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Abstract— We introduce a novel approach for the construc-
tion of symbolic abstractions - simpler, finite-state models -
which mimic the behaviour of a system of interest, and are
commonly utilized to verify complex logic specifications. Such
abstractions require an exhaustive knowledge of the concrete
model, which can be difficult to obtain in real-world appli-
cations. To overcome this, we propose to sample finite length
trajectories of an unknown system and build an abstraction
based on the concept of `-completeness. To this end, we
introduce the notion of probabilistic behavioural inclusion. We
provide probably approximately correct (PAC) guarantees that
such an abstraction, constructed from experimental symbolic
trajectories of finite length, includes all behaviours of the
concrete system, for both finite and infinite time horizon.
Finally, our method is displayed with numerical examples.

Index Terms— Automata, Modeling, Statistical learning

I. INTRODUCTION

Recent advances in data-driven modeling and analysis,
enabled by machine-learning with unprecedented computing
power, have led to a renaissance in the field of system’s
verification, which focuses on providing formal performance
and safety guarantees. To this end, sample-based methods
directly derive barrier functions to certify invariance [1], [16],
or finite abstractions to verify and synthesize controllers [8],
[12], [15]. Among others, scenario-based optimization tech-
niques can be employed to provide probably approximately
correct (PAC) guarantees on the desired performance metric.

In order to use these techniques, independent samples
must be obtained from the probability distribution driving
a system’s uncertainty. Several works [8], [13], [19], [20]
consider the special case of deterministic systems, where
the sole uncertainty is the initial state, which is drawn from
some probability distribution and dictates the entire trajectory
of the system. In this case, independence of samples can
be achieved by sampling the initial state independently,
typically through a uniform distribution over compact initial
sets. However, we need independent samples of transitions
(typically) when data is used to construct finite abstractions
or verify barrier functions: this implies collecting only one
transition from each trajectory. The scenario-based approach,
when it is fed with one-step transitions, only establishes PAC
guarantees for one-step properties. This impairs the provision
of guarantees for longer horizon properties, for instance the

Submitted for review on 17/03/2023. This work was supported by the
European Research Council through the SENTIENT project (ERC-2017-
STG #755953). We would like to thank Gabriel de Albuquerque Gleizer
and Giannis Delimpaltadakis for their helpful discussions throughout the
development of this work.

R. Coppola, A. Peruffo and M. Mazo are with Faculty of Mechanical,
Maritime and Materials Engineering, TU Delft, Delft, The Netherlands.
r.coppola@tudelft.nl

decrease of a function across several (or an infinite number
of) steps. Typically we are interested in infinite horizon
properties: a model where probabilities are placed upon
the possible transitions can hardly be used to infer long
or infinite horizon specifications, since the probability of
satisfaction for these properties become trivial.

Contributions. Addressing this limitation is the main ob-
jective of this work. We consider deterministic systems with
unknown dynamics and uncertainty in their initialization.
We present a data-driven construction of finite abstractions,
relying on the notions of `-complete behaviours and (proba-
bilistic) behavioural inclusion, which captures the relation
between a randomly sampled deterministic model and a
transition system based on the collected system’s behaviours.
We leverage non-convex scenario theory to provide PAC
guarantees for the inclusion of the concrete system’s finite
behaviours in those of the abstractions. Our technique is
significantly different from the related literature, as we apply
the scenario approach to bound the probability of witnessing
a previously unseen, new system behaviour, and leverage
contraction properties to extend the results to behaviours of
arbitrary length (longer than that of the experiments).

Related Work. Recently, a collection of works propose
the use of PAC guarantees to directly synthesise an ab-
straction from data, with guarantees of correctness, without
the need to identify an underlying model. In [2], [6], [11]
a sampled-based interval MDP is provided, employing the
scenario approach to bound the transition probabilities of
a stochastic dynamical model. In [8], the authors define a
PAC alternating simulation relationship between a symbolic
abstraction and an underlying deterministic system, using
one-step transitions. In [13], PAC over-approximations of
monotone systems are computed, which are then used to
build models for unknown monotone systems. Finally, [10]
computes the growth rate of a system from data, which is
then used to construct a model abstraction and synthesise
a controller. The use of data-driven `-complete models is
briefly presented in [14] for linear PETC models. In [1],
[16] the authors synthesise barrier certificates for unknown
systems using template-based candidates, providing PAC
bounds for their correctness, for stochastic and deterministic
systems, respectively.

