1
i ; . . . ; qzii ; ηi], γi, λi, q

l
i, ηi, η ∈ R.

If η ≤ 0, a solution to the ROP ensures conditions (2)-(5) in
Definition 3.1 are satisfied.

To solve the proposed ROP in (6), one faces two major
challenges. First, the ROP in (6) has infinitely many con-
straints since the state set of dt-NCS is continuous (i.e.,
x ∈ Xi). In addition, the map f is required for solving
the ROP, which is unknown in this work. To tackle those
challenges, we aim at developing a data-driven scheme for
the construction of M-CBC without solving the ROP in (6).
To do so, we first collect M sampled data within X , denoted
by{

(x̂r, f(x̂r, us))
∣∣ r ∈ {1, . . . ,M}, s ∈ {1, . . . ,m}}. (7)

We then consider a ball Xr around each sample x̂r with
radius ε such that X ⊆ ∪Mr=1Xr and

‖x− x̂r‖ ≤ ε, ∀x ∈ Xr. (8)

We now propose the following scenario optimization pro-
gram (SOP), associated with the ROP in (6):

min
[d1;...;dN ;η]

η,

s.t. ∀i ∈ {1, . . . , N},∀r ∈ {1, . . . ,M} :

∀x̂r ∈ Xi ∩X0,Bi(qi, x̂r)− γi ≤ ηi, (9a)
∀x̂r ∈ Xi ∩Xu,−Bi(qi, x̂r) + λi ≤ ηi, (9b)
∀j ∈ {1, . . . , N}, γj − λi ≤ ηi (9c)
∀x̂r ∈ Xi,∃u ∈ U,∃j ∈ {1, . . . , N}:
f(x̂r,u)∈Xj=⇒Bj(qj ,f(x̂r,u))−Bi(qi,x̂r)≤ηi, (9d)
ηi ≤ η, (9e)

di = [γi;λi; q
1
i ; . . . ; qzii ; ηi], γi, λi, q

l
i, ηi, η ∈ R.

One can readily see that f(x̂r, u) in (9d) is the transition of
the unknown dt-NCS after one-step starting from x̂r under
input u.

Remark 4.1: Note that condition (9d) can be rewritten as
a max-min constraint:

max
x̂r∈Xi

min
u∈U

(Bj(qj , f(x̂r, u))− Bi(qi, x̂r)) ≤ ηi, (10)

for those j ∈ {1, . . . , N}, where f(x̂r, u) ∈ Xj . In general,
an optimization problem with max-min constraints is equal
to a collection of optimization problems with inequality
constraints. Solving such optimization problem could be
potentially expensive due to having a large collection. There-
fore, we employ the proposed approach in [20] and convert
this condition into nonlinear programming in which the
condition is a single inequality constraint as the following,
∀i ∈ {1, . . . , N},∀r ∈ {1, . . . ,M}:

m∑
s=1

µs
(
Bj(qj , f(x̂r, us))− Bi(qi, x̂r)− ηi

)
≤ 0, (11)

for those j ∈ {1, . . . , N}, such that f(x̂r, us) ∈ Xj , and
where

∑m
s=1 µs = 1, µs ∈ R+

0 . The max-min constraint
in (10) is satisfied if and only if the single inequality
constraint in (11) is fulfilled [20, Proposition 2.1]. The
resulting optimization program can then be solved using
available software tools such as NPSOL [21].

V. DATA-DRIVEN CONSTRUCTION OF M-CBC
In this section, we aim at solving the proposed SOP

in (9) and constructing M-CBC for unknown dt-NCS with
a guaranteed confidence of 1. To do so, we first raise the
following assumption.

Assumption 1: Suppose Bi(qi, x) is Lipschitz continuous
with respect to x with a Lipschitz constant L1, for any
i ∈ {1, . . . , N}, and Bj(qj , f(x, u)) − Bi(qi, x) in (6d)
is Lipschitz continuous with respect to x with a Lipschitz
constant L2, for any i, j ∈ {1, . . . , N}, and any input u ∈ U .

Under Assumption 1, the next theorem provides a data-
driven construction scheme for M-CBC over unknown dt-
NCS with a certified confidence of 1.

Theorem 5.1: Given an unknown dt-NCS in (1), let As-
sumption 1 hold. Suppose the SOP in (9) is solved with
M × m sampled data as in (7) with an optimal value η∗M
and solution d∗i = [γ∗i ;λ∗i ; q

1∗
i ; . . . ; qzi∗i ; η∗i ],∀i∈{1,. . . ,N}.

If

η∗M + L ε ≤ 0, (12)

with L =max{L1,L2}, then the constructed {B1, . . . ,BN}
via solving SOP in (9) are M-CBC for unknown dt-NCS with
a confidence of 1. Hence, there exists a set-valued controller
C under which the unknown dt-NCS is safe in the sense of
Theorem 3.3.

Proof: We first show that, under condition (12), the
constructed Bi via solving SOP in (9) satisfy (5) for the
whole range of Xi, i.e., for any x ∈ Xi, there exists u ∈ U
such that:

Bj(qj ,f(x,u))−Bi(qi,x) ≤ 0.

7017



Note that according to (8), for any x ∈ Xi, there exists x̂r ∈
Xr such that x and x̂r are ε-close, i.e., ‖x − x̂r‖ ≤ ε. One
can readily observe from (9d) that for any x̂r, there exists
a choice of u ∈ U , namely u∗, such that Bj(qj ,f(x̂r,u

∗))−
Bi(qi,x̂r) ≤ η∗M . Since Bj(qj , f(x, u∗)) − Bi(qi, x) is Lip-
schitz continuous with respect to x with Lipschitz constant
L2, we have, ∀i ∈ {1, . . . , N},∀r ∈ {1, . . . ,M}:

Bj(qj ,f(x,u∗))−Bi(qi,x) = Bj(qj ,f(x,u∗))−Bi(qi,x)

−(Bj(qj ,f(x̂r,u
∗))−Bi(qi,x̂r))+(Bj(qj ,f(x̂r,u

∗))−Bi(qi,x̂r))
≤ L2‖x− x̂r‖+ η∗M ≤ L ε+ η∗M .

Since η∗M + L ε ≤ 0, one can readily verify that for any
x ∈ Xi, there exists u ∈ U such that:

Bj(qj ,f(x,u))−Bi(qi,x) ≤ 0.

We now leverage a similar argument and show that, under
condition (12), the constructed Bi via solving SOP in (9)
satisfy (2) for any x ∈ Xi ∩X0, as well. Since Bi(qi, x) is
Lipschitz continuous with Lipschitz constant L1 according
to Assumption 1, and given that Bi(qi, x̂r) − γi ≤ η∗M ac-
cording to (9a), one has, ∀i ∈ {1, . . . , N},∀r ∈ {1, . . . ,M}:

Bi(qi,x)−γi=Bi(qi,x)−γi−(Bi(qi,x̂r)−γi)+(Bi(qi,x̂r)−γi)
≤ L1‖x− x̂r‖+ η∗M ≤ L ε+ η∗M .

Since η∗M + L ε ≤ 0, one can readily verify that

Bi(qi,x)−γi ≤ 0, ∀x ∈ Xi ∩X0.

One can employ the same argument and show that the
constructed Bi via solving SOP in (9) satisfy (3) for any
x ∈ Xi ∩Xu, as well. Then the constructed {B1, . . . ,BN}
via solving SOP in (9) are M-CBC for unknown dt-NCS
in (1) with the confidence of 1, which concludes the proof.

Remark 5.2: In order to satisfy X ⊆ ∪Mr=1Xr under
condition (8), the number of samples M can be computed
based on the parameter ε as M = Vol(X)

εn , where Vol(·)
represents the volume of a set. To potentially reduce the
number of samples required, one can begin by collecting
samples using a larger value of ε to solve the SOP in (9).
If condition (12) is not satisfied with the chosen (potentially
large) ε, it is necessary to select a smaller ε and solve the
SOP again. If the state set is manually gridded, condition (8)
can be readily met by implementing a uniform gridding
approach. When dealing with real data, one can consider
a sufficiently large ε (worst-case scenario) that ensures the
satisfaction of condition (8).

Remark 5.3: To the best of our knowledge, almost all
data-driven approaches whose main goal is to certify with
100% correctness guarantee some properties over unknown
systems via data suffer from the so-called, sample complex-
ity: the number of data for providing final guarantees is
exponential with respect to the dimension of the underlying
system. This is the case also in our work and potential
ways to mitigate this computational complexity are to em-
ploy either divide and conquer strategy (a.k.a. compositional
techniques) or parallelization over SOP. We will defer these
approaches for future work.

Remark 5.4: Note that reducing the value of ε does not
necessarily guarantee the eventual satisfaction of η∗M+L ε ≤
0 and, hence, existence of M-CBC. This is primarily due to
the fact that the existence of M-CBC in our work is only
sufficient for the synthesis of a controller, but it is not a
necessary condition.
The results of Theorem 5.1 ensure that there exists a set-
valued controller C under which unknown dt-NCS is safe
in the sense of Theorem 3.3. In particular, we construct the
set-valued map C as follows, for any x ∈ Xi:

C(x) :=
{
u ∈ U

∣∣Bj(qj , f(x̂r, u))− Bi(qi, x̂r) ≤ η∗i ,

for some j ∈ {1, . . . , N} where f(x, u) ∈ Xj

and ∃r ∈ {1, . . . ,M} such that ‖x− x̂r‖ ≤ ε
}
.

(13)

The set-valued map C for any x ∈ Xi is not empty according
to condition (8) and Remark 4.1.

Remark 5.5: The set-valued map C in (13) intuitively
implies that after solving the SOP in (9) and acquiring the
M-CBC, one can a-posteriori check condition (9d) for all
sampled data using the obtained M-CBC, and construct and
store safety controllers in the form of a lookup table. The
constructed lookup table can then be used in runtime as
follows: for any measurement of the system x ∈ X , one
can find the nearest data point x̂r such that ‖x − x̂r‖ ≤ ε.
Then corresponding control inputs valid for x̂r are also valid
inputs for x.

Remark 5.6: Note that our results offer a significant ad-
vantage over indirect approaches such as system identifi-
cation. In particular, the direct data-driven technique we
propose has the capability to provide safety guarantees for
a broad range of nonlinear systems that exhibit Lipschitz
continuity. In contrast, system identification approaches are
primarily designed for linear systems or specific classes
of nonlinear systems. Moreover, even if the underlying
dynamics can be learned through identification techniques,
it remains necessary to construct a barrier certificate for the
acquired model. Consequently, the computational complexity
arises at two levels: model identification and barrier certifi-
cate construction. Furthermore, it is important to note that
many identification techniques learn an approximate model
with a certain level of probabilistic confidence. In contrast,
our data-driven results offer a 100% correctness guarantee,
ensuring a confidence level of 1. For more detailed informa-
tion regarding the distinctions between direct and indirect
data-driven techniques, we refer the interested readers to
[22].

In order to check condition (12) in Theorem 5.1, one
needs to first compute L . In the following, we employ the
proposed results in [23] and provide the following algorithm
to estimate L1,L2 using a finite number of data.
Note that one can employ the procedure of Algorithm 1
and similarly estimate L1 using a finite number of data
by considering g(x̂r) = Bi(qi, x̂r) in Step 5. Under Algo-
rithm 1, the following lemma, borrowed from [23], ensures
the convergence of the estimated L1,L2 to their actual
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Algorithm 1 Estimation of L2 via data
Require: N,m,Bi,Bj

1: Choose M̂, Z ∈ N+ and α ∈ R+

2: for i = 1:N
3: for s = 1:m
4: Select M̂ sampled pairs (x̂r, x̂

′
r) from Xi such

that ‖x̂r − x̂′r‖ ≤ α for any r ∈ {1, . . . , M̂}
5: Compute the slope Sr as

Sr =
‖g(x̂r)− g(x̂′r)‖
‖x̂r − x̂′r‖

, ∀r ∈ {1, . . . , M̂},

with g(x̂r) = Bj(qj , f(x̂r, us))− Bi(qi, x̂r), for
some j ∈ {1, . . . , N} where f(x̂r, us) ∈ Xj ,
(g(x̂′r) is computed similarly)

6: Compute the maximum slope as

ψ = max{S1, . . . , SM̂}

7: Repeat Steps 4-6 Z times and acquire ψ1, . . . , ψZ
8: Apply Reverse Weibull distribution [23] to ψ1,. . . ,

ψZ , which gives us so-called location, scale, and
shape parameters

9: The obtained location parameter is the estimated
L s
ij

10: end
11: end
Ensure: L2 = max

ijs
L s
ij

values in the limit.
Lemma 5.7: Under Algorithm 1, the estimated L1,L2

converge to their actual values if and only if α goes to zero
and M̂, Z go to infinity.

Note that one can pick α very small and M̂, Z very big
to get a precise approximation for L1,L2.

VI. CASE STUDY: JET ENGINE COMPRESSOR

To show the efficacy of our data-driven results, we apply
our approach to the following discrete-time nonlinear jet
engine compressor [24]:

Σ:

[
x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + (−x2(k)− 3

2x
2
1(k)− 1

2x
3
1(k))τ

x2(k) + (x1(k)− u(k))τ

]
,

where x1 = Φ − 1, x2 = Ψ − Λ − 2, with Φ,Ψ,Λ being
the mass flow, the pressure rise, and a constant, respectively.
Moreover, u ∈ U = {−1,−0.9,−0.8, . . . , 0.8, 0.9, 1}, and
τ = 0.1 as the sampling time. The regions of interest are
X = [−1, 1]2, X0 = [−0.6, 0.6] × [−0.7, 0.7], and Xu =
[−0.9, 0.9]× [−1,−0.8]∪ [−0.9, 0.9]× [0.8, 1]. The model is
assumed to be unknown. We aim at constructing M-CBC via
solving SOP in (9) with a confidence of 1 while synthesizing
controllers C under which unknown dt-NCS remains in the
safe set X\Xu according to Theorem 3.3.

We first fix a common CBC in the form of B(q, x) =
q1x4

1+q2x2
1+q3x2

1x
2
2+q4x2

2+q5x4
2+q6. We also fix ε = 0.01

and acquire M = 40000. We solve the SOP in (9) (for the
common CBC) with M = 40000 and compute coefficients

of a common CBC for the whole range of the state set, i.e.,
N = 1, together with other decision variables as

B(q, x) = 0.002x4
1 − 0.0014x2

1 − 0.0023x2
1x

2
2 + 0.0084x2

2

− 0.0067x4
2 + 0.4, η∗M = 0.0008.

The resulting common CBC cannot ensure the safety of the
unknown jet engine compressor given that the optimal value
of SOP is positive.

We now apply our proposed results by partitioning our
regions of interest into two different regions, i.e., N = 2,
as: X1 = [−1, 0] × [−1, 1], X01

= [−0.6, 0] × [−0.7, 0.7],
Xu1 = [−0.9, 0] × [−1,−0.8] ∪ [−0.9, 0] × [0.8, 1]; X2 =
[0, 1]× [−1, 1], X02 = [0, 0.6]× [−0.7, 0.7], Xu2 = [0, 0.9]×
[−1,−0.8]∪ [0, 0.9]× [0.8, 1]. We now consider the structure
of our multiple CBC as the common one: Bi(qi, x) = q1

i x
4
1+

q2
i x

2
1 + q3

i x
2
1x

2
2 + q4

i x
2
2 + q5

i x
4
2 + q6

i , i ∈ {1, 2}. We solve the
SOP in (9) with M = 40000 and compute coefficients of the
multiple CBC together with other decision variables in SOP
for two partitions:

Region 1: B1(q1, x) = 0.002x4
1 − 0.0025x2

1 + 0.0037x2
1x

2
2

+ 0.4x2
2 − 0.1515x4

2 + 0.4,

γ∗1 = 0.5704, λ∗1 = 0.5830, η∗1 = −0.0127,

Region 2: B2(q2, x) = 0.002x4
1 − 0.0318x2

1 + 0.0507x2
1x

2
2

+ 0.4x2
2 − 0.1356x4

2 + 0.3935,

γ∗2 = 0.5708, λ∗2 = 0.5812, η∗2 = −0.0126,

with η∗M = −0.0126. We now employ Algorithm 1 and
compute L1 = 0.2623,L2 = 0.9314. Since η∗M + L ε =
−33 × 10−4 ≤ 0, according to Theorem 5.1, one can
guarantee that there exists a controller C under which the
system is safe.

Satisfaction of conditions (2) and (3) via constructed M-
CBC from data is illustrated in Fig. 1. As can be observed,
initial sets X01 , X02 are inside their corresponding level
sets (i.e., B1(q1, x) = γ1,B2(q2, x) = γ2) and unsafe sets
Xu1

, Xu2
are outside their corresponding level sets (i.e.,

B1(q1, x) = λ1,B2(q2, x) = λ2). We now construct the
safety controller as a lookup table for all sampled data and
apply it to the unknown jet engine system. The closed-
loop state trajectory of the unknown jet engine under the
synthesized controller is also depicted in Fig. 1. As can be
observed, the trajectory of the unknown jet engine remains
in the safe set under the synthesized controller, depicted
in Fig. 2. It took 20 seconds for solving SOP in (9) with
M = 40000 samples on a machine with Windows operating
system (Intel i7-8665U CPU with 16 GB of RAM).

VII. CONCLUSION

The primary objective of this study was to develop a
data-driven approach for constructing multiple control barrier
certificates (M-CBC) from available data, aiming to ensure
the safety of unknown discrete-time nonlinear systems with
a certified confidence level of 1. In pursuit of this objec-
tive, we introduced a scenario optimization program (SOP)
that effectively utilized data gathered from trajectories of
unknown systems. By successfully solving the SOP, we
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Fig. 1. Satisfaction of conditions (2)-(3). Green and pink boxes are initial
and unsafe regions, respectively. Red and orange lines are initial and unsafe
level sets of B1, respectively, for Region 1. Brown and green lines are
initial and unsafe level sets of B2, respectively, for Region 2. Blue curve
is closed-loop state trajectory of unknown jet engine starting from x0 =
[−0.18;−0.16].

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fig. 2. A synthesized control input for the unknown jet engine within 100
time steps.

achieved the construction of the M-CBC, accompanied by
its corresponding safety controller. Through evaluation on
a nonlinear jet engine compressor with unknown models,
we demonstrated the effectiveness and practicality of our
data-driven approach. In fact, as the main contribution of
our work, although a common control barrier certificate
with a fixed template did not exist, our proposed technique
adaptively partitioned the state set and found M-CBC of the
same template for distinct regions. As a promising avenue for
future research, we propose the extension of our data-driven
technique to synthesize controllers capable of enforcing more
complex logic properties for unknown nonlinear systems.
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