
Distributed Markov Chain-based Strategies for Multi-Agent Robotic
Surveillance

Gilberto Dı́az-Garcı́a∗, Francesco Bullo∗, Jason R. Marden∗

Abstract— Markov chains have been increasingly used to
define persistent robotic surveillance schemes. Motivations for
this design choice include their easy implementation, unpre-
dictable surveillance patterns, and their well-studied math-
ematical background. However, applying previous results to
scenarios with multiple agents can significantly increase the
dimension of the problem, leading to intractable algorithms. In
this work we analyze the hitting time minimization problem
for multiple agents moving over a finite graph. We exploit
the structure of this problem to propose a tractable algorithm
to design Markov chains to cover the graph with multiple
interacting agents. Using mathematical analysis, we provide
guarantees for the convergence of our proposed solution. Also,
through numerical simulations, we show the performance of our
approach compared to the current state of art in multi-agent
scenarios.

I. INTRODUCTION

Persistence surveillance describes a task where one or
multiple robotic agents are commanded to visit a set of
different sites of interest. Given that the access to those
locations can be restricted, the space is usually described
by a finite undirected graph. Under this setting, we can de-
scribe stochastic patrolling schemes as random walks using a
discrete-time Markov chains. Using Markov chains provides
a mathematical framework for the design of surveillance
strategies that includes unpredictability in its design, a desir-
able trait in scenarios with potential adversaries. Therefore,
there is an increasing interest for designing algorithms to
define Markov chains for multiple patroller agents.

Depending on if a model for the intruder is defined or
not, Markov chain-based algorithms can be classified as
adversarial-based or metric-based [1]. On the adversarial-
based design, the surveillance strategies are designed such
that they reduce the effect of the intruder disruption un-
der some assumptions on its behavior. Some remarkable
adversarial models consider capabilities of the intruder to
move over the network [2], needed time to have a successful
intrusion [3], knowledge of the patrolling strategy [4], limited
observation time for the adversary [5], among other traits.
Usually these scenarios can be modeled either as a stochastic
game [6] or Stackelberg game [7] which uses game theoretic
analysis to find optimal strategies that maximize the expected
utility of the defender.

On the other hand, metric-based algorithms try to maxi-
mize the performance of the proposed surveillance strategy
under particular characteristics of it. Generally, they include,
but are not limited to, covering speed, visit frequency and
predictability. Some relevant metrics used in the literature
include time elapsed since the last visit or idleness [8],

weighted mean first passage times or hitting times [9],
entropy of the proposed Markov chains [10], speed of
convergence or mixing rates and randomness of the motion
of the patrollers [11]. For these design algorithms, the
solution is obtained via an optimization program. However,
as the number of patrollers increases, the complexity of
the optimization problem also increases making the problem
quickly intractable [12].

In this article, we focus on the tractability of the optimiza-
tion problem associated with the hitting time for multiple
agents. With this in mind, we list the main contributions of
this document as follows. First, we formulate an alternative
definition for the hitting time of a Markov chain that can
be easily extendable to the multi-agent case. Second, we
propose optimization problems to find the optimal Markov
chains, for both the single-agent and multi-agent case, and
the advantages and potential issues with each one. Third,
we present a distributed algorithm that minimizes the aver-
age hitting time for multiple patrollers. By exploiting the
structure of the multi-agent formulation, we are able to
define an iterative optimization problem for each one of
the agents that is equivalent to the centralized hitting time
minimization problem. With this approach we are not only
able to distributively design patrolling strategies but also
reduce the complexity of doing it. Moreover, we provide
mathematical analysis that guarantees the convergence of
our proposed solution. Finally, we apply our solution to an
archetypal surveillance problem to illustrate the capabilities
of our solution. Using two different data sets, for San Fran-
cisco and Minneapolis road maps, we utilize our algorithm
in scenarios with at most 700 locations and 50 patrolling
agents to verify not only its performance at the surveillance
task but also its ability to reduce the overall complexity of
the resulting optimization problems.

II. PRELIMINARIES

In this section, we introduce some concepts and previous
results about discrete-time Markov chains. A Markov chain
is a sequence of random variables Xk for k ≥ 0 defined over
the state space S = {1, . . . , n} such that the Markov property
is satisfied, i.e., P [Xk+1 = sk+1|Xk = sk, . . . , X0 = s0] =
P [Xk+1 = sk+1|Xk = sk] with si ∈ S. Each Markov chain
has an associated transition matrix P ∈ Rn×n where the
(i, j)−component describes the transition probability from
state i to state j, pij = P [Xk+1 = j|Xk = i].

We define In as the identity matrix of size n. For any
square matrix A ∈ Rn×n, λi(A) denote its ith eigenvalue and
ρ(A) = maxi |λi(A)| its spectral radius. For every matrix

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 6283

A with ρ(A) < 1 we have that
∑∞

k=0 A
k = (In − A)−1.

If all the eigenvalues of A are real, we can define its
maximum eigenvalue as λmax(A) = maxi λi(A) ≤ ρ(A).
Moreover, any quadratic form x⊤Ax can be upper bounded
by λmax(A) ||x||2 with ||x|| the norm of vector x.

A Markov chain is irreducible if every state can be reached
from any other state. Any irreducible Markov chain P has a
unique stationary distribution π ∈ Rn such that π⊤P = π⊤

and π(i) > 0 for all i ∈ S. In addition, a Markov chain
is reversible if π(i)pij = π(j)pji for all (i, j) ∈ S2. If
we define D = diag(π) then the reversibility condition
can be written as DP = P⊤D. Furthermore, the stationary
distribution π matches the time average limiting distribution,
i.e., the stationary distribution π encodes the average time
spent for each state i ∈ S in the long run.

A graph is a tuple G = (V, E), where V is the set of
nodes and E ⊆ V × V is the edge set that describes the
interaction between nodes. Let |A| denote the cardinality of
set A. We say that a Markov chain is supported on G if the
state space corresponds to the nodes of G, S = V , and the
only allowed transitions are those defined over the edges of
G, (i, j) /∈ E =⇒ pij = 0. We allow self-loops on the
graphs since pii > 0 for some i ∈ S.

For any Markov chain, the first hitting time from state
i to the set A ⊆ S is the random variable defined as,
TA(i) = min {k ≥ 0 | X0 = i and Xk ∈ A}. The expected
value hA(i) = E [TA(i)] is called the mean hitting time from
state i to the set A and it is defined as [13],

hA(i) =

{
0 if i ∈ A,
1 +

∑
j /∈A pijhA(j) if i /∈ A.

(1)

Let us define δA ∈ Rn as δA(i) = 1 when i /∈ A
and δA(i) = 0 otherwise; and EA = diag (δA) ∈ Rn×n.
Therefore, definition in Equation (1) is equivalent to,

hA = δA + EAPEAhA =⇒ hA = (In − EAPEA)
−1

δA. (2)

Note that for any A ⊆ S with |A| ≥ 1, we have
ρ (EAPEA) < 1 so In − EAPEA is positive definite.
Equivalently, the definition in Equation (2) for expected
hitting time is well-posed. Then, we can define the average
hitting time for A as,

mA(P) = π⊤hA = π⊤ (In − EAPEA)
−1

δA. (3)

The average hitting time mA(P) characterize the expected
time to reach a state in A from any other state in the
Markov chain. In robotic surveillance, this metric reflects
the efficiency of a Markov chain with transition probability
matrix P to cover the locations contained in A.

III. DESIGNING MARKOV CHAINS FOR SURVEILLANCE

We now present a family of optimization problems for
robotic surveillance. We aim to visit in an unpredictable order
a set of locations A as quickly as possible. First, assume that
the locations to surveil are described by an undirected con-
nected graph G where the edges represent the paths between
any pair of locations. To cover all the locations in finite time,

we constrain our design to irreducible stochastic matrices.
Let us denote Mπ as the set of irreducible stochastic matrices
with stationary distribution π. In Equation (4), we propose an
optimization problem to find a Markov chain that minimizes
the average hitting time for any given supporting graph G
and stationary distribution π.

min
P∈Mπ

π⊤ (In − EAPEA)
−1

δA

subject to pij = 0 ∀ (i, j) /∈ E
(4)

For Equation (4) and later optimization problems, we
define the problem size to be the number of states of
the Markov chain. Thus, the problem shown in Equa-
tion (4) has size O(n). However, the function P 7→
π⊤ (In − EAPEA)

−1
δA is non-convex. Let M∗

π denote the
set of irreducible and reversible stochastic matrices with
stationary distribution π. Optimizing over M∗

π preserves
convexity of the feasible set in Problem (4). Also, reversible
Markov chains are highly entropic [10], a desirable property
in surveillance tasks due their unpredictability. In addition,
the function mA(P) becomes convex over M∗

π turning
problem in Equation (4) into a convex program.

Lemma 3.1: Convexity of Average Hitting Time. For any
non-empty A the average hitting time mA(P) is a convex
function over P ∈M∗

π .
Proof: Recall that the reversibility assumption can

be written as DP = P⊤D. Let us define the symmet-
ric matrix Q := D

1
2PD− 1

2 . Then, (In − EAPEA)
−1

=
D− 1

2 (In − EAQEA)
−1

D
1
2 and (In − EAPEA)

−1
δA =

EA (In − EAPEA)
−1

δA. Thus, we can reformulate the
definition of average hitting time as follows,

mA(P) = π⊤ (In − EAPEA)
−1

δA = 1⊤DEA (In − EAPEA)
−1

δA

= δ⊤AD
1
2 (In − EAQEA)

−1
D

1
2 δA = g

(
D

1
2 δA, In − EAQEA

)
,

with g(x, Y) = x⊤Y −1x the matrix fractional function,
which is convex over Rn×Sn++ with Sn++ the set of positive
definite matrices [14]. Since ρ (EAQEA) < 1 then we can
ensure that mA(P) is a convex function.

To surveil a collection of subsets C = {A1, . . . ,As} we
can define the worst-case average hitting time,

mwc
C (P) = max

A∈C
π⊤ (In − EAPEA)

−1
δA, (5)

or the weighted average hitting time,

mavg
C (P) =

∑
A∈C

γA π⊤ (In − EAPEA)
−1

δA, (6)

with γA ≥ 0 for all A ∈ C. Functions in Equations (5)
and (6) consider the average hitting times for all Ai ∈ C
and their convexity comes from the convexity of mA(P).
Consequently, without losing any generality, we focus our
discussion on the average hitting time for subset A.

IV. SUCCESSIVE UPPER BOUND OPTIMIZATION
APPROACH FOR MULTIPLE PATROLLERS

In this section, we extend the formulation of the optimal
robotic surveillance problem for multiple patrollers. Similar
to the single-agent version of the problem, we want to cover

6284

a set of locations A ⊆ V as fast as possible. However, now
we have a set M of m different patrollers that can visit the
locations in V . We take into account that each agent can have
different capabilities to move over the locations by assuming
that each agent has it own supporting graph Gi = (Vi, Ei)
with Vi ⊆ V for each i ∈M. Since these capabilities are an
intrinsic property of the agents, we assume that the graphs Gi
are known a priori and they must be considered in the design
of the patrolling strategy. Furthermore, the possible existence
of overlapping graphs supposes a challenge in the strategy
design since it requires the coordinated effort of multiple
patrollers to effectively reduce the hitting time.

To tackle the multi-agent patrolling problem, a common
method is to use the formulation on Section III using Markov
chains with state space S = ×i∈M Vi. However, such
Markov chains induce a coupled behavior since the transition
between any pair of states in S is determined by the actions
of more than one agent. In addition, the state space for these
Markov chains S has size O(nm) and grows exponentially
with the number of patrollers.

With this in mind, an efficient approach is to constrain our
design to decoupled Markov chains for each agent. In those
Markov chains, the transition probability for every agent i ∈
M depends upon only its own current state si ∈ Si and it
is independent of others agents states sj ∈ Sj with i ̸= j.
Therefore, if each agent has its own supporting graph Gi then,
we will design an irreducible and reversible Markov chain
Pi defined over Si ⊆ Vi for each agent. Moreover, we can
describe the entire Markov chain over S as the Kronecker
product of the collection of the Markov chains of each agent,
i.e., P =

⊗
i∈M Pi. Since Pi ∈ M∗

πi
for every i ∈ M the

stationary distribution of P is π =
⊗

i∈M πi.
Next, we will extend the definition of average hitting time

for Markov chains over S. Let us define the set SA :=
{(s0, . . . , sm−1) ∈ S | ∃ i : si ∈ A} as the set indicating the
states of the multi-agent Markov chain P where there is at
least one patroller in a location in A. Therefore, mSA(P),
as in Equation (3), characterizes how fast multiple agents
can cover the locations in A. This allows us to formulate an
optimization problem that minimizes mSA(P).

min
P∈M∗

π

π⊤ (Inm − ESAPESA)
−1

δSA

subject to P = P0 ⊗ . . .⊗ Pm−1

Pi is supported on Gi ∀ i ∈M
with π = π0 ⊗ . . .⊗ πm−1

(7)

Incorporating decoupled Markov chains turns the opti-
mization problem shown in Equation (7) into a non-convex
program with size equal to O(nm). Nevertheless, this struc-
ture naturally suggests the use of distributed algorithms to
minimize mSA(P).

Instead of optimizing all the Markov chains simulta-
neously we propose an algorithm where each patroller i
improves its own Markov chain Pi by minimizing surrogate
functions of the multi-agent average hitting time ui(Pi | P−i)
where all the other Markov chains P−i are fixed as shown
in Algorithm 1. The most natural choice for a surrogate

Algorithm 1: Distr. Avg. Hitting Time Minimization

Initialize P
(0)
i ∈M∗

πi
for all i and k ← 0.

repeat
foreach i ∈M do

P
(k+1)
i ← argminPi

ui

(
Pi | P (k)

−i

)
k ← k + 1

until convergence condition

function is just to define ui(Pi|P−i) = mSA(P). However,
evaluating mSA(P) is intractable, even if the other agents
Markov chains are fixed. Instead, we focus on the family of
surrogate functions,

ui (Pi|P−i) = αA,i

∞∑
r=0

π⊤
i (βA,iEA,iPiEA,i)

r
δA,i

= αA,iπ
⊤
i (In − βA,iEA,iPiEA,i)

−1
δA,i

(8)

where,

αA,i =
∏
j ̸=i

||δA,j ||2 , and βA,i =
∏
j ̸=i

λmax (EA,jPjEA,j) .

With the proposed choice of surrogate functions we
recover multiple desirable properties that we lost in the
multi-agent patrolling formulation. First, for each agent, the
function ui(Pi | P−i) is a convex function of Pi. In addition,
we reduce the size of the problem from O(nm) to m different
O(n) optimization problems per iteration. Moreover, given
that each agent just need the values of αA,i and βA,i from
the other agents, instead of their transition matrices P−i, the
Algorithm 1 can be solved distributively. Finally, we can
offer convergence guarantees for our proposed solution.

Theorem 4.1: Convergence of Distributed Average Hitting
Time Minimization. For any non-empty subset of locations
A, every limit point P ∗ =

(
P ∗
0 , . . . , P

∗
m−1

)
generated by

Algorithm 1 is a coordinate minimum of mSA(P).
Now, we devote the rest of this section to prove the

statement in Theorem 4.1.

A. Preliminaries on Block Optimization

Consider the optimization problem minx∈X f(x), where
f : X → R and X is a closed convex set. Now, assume
that the variable x can be decomposed as (x0, . . . , xm) ∈ X
where xi ∈ Xi. Then, the update rule at iteration k for each
block can be computed by the subproblem,

x
(k+1)
i ∈ argmin

xi∈Xi

ui

(
xi | x(k)

)
, (9)

where ui : Xi × X → R. Convergence of the sequence
generated by Equation (9) is guaranteed under the following
properties on the functions ui,
Upper Boundedness: ui(xi|y) ≥ f(y1, . . . , xi, . . . , ym) for
all xi ∈ Xi and y ∈ X .
Tightness: ui(xi|x) = f(x) for all xi ∈ Xi and x ∈ X .
Continuity and Differentiability: u(xi|y) is continuous in
(xi, y) and differentiable on xi.

6285

Every function ui that have these properties is called a
surrogate function of f(x) for the block of variables xi.
Thus, algorithm described by the update in Equation (9) is
called Block Successive Upper-bound Minimization (BSUM)
algorithm and its convergence to a coordinatewise minimum
have been studied in [15, Thm. 2(a)].

B. Proof of Convergence of the Distributed Average Hitting
Time Minimization Algorithm

Now, we prove convergence of Algorithm 1 using conver-
gence of BSUM algorithm and establishing that minimizing
functions ui(Pi | P−i) is equivalent to minimize surrogate
functions of mSA(P) for block variable Pi. With this in
mind, we redefine the expression for mSA(P) presented in
Equation (7). Let us define δA,l(i) = δA(i) for each agent
l ∈ M. Therefore, we can define δSA =

⊗
l∈M δA,l and

ESA =
⊗

l∈M EA,l, with EA,l = diag (δA,l). This allows
us to rewrite the expression of average hitting time as,

mSA(P) =

∞∑
r=0

[
m−1∏
l=0

π⊤
l (EA,lPlEA,l)

r
δA,l

]
(10)

Equation (10) shows that the coupling between the dif-
ferent agents in mSA(P) appears as the bilinear forms
π⊤
l (EA,lPlEA,l)

r
δA,l for any r ≥ 0. Therefore, each

patroller can upper bound Equation (10) if the other patrollers
fix their Markov chains.

Lemma 4.2: Distributed Upper Bound of Multi-Agent
Average Hitting Time. For any agent i, the functions
ui (Pi|P−i), as stated in Equation (8), are,

• an upper bound of mSA(Pi, P−i) for any given P−i.
• differentiable a.e. for both Pi and P−i.
• a convex function on Pi.

Proof: In order to check the upper bound property
of Equation (8), we only need to upper bound each of the
bilinear forms π⊤

i (EA,iPiEA,i)
r
δA,i for any i ∈M. Thus,

π⊤
i (EA,iPiEA,i)

r
δA,i = π⊤

i EA,i (EA,iPiEA,i)
r
δA,i

≤ 1⊤EA,i (EA,iPiEA,i)
r
δA,i ≤ λmax (EA,iPiEA,i)

r ||δA,i||2

Then, we can upper bound
∏

j ̸=i π
⊤
j (EA,jPjEA,j)

r
δA,j by

αA,iβ
r
A,i to obtain the expression in Equation (8).

To check the differentiabilty of the upper bound we
just need to verify if λmax (EA,iPiEA,i) is a differentiable
function of Pi for all i. For any symmetric matrix A, each
of the eigenvalues λp(A) is a Lipschitz continuous function
of A [16]. Then, by Rademacher’s theorem, the function
λmax(A) is differentiable a.e. in its domain. Note that, even
when Markov chains Pi are not symmetric, due to the
reversibility property they are similar to the symmetric matrix
Qi = D

1
2
i PiD

− 1
2

i with Di = diag(πi). Finally, convexity of
Equation (8) comes form convexity of mA(P) and the fact
that βA,i ≤ 1 and λmax (EA,jPjEA,j) ≤ ρ (EA,jPjEA,j) <
1 for any j ̸= i.

Lemma 4.2 verifies two of the required properties of the
surrogate functions. Although, it is possible that the upper
bound presented in Equation (8) is not tight. However, we
just need to guarantee that minimizing ui(Pi | P−i) is

equivalent to minimizing a surrogate function, even if ui

is not a surrogate function for the block of variables Pi.
Proposition 4.3: For any A, the family of functions,

gi

(
Pi|P (k)

i , P
(k)
−i

)
= ui

(
Pi|P (k)

−i

)
+mSA

(
P

(k)
i , P

(k)
−i

)
− ui

(
P

(k)
i |P

(k)
−i

) (11)

are surrogate functions of mSA(P) for every i. Moreover,

argmin
Pi

gi

(
Pi|P (k)

i , P
(k)
−i

)
= argmin

Pi

ui

(
Pi|P (k)

−i

)
. (12)

Proof: Tightness of gi can be checked by inspection of
Equation (11). Similarly, continuity and differentiability of gi
comes from continuity and differentiability of ui (Pi|P−i),
verified in Lemma 4.2. Relation in Equation (12) can be ver-
ified giving the fact that the last two terms in Equation (11)
do not depend on Pi. In order to verify that gi is an upper
bound of mSA(P) we just need to verify that ui

(
Pi|P (k)

−i

)
−

ui

(
P

(k)
i |P

(k)
−i

)
≥ mSA

(
Pi, P

(k)
−i

)
− mSA

(
P

(k)
i , P

(k)
−i

)
.

Using Equations (10) and (8), we have that,
∞∑
r=0

αA,iβ
r
A,iπ

⊤
i

[
(EA,iPiEA,i)

r −
(
EA,iP

(k)
i EA,i

)r]
δA,i

≥
∞∑
r=0

∏
j ̸=i

π⊤
j (EA,jPjEA,j)

r
δA,j

π⊤
i

[
(EA,iPiEA,i)

r −
(
EA,iP

(k)
i EA,i

)r]
δA,i

Therefore, for any r such that (EA,iPiEA,i)
r ̸=(

EA,iP
(k)
i EA,i

)r

the upper bound inequality is guaranteed
by Lemma 4.2.

Given that Proposition 4.3 shows that Algorithm 1 is
equivalent to iteratively minimize surrogate functions of
mSA(P) we can guarantee the convergence of Algorithm 1,
as stated in Theorem 4.1.

V. NUMERICAL SIMULATIONS

In this section we present numerical simulations to illus-
trate the usefulness of our proposed solution. We implement
our strategy in two different road networks and compare our
solutions with other baseline strategies that design Markov
chains with a predefined stationary distribution. As a baseline
algorithm to generate Markov chains supported in a graph G
we use the Metropolis-Hasting algorithm. In it, the transitions
are defined as pij = 1

r min
(
1, π(j)

π(i)

)
for i ̸= j and pii =

1−
∑

j pij , where r is the maximum degree for all nodes in
G. It is known that the generated Markov chain is reversible
and has stationary distribution π [17, Chap. 4].

Case Study 1: Map of San Francisco. In the first
set of simulations we implement our algorithm in a data
set consisting of 12 locations in San Francisco and their
crime rates. Using the data in [18] we identify 12 locations
on San Francisco to be monitored persistently. With the
addition of intermediate nodes, we build a planar graph that
describes how the agents can move through the city as shown
in Figure 1a. Then, we create 5 different subgraphs that
represent the assigned locations for each one of the agents
as in Figure 1b. Given the overlaps between the different
subgraphs, every agent has to take into consideration other
agents’ strategies to minimize the worst-case average hitting

6286

(a) (b) (c)

Fig. 1. San Francisco case study. (a) Locations that represent the different states of the Markov chains and their respective crime rates. The red circles
are the 12 critical locations reported in [18] while the blue squares represent intermediate locations. (b) Labels for the nodes and the different subgraphs
assigned for each one of the 5 different agents and an example of the stationary distribution for one of the subgraphs. (c) Average hitting time to each one
of the target locations using the different optimization algorithms.

(a) (b) (c) (d)

Fig. 2. Minneapolis case study. (a) Minnesota road network obtained from [19]. The most dense region is highlighted inside the red dashed square. (b)
Network used in the surveillance problem that corresponds to the road network of Minneapolis and surroundings. Example of 4 of the subgraphs used in
the surveillance design highlighted using different colors on the nodes. (c) Obtained average hitting times for every target location using Algorithm 1. (d)
Obtained average hitting times for every target location using Heuristic 1.

time in the 12 critical locations, as in Equation (5). Moreover,
we define the stationary distributions for each subgraph such
that they are proportional to the crime rates provided in [18]
and inversely proportional to the number of patrollers that
cover it, as shown in Figure 1b.

Under this set-up we obtain a problem with n = 18
locations and m = 5 agents. Therefore, calculating the op-
timal surveillance strategy will require a Markov chain with
4500 states. However, using one iteration of our proposed
algorithm just require that each agent optimize their own
Markov chain, reducing it to 6 states in the worst case, giving
a total size of 28 states per iteration.

Since using centralized algorithms is unreliable, we imple-
ment other three reasonable heuristics that can be computed
distributively to compare with our surveillance strategy.
Those strategies take each subgraph Gi and,
Heuristic 1: Find the Markov chain Pi that minimize the
average hitting time, neglecting the presence of other agents.
Heuristic 2: Apply the Metropolis-Hasting algorithm using
πi as stationary distribution.
Heuristic 3: Apply the Metropolis-Hasting algorithm over a
tour contained in Gi using πi as stationary distribution.

In Figure 1c we can observe the achieved hitting time
for every target location using the different approaches.
Comparing the two heuristics based upon the Metropolis-
Hasting algorithm it can be noticed that constraining the
agent to move just over a tour instead of the entire graph
significantly increase the hitting time to certain locations.
Instead, when each agent minimizes the average hitting
time, we can observe an improvement from the Metropolis-

Hasting algorithm. The improvement is due we are choosing
a Markov chain that not only has a particular stationary
distribution but also minimizes the average hitting time for
each subgraph. However, ignoring the existing overlaps on
the subgraphs leads to unnecessary visit for multiple agents.
On the other hand, incorporating the effect of the coupling
of the patrolling schemes in our design, as in our proposed
algorithm, leads to a better performance overall, achieving
lower hitting times for multiple locations.

Case Study 2: Map of Minneapolis. In a similar fashion of
previous case study, now we apply the proposed algorithm
in the road network of Minneapolis. To obtain this graph
we start with the Minnesota road network as provided in
[19]. However, we focus on the more dense region as shown
in Figure 2a. To check the scalability of our proposed
optimization problem, we design a patrolling scheme that
consider 50 patrolling agents. With this in mind, we gen-
erate the different subgraphs for each agent using spectral
decomposition over the adjoint graph. This decomposition
features some overlap for the subgraphs, letting multiple
agents cover some of the nodes. Some of the subgraphs
generated are shown in Figure 2b. To define the stationary
distributions we just impose the constraint that they should
be proportional to the degree of each node, i.e. the number
of edges that are connected to that node. The target nodes are
randomly chosen with probability proportional to a centrality
measure, in particular the PageRank centrality. Similarly to
the previous set of simulations, our goal is to minimize the
worst-case average hitting time for the target nodes.

Recall that, for n locations and m agents, a Markov chain

6287

with O (nm) states is required to minimize the average
hitting time in a centralized manner. Instead, one iteration
of our algorithm requires m Markov chains with O(n)
states. For this case study we have n = 774 locations,
|E| = 963 edges and m = 50 agents. However, the dimension
of the subgraphs, ranging between 8 and 38, are smaller
compared to the total number of nodes. Thus, the Distributed
Average Hitting Time Minimization presented in Algorithm 1
leads to a huge dimensionality reduction of the surveillance
design problem compared to a centralized algorithm, which
approximately requires 4× 1062 states.

As for previous case study, we compare our strategy with
another baseline algorithm to generate Markov chains. In
particular, given the previously discussed results, we compare
only with the Markov chains generated by Heuristics 1 & 2.
In Figures 2c and 2d it can be noticed that our proposed
algorithm achieves a better performance in terms of the
worst-case average hitting time. Again, the reason of this
behavior is due the fact that our algorithm takes into account
the interaction between the agents. Keeping this interactions
during the optimization problem allow us to design patrolling
strategies that exploit the overlaps present along the different
subgraphs. Also, as we showed in our discussion, using our
solution we can include this interaction without a significant
increase in the complexity of the optimization problem.

TABLE I
SUMMARY OF OBTAINED AVERAGE HITTING TIMES.

Hitting Time
Minimization

Case Study 1: San Francisco Case Study 2: Minneapolis
Worst Case Mean Worst Case Mean

Algorithm 1 15.8533 6.3158 417.2229 132.9839
Heuristic 1 22.0511 7.8801 646.4553 88.4718
Heuristic 2 30.2835 10.8595 501.1369 139.7152
Heuristic 3 50.7946 15.0315 - -

In Table I we summarize the results obtained for both case
studies. In it, we can compare the performance of our strategy
and the aforementioned heuristics. It is evident that our
solution outperform other strategies in terms of the desired
metric: the worst-case average hitting time. Moreover, we
observe that our solution also inherently reduces the average
hitting for multiple target nodes, achieving similar or even
better performance in terms of the mean average hitting time.

VI. CONCLUSIONS

In this work we present an algorithm that provides a
patrolling scheme for a multi-agent robotic surveillance prob-
lem. By using the Markov chains mathematical framework
we formulate an optimization problem for the patrolling
strategy that covers all the relevant locations as fast as
possible. Under mild assumptions on the behavior of the
agents we can extend this formulation to environments with
multiple agents. Moreover, we design easy to implement and
highly unpredictable surveillance strategies by constraining
ourselves to decoupled reversible Markov chains. Using
properties of decoupled reversible Markov chains, we were
able to define a distributed algorithm that iteratively refines
the surveillance strategy used by all the robotic agents.

In addition, we provide sufficient conditions to ensure the
convergence of the proposed algorithm. With a distributed
algorithm, we guarantee the convergence to a coordinate
minimum of the multi-agent average hitting time while
simultaneously improving the tractability of the resulting
optimization problems. Through numerical simulations, we
verify the performance of our solution, showing its capabil-
ities even for large scale formulations.

Future directions include the extension of these algorithms
for arbitrary travel times between locations and the design
of the parameters used in our algorithm, including the
subgraphs for each agent and their stationary distributions.

REFERENCES

[1] X. Duan and F. Bullo, “Markov Chain-based Stochastic Strategies
for Robotic Surveillance,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 243–264, 2021.

[2] Y. Li, Y. Luo, and C. Yu, “Game-Theoretic Control of Markov Chains:
Two Applications,” in International Symposium on Mathematical
Theory of Networks and Systems, 2022.

[3] N. Agmon, G. A. Kaminka, and S. Kraus, “Multi-robot Adversarial
Patrolling: Facing a Full-knowledge Opponent,” Journal of Artificial
Intelligence Research, vol. 42, pp. 887–916, 2011.

[4] N. Basilico, N. Gatti, and F. Amigoni, “Patrolling Security Games:
Definition and Algorithms for Solving Large Instances with Single
Patroller and Single Intruder,” Artificial Intelligence, vol. 184, pp. 78–
123, 2012.

[5] A. B. Asghar and S. L. Smith, “A Patrolling Game for Adversaries
with Limited Observation Time,” in IEEE Conference on Decision and
Control, 2018, pp. 3305–3310.

[6] Y. Vorobeychik, B. An, and M. Tambe, “Adversarial Patrolling
Games,” in AAAI Spring Symposium Series, 2012.

[7] X. Duan, D. Paccagnan, and F. Bullo, “Stochastic Strategies for
Robotic Surveillance as Stackelberg Games,” IEEE Transactions on
Control of Network Systems, vol. 8, no. 2, pp. 769–780, 2021.

[8] Y. Chevaleyre, “Theoretical Analysis of the Multi-Agent Patrolling
Problem,” in IEEE/WIC/ACM International Conference on Intelligent
Agent Technology., 2004, pp. 302–308.

[9] R. Patel, P. Agharkar, and F. Bullo, “Robotic Surveillance and Markov
Chains with Minimal Weighted Kemeny Constant,” IEEE Transactions
on Automatic Control, vol. 60, no. 12, pp. 3156–3167, 2015.

[10] M. George, S. Jafarpour, and F. Bullo, “Markov Chains with Maximum
Entropy for Robotic Surveillance,” IEEE Transactions on Automatic
Control, vol. 64, no. 4, pp. 1566–1580, 2018.

[11] J. Grace and J. Baillieul, “Stochastic Strategies for Autonomous
Robotic Surveillance,” in Proceedings of the 44th IEEE Conference
on Decision and Control, 2005, pp. 2200–2205.

[12] R. Patel, A. Carron, and F. Bullo, “The Hitting Time of Multiple
Random Walks,” SIAM Journal on Matrix Analysis and Applications,
vol. 37, no. 3, pp. 933–954, 2016.

[13] J. R. Norris, Markov Chains. Cambridge University Press, 1998.
[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[15] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A Unified Convergence

Analysis of Block Successive Minimization Methods for Nonsmooth
Optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp.
1126–1153, 2013.

[16] Y. Xu and Y. Lai, “Derivatives of Functions of Eigenvalues and Eigen-
vectors for Symmetric Matrices,” Journal of Mathematical Analysis
and Applications, vol. 444, no. 1, pp. 251–274, 2016.

[17] A. Blum, J. Hopcroft, and R. Kannan, “Foundations of Data Science,”
Vorabversion eines Lehrbuchs, vol. 5, no. 5, 2016.

[18] S. Alamdari, E. Fata, and S. L. Smith, “Persistent Monitoring in
Discrete Environments: Minimizing the Maximum Weighted Latency
between Observations,” International Journal of Robotics Research,
vol. 33, no. 1, pp. 138–154, 2014.

[19] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software, vol. 38,
no. 1, pp. 1–25, 2011.

6288