II. PRELIMINARIES

A. Notation

||A||p denotes the induced p-norm of matrix A. We use a
string notation for sequences, e.g. r = ab means r(1) = a,
r(2) = b. We denote the length of a string with the subscript
` ∈ N+ i.e. r`. Given two sequences rm and pn with ∞ ≥
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m > n, we say that r exhibits p if there exists k ≥ 0 such
that r(k + i) = p(i) for i = {1, ..., n}, denoted r |= ♦p.
Given a set of sequences S and a sequence p we say that S
exhibits p if there exists s ∈ S such that s |= ♦p, denoted
S |= ♦p. We denote the uniform distribution supported on a
domain D ⊂ Rn by UD.

B. Scenario Theory Background
Let (∆,F ,P) be a probability space, where ∆ is the

sample space, endowed with a σ-algebra F and a probability
measure P; further, denote by ∆N the N -Cartesian product
of the sample space and with PN its product measure. A
point in (∆N ,FN ,PN ) is thus a sample (δ1, . . . , δN ) of
N elements drawn independently from ∆ according to the
same probability P. Each δi is regarded as an observation, or
scenario [4], [9]1. A set Θ, the decision space, contains the
decisions, i.e. the optimization space – no particular structure
is assumed for this set. To every δ ∈ ∆ there is associated
a constraint set Θδ ⊆ Θ which identifies the decisions that
are admissible for the situation represented by δ.

Typically, the scenario theory refers to an optimisation pro-
gram, which computes θ∗N , the solution of the optimisation
program based on N samples. Once θ∗N is computed, we are
interested in assessing how it generalises to unseen scenarios
δ ∈ ∆, or, rather, the probability of extracting a sample that
violates the constraints defined by θ∗N . We define:

Definition 1 (Violation [4]). The violation probability of a
given θ ∈ Θ is defined as

V (θ) = P[ δ ∈ ∆ | θ /∈ Θδ ]. (1)

V (θ) quantifies the probability with which a new randomly
selected constraint Θδ is violated by θ. If V (θ) ≤ ε, we say
that θ is ε-robust against constraint violation. �

Notice that in general V (θ) is not directly computable
since P is not known. From [9], under mild assumptions, a
confidence bound can be derived as follows:

Theorem 1 (PAC bounds [9, Theorem 1]). Given a confi-
dence parameter β ∈ (0, 1) and the solution θ∗N , it holds

PN [V (θ∗N ) ≤ ε(s∗N , β,N)] ≥ 1− β, (2)

where ε(·) is the solution of a polynomial equation (omitted
here for brevity) and s∗N is the so-called complexity of the
solution – it represents the minimum number of constraints
(m ≤ N ) that yield the same solution θ∗N . �

Remark 1. In this work the event space ∆ is discrete, there-
fore we refer to scenario theory for degenerate problems, as
per [4], [9].

C. Modeling Framework
Consider a time-invariant dynamical system described by

Σs :=


xk+1 = f(xk) = Axk + b,

yk = h(xk),

x0 ∼ P(D),

(3)

1As indicated in footnote 1 on [4] one could equivalently consider δi as
independent random elements of a probability space.

where xk ∈ D ⊆ Rnx is the plant’s state at time k ∈ N+,
A ∈ Rn×n, and b := (I − A)xeq with xeq equilibrium
of f , i.e. xeq = f(xeq); the initial value x0 is sampled
from a probability distribution P with domain D; yk ∈ Y
is the system output with |Y| < ∞, and nx is the state-
space dimension. If the trajectory xk exits D at time k,
the output map returns a special symbol y† for all t ≥ k.
We may think of the map h(·) as a partitioning map, that
returns a partition label (or index). The matrix A and output
map h(·) are unknown, but we assume that we can observe
the output sequence y0, y1, ... generated by Σs(x0). With
Bω(Σs(x)) and BH(Σs(x)) we denote the infinite and finite
external behaviour, the output sequence, for the time interval
[0, H − 1] of Σs starting from state x, respectively; we use
the shorthand Bω(x) and BH(x) when the system is clear
from the context. Each behaviour inherits a probability of
emerging, stemming from P: we consider solely behaviours
with strictly positive probability measure.

Let us now introduce the notion of equivalence class [18]:

[y] = {x ∈ D | y = h(x)},

and similarly, we define the equivalence class for an output
sequence y`i = yi1yi2 ...yi` ∈ Y` as

[y`i ] = {x ∈ D | yij = h(f j−1(x)) for j = 1, ..., `}, (4)

with f0(x) = x. Equation (4) states that for i = 1, ..., |Y|`,
i.e. for every `-sequence y`i ∈ Y`, the output equivalence
class [y`i ] is the set of points x such that if the dynamical
system is initialized at x, then the output sequence over the
time interval [0, ` − 1] corresponds to y`i . Further, for all
` ≥ 1, the set of all [y`i ] forms a partition of the domain D.

Let us introduce the notion of contraction, which is
convenient for the discussions in Section IV.

Definition 2 (Contraction map [3]). Given a metric space
(D, d), a map f : D → D is a contraction if it is Lipschitz
with constant C < 1, i.e.

d(f(x), f(y)) ≤ C · d(x, y) ∀x, y ∈ D, 0 ≤ C < 1. (5)

In this work, we solve the following problem.

Problem Statement. Given an unknown affine system,
build an abstraction such that, with high confidence, the
probability of witnessing a behaviour that is not included
in the abstraction’s behaviours is below a threshold value.

III. SAMPLING AND ABSTRACTIONS

A. Abstractions via Transition Systems

In this work, we adopt the framework of finite-state
abstractions in the form of transition systems (TS).

Definition 3 (Transition System [18]). A transition system
S is a tuple (X ,X0, E ,Y,H) where:
• X is the (possibly infinite) set of states,
• X0 ⊆ X is the set of initial states,
• E ⊆ X × X is the set of edges, or transitions,
• Y is the set of outputs, and
• H : X → Y is the output map.
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(y1y1y2) (y1y2y2) (y2y2y2)(y1y1y1)

Fig. 1. Example of SA`-CA, with ` = 3.

We consider non-blocking transition systems, that is, every
state is equipped with at least one outgoing transition.
Notice that model (3) can be described equivalently as a
non-blocking and deterministic transition system where the
(initial) states belong to probability distributions derived by
x0 ∼ P; we denote such transition system by SΣs

.
In order to construct the embedding of (3) as a TS, we

need full knowledge of the system dynamics to compute the
transitions E . As we only have access to the output yk, we
recall the notion of behavioural inclusion:

Definition 4 ((Probabilistic) Behavioural inclusion). Con-
sider two systems Sa and Sb with Ya = Yb. We say that
Sb behaviourally includes Sa, denoted by Sa �B Sb, if
Bω(Sa) ⊆ Bω(Sb). We say that Sb behaviourally includes Sa
until horizon H if BH(Sa) ⊆ BH(Sb), denoted Sa �BH

Sb.
Further, we say that Sa is behaviourally included in Sb
with probability greater or equal than 1 − ε, denoted by
P[Sa �B Sb] ≥ 1− ε, if for x0 ∼ P it holds that:

P [Bω(Sa(x0)) ⊆ Bω(Sb) | x0 ∼ P] ≥ 1− ε, (6)

We denote P[Sa �BH
Sb] ≥ 1−ε, if the previous relationship

holds until time horizon H .

A natural way of building a behaviourally inclusive ab-
straction is by fixing a length `, and mapping a concrete
state to an abstract one sharing the future ` outputs. We may
elaborate this intuition through a so-called `-complete model:

Definition 5 ((Strongest asynchronous) `-complete abstrac-
tion [7], [17]). Let S := (X ,X0, E ,Y,H) be a transition
system, and let X` ⊆ Y` be the set of all `-long subse-
quences of all behaviours in S. Then, the system S` =
(X`,B`(S), E`,Y`,H) is called the (strongest asynchronous)
`-complete abstraction (SA`-CA) of S, where

• E` = {(kσ, σk′) | k, k′ ∈ Y , σ ∈ Y`−1, kσ, σk′ ∈ X` },
• H(kσ) = k,

where B`(S) denotes all the external traces of system S` and
Y` is the cartesian product Y × . . .× Y repeated ` times.

The SA`-CA encodes each state as an `-long external
trace, as shown in Fig. 1. When ` = 3 and Y = {y0, y1, y2},
assume that the three-step trajectory x̂0x1x2 yields the output
B3(S(x̂0)) = y0y1y2; then, the SA`-CA has the abstract
state y3 := y0y1y2. Moreover, x̂0 belongs to the equivalence
class [y0y1y2]. The transitions of an `-complete model obey
the so-called “domino rule”, meaning that starting from the
trace y0y1y2, the next `-trace must begin with y1y2; e.g.
state y0y1y2 can transition to y1y2y0, y1y2y1, and y1y2y2.
The output of a state is its first element, so H(y0y1y2) = y0.

(y1y1y2) (y1y2y1)

(y2y1y2)(y2y1y1)(y1y1y1)

Fig. 2. Construction of a non-blocking automaton. Dashed lines indicate
artificial states and transitions, added by the domino completion.

An autonomous transition system S is behaviourally in-
cluded in its corresponding SA`-CA model (see [17]). Con-
structing such a model requires only external behaviours
of S; considering x0 as an input, the SA`-CA represents
a symbolic input/output model. The value of ` defines the
trajectory horizon, embedding the future of each concrete
state xk. A transition from an abstract state y`i to y`j exists
if and only if the last ` − 1 output symbols of the former
match the first `− 1 symbols of the latter; consequently, for
increasing values of ` the domino rule is more stringent,
or in other words, the partition defined by the set of all
[y`i ] becomes finer. We only need to collect the possible
`-behaviours of a system to construct an `-complete model.

B. Data-driven Abstraction: Finite-time Guarantees

Given system (3), let us collect N output sequences of
length H ≥ `, and we construct XN` , the set of `-sequences
y`, that acts as the state set of the data-driven SA`-CA.

Definition 6 (Data-driven SA`-CA). The `-complete abstrac-
tion SN` = (XN` ,XN` , E`,Y`,H) is called the data-driven
SA`-CA of S, where
• XN` is the state space built from the `-sequences col-

lected from N trajectories of an underlying concrete
system.

The transitions, output space, and output map follow Defi-
nition 5. �

Remark 2 (Domino Completion). A blocking TS may arise
after collecting N samples, as depicted in Fig.2, where the
state corresponding to y1y2y1 has no outgoing transitions.
The existence of y1y2y1 implies the existence of at least one
sequence starting with y2y1. Thus, we may add artificially
all states corresponding to sequences y2y1∗. To simplify this
process, by analysing the collected states, we add a minimal
set of states that complete the transitions: in this example,
we may add only state y2y1y1. We repeat the procedure until
we obtain a non-blocking transition system. �

From here on we assume that the data-driven SA`-CA is
non-blocking. Once we collect N trajectories from (3) and
construct the corresponding data-driven SA`-CA, we lever-
age the scenario theory to provide bounds on the probabilistic
behavioural inclusion between SN` and SΣs

.
Let us sample N i.i.d. initial conditions {x0,i}Ni=1 of

the dynamical system, and consider the resulting H-long
behaviours, denoted by {BH(x0,i)}Ni=1. We define the N
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scenarios {δi}Ni=1 as binary vectors indicating which `-
sequences are included in a single behaviour. Formally,

δi(j) =

{
1 if BH(x0,i) |= ♦y`j ,

0 else ,

for j ∈ {1, ..., |Y|`}. The scenario program results

min
θ∈Θ

1T
|Y|` · θ

s.t. 1T
|Y|`(θ − δi) ≥ 0, i = 1, . . . , N,

(7)

where the search space of θ is defined as Θ := [0, 1]|Y|
`

.
The solution θ∗N in practice indicates which `-sequences
were witnessed in the samples collected; the solution changes
solely when we collect a new value for δi, previously unseen.
The complexity of the solution s∗N is equal to the cardinality
of the smallest subset of the N H-sequences collected that
yield the same solution to θ∗N .
Remark 3. We interpret program (7) as the collection of
labels (the `-sequences of partitions) from a discrete prob-
ability distribution of unknown support size. The scenario
theory provides a bound to the probability of collecting a
new, unseen, label from the unknown distribution. �

Proposition 1. Consider a confidence β, and N trajectories
of length H collected from (3), and the corresponding data-
driven SA`-CA SN` based on the observed `-sequences. For
a new sampled initial condition x0 ∼ P(D) it holds that

PN [P[SΣs �BH
SN` ] ≥ 1− ε(s∗N , N, β) ] ≥ 1− β. (8)

Proof. (Sketch) The scenario theory ensures that the proba-
bility of sampling an x0 that generates an unseen `-sequence,
over time horizon H , is bounded by ε; hence, (8) holds.

C. Role of `

Let us fix N , β, and H and let us sample the set of
trajectories {BH(x0,i)}Ni=1. Consider two different values
`1 < `2 ≤ H , for each solve program (7), and construct
two SA`-CAs, namely SN`1 and SN`2 . We denote by s∗N,`1
and s∗N,`2 the complexity of the respective solutions. It
is possible to show that s∗N,`1 ≤ s∗N,`2 , which implies
ε(s∗N,`1 , N, β) ≤ ε(s∗N,`2 , N, β). On the other hand, we
have BH(SN`2 ) ⊆ BH(SN`1 ). While a natural choice for `
is H , since it generates an abstraction containing only the
behaviours that were sampled, a smaller value for ` allows
us to build an abstraction richer in behaviours (spurious or
not), with tighter PAC guarantees and smaller state set.

IV. INFINITE BEHAVIOURS

Proposition 1 states that we can construct an abstraction
that behaviourally includes the concrete system, with PAC
guarantees, up to the horizon H . Let us now discuss how to
extend the guarantees to infinite horizon properties.

We denote the probability of sampling an initial condition
and thereafter visiting an arbitrary set S within k steps

µk0(S) := P[x0 : Bk(x0) |= ♦S ] = P

[
k⋃
i=0

PreiD(S)

]
, (9)

where

PreiD(S) := {x′ ∈ D | f i(x′) ∈ S, f j(x′) ∈ D, 0 ≤ j ≤ i},

the points in the domain whose trajectory remains within D
for all steps j ≤ i, and the i-th step is within S. We specialize
(9) for arbitrary equivalence classes [y`] as

P[x0 : Bω(x0) |= ♦y` ] = µ∞0 ([y`]) ≥ µk0([y`]), ∀ k,

the probability of sampling an initial state x0 that eventually
leads to witness the trace y` corresponds to the probability
of the equivalence class of y` together with all the sets
eventually leading to it, i.e. the PrekD([y`]). The quantity
µk0([y`]) is a monotonically non-decreasing function with
k: for a small k the probability of sampling y` may be
negligible, for k → ∞, it may reach a large value. Further,
µk0([y`]) describes the accumulated probability of visiting
[y`], and how this changes – due to the system dynamics
– with k. Notice also that if µτ0([y`]) = µτ+1

0 ([y`]) for
some τ ∈ N, it holds that µτ0([y`]) = µ∞0 ([y`]); equivalently
µτ0([y`]) measures the largest set that can ever visit [y`]. The
following assumption pivots on the observations above.

Assumption 1. Given a system (3), assume that a monotoni-
cally non-decreasing function ϕ is known such that for some
k ∈ N and for all sets S corresponding to arbitrary unions of
equivalence classes, S =

⋃
j∈J

[y`j ] with J ⊆ {1, 2, ..., |Y|`},

the following holds

µk0(S) ≥ ϕ(k) · µ∞0 (S). (10)

This trivially implies that

µk0(S) < ε =⇒ µ∞0 (S) < γ := (ϕ(k))−1 · ε.

In practice, Assumption 1 allows to link the probability
measure of visiting any `-sequence’s equivalence class S in k
steps with the probability of visiting it in an infinite number
of steps. Importantly, the function ϕ(k) describes how the
ratio µk0(S)/µ∞0 (S) changes over time, due to the dynamics
of the system. Function ϕ is monotonically non-decreasing,
and either tends to 1 as k → ∞ or attains ϕ(k) = 1 for all
k ≥ τ for some finite τ . Assumption 1 allows us to consider
behaviours of arbitrary length.

Proposition 2. Consider N trajectories of length H col-
lected from (3), the corresponding data-driven SA`-CA SN` ,
and, for a given β, the bound ε := ε(s∗, N, β) resulting from
solving program (7). Let Assumption 1 hold for k = H − `.
Then, for x0 ∼ P(D),

PN [P[SΣs �B SN` ] ≥ 1− γ ] ≥ 1− β, (11)

i.e. with confidence 1 − β, SN` probably behaviourally
includes the model (3) with probability not smaller than 1−γ.

Proof. We denote θ∗N as the optimal solution of the scenario
program and V (θ∗N ) represents the probability of drawing a
new initial condition x0 which results in a H-long behaviour
exhibiting one (or more) previously unseen `-sequence:

V (θ∗N ) := P[x0 : BH(SΣs(x0)) |= ♦y` ∧ y` /∈ XN` ].
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The scenario theory assures that V (θ∗N ) < ε, with confidence
not smaller than 1−β. Let us denote with S̃ the set of unseen
`-sequences ỹ`j , such that Bω(SΣs) exhibits ỹ`j but ỹ`j /∈
XN` ; with W the union of the corresponding equivalence
classes

⋃
ỹ`j∈S̃

[ỹ`j ]. The scenario theory ensures that

V (θ∗N ) = P[BH(x0) |= ♦ỹ`j , ỹ`j ∈ S̃] = µk0 (W) ,

where µk0(·) is the probability measure of all initial condi-
tions x0 ∈ D which exhibit any ỹ`j ∈ S̃ in at most H steps
(recall that k = H − `). Let us apply Assumption 1; then

µ∞0 (W) ≤ 1

ϕ(k)
· µk0 (W) <

1

ϕ(k)
· ε = γ.

It follows that with confidence 1 − β, all unseen sequences
ỹ`j have a total probability measure of being exhibited by an
infinite behaviour upper-bounded by γ, hence the behavioural
relationship holds with PAC bound γ.

One can think of the value ε as a bound on the probability
measure of initialising the system such that an unseen `-
sequence is produced in less than H steps (with confidence
1− β). We then leverage the knowledge of ϕ to extend the
scenario guarantees from the finite to the infinite horizon.

A. Uncertain Affine Stable Systems

Let us consider the class of affine stable systems described
by (3), where both A and xeq are unknown. We introduce
the following proposition as a stepping stone for providing
infinite time guarantees.

Proposition 3 (Finite exit time). Given an affine system

xk+1 = f(xk) = Axk + b, xk, xeq ∈ D ⊂ Rn, (12)

with b := (I −A)xeq, if ||A||2 ≤ α < 1, then for any d > 0
the sets Sd := {x ∈ Rn | |x− xeq|2 ≤ d} and Q ⊆ D \ Sd
satisfy

D ⊆ A−kSd, D ∩A−kQ = ∅

for k ≥ κ(d, d̂, α) :=
⌈
logα

(
d
d̂

)⌉
, where d̂ is an upper

bound on the radius of the smallest ball containing the
domain, i.e. d̂ ≥ inf{r > 0 | |x− xeq|2 > r =⇒ x 6∈ D}.

The proposition exploits the fact that the ball of ra-
dius α−1d is contained in the preimage of the set Sd,
i.e. Sα−id ⊆ f−i(Sd). Further, disjoint sets have disjoint
preimages through the affine map f : Sd ∩ Q = ∅ =⇒
f−i(Sd) ∩ f−i(Q) = ∅ for i ∈ N. These arguments are
easily adapted even if the equilibrium point xeq /∈ D.

We compute the ϕ function exploiting a coarse knowledge
of the dynamics, as bounds on the eigenvalues’ magnitude.

Proposition 4. For systems defined by (3), with 0 < ||A||2 ≤
α < 1, ρ ≥ |det(A−1)| > 1, and x0 ∼ UD, assume there
exists an equivalence class [y∗] containing a ball of radius
ď > 0 around xeq , then we can construct a function ϕ

satisfying Assumption 1 for every k, with

ϕ(k) =


(

1 + ρk−k
∑z(k)−1
i=0 ρ−i(k+1)

)−1

for k ≤ k
1 for k > k

(13)
where: z(k) = d(k+1)/(k+1)e−1, and k = κ(ď, d̂, α) (see
Proposition 3), with d̂ ≥ inf{r > 0 | |x − xeq|2 > r =⇒
x 6∈ D}.

Proof. (Sketch. Please refer to the online more detailed
version of this manuscript [5] for details). By definition of
k̄, and since the dynamics are linear, for any set S ⊆ D:

µk0(S) = µ∞0 (S), (14)

µ0
0(PreD(S)) ≤ ρ · µ0

0(S). (15)

From:
⋃q
i=0 PreiD(Q) =

⋃q−1
i=0 PreiD(Q) ∪

⋃q
i=1 PreiD(Q), it

follows that

µq0(Q) ≤ (1 + ρ) · µq−1
0 (Q).

Let q, k ∈ N+ with q ≥ k and denote by z(k) := d(q +
1)/(k+1)e−1. For any arbitrary set Q the set

⋃q
i=0 PreiD(Q)

can be recast as a union of sets in the form
⋃t+k
i=t PreiD(Q)

which results in:

µq0(Q) ≤
z(k)−1∑
i=0

µ
q−i·(k+1)
q−i(k+1)−k(Q) + µk0(Q),

and thus, by virtue of (15):

µq0(Q) ≤ µk0(Q)

1 + ρq−k
z(k)−1∑
i=0

ρ−i(k+1)

 . (16)

Combining (14) with (16) concludes the proof.

In practical terms, the value k̄ from Proposition 4 ensures
that µk̄0([y`]) = µ∞0 ([y`]) for all [y`]. In other words, the
system reaches a steady behaviour after k̄ steps.
Remark 4. For a discrete-time linear system, the asymptotic
stability condition ||A||2 < 1 implies that the system’s flow
is a contraction map with respect to the Euclidean norm.
Remark 5. The proof above can be adapted for nonlinear
systems as long as the map f(x) in (3) is a contraction (see
Definition 2), and equation (15) holds. The former ensures
that there exists a finite exit time for every set of interest.
The latter bounds the growth of sets, when considering the
inverse dynamics. A contraction that is also a lipeomorphism
satisfies these conditions. This extension is ongoing work.

V. EXPERIMENTAL EVALUATION

Let us consider the linear stable system

xk+1 =
1

3

[
1 2
−1.8 1

]
xk. (17)

The state space D = [−1, 1]2 is partitioned into 81 regions
by a uniform grid. We sample N = 105 initial conditions
x0 from the uniform distribution UD, we collect trajectories
of length H = 9, and we consider ` = 3. We collect
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` β # sequences s∗N ε V̂
3 10−12 33541 17221 0.019 1.4 · 10−3

9 10−12 67099 67099 0.069 5.2 · 10−3

TABLE I
RESULTS WITH 812 PARTITIONS, FOR TWO VALUES OF `.

454 `-sequences and construct the corresponding abstraction.
Setting β = 10−12, we compute the scenario bounds (8),

ε = ε(s∗, β,N) = 3.54 · 10−3.

To verify these bounds empirically, we sample in addition
M = 106 initial conditions, and get an empirical violation
probability V̂ ' 6 · 10−6, a value well below the bounds.
In order to extend the guarantees from horizon H = 9 to
the infinite horizon we employ Assumption 1. We leverage
Proposition 4, and take conservative2 values for the param-
eters, as ρ = 2, α = 0.8, dmax = 1, and dmin = 0.12,
which give k = 10. We compute ϕ using (13), and by setting
k = H − ` = 6, we can upper bound the measure of µ∞0 (S)

µ∞0 (S) = µk0(S) < γ̄ = ϕ(k)
−1 · ε = 6.01 · 10−2.

Our abstraction holds for infinite horizon properties with
PAC guarantees

PN [P[S �B SN` ] ≥ 1− 6.01 · 10−2] ≥ 1− 10−12.

Empirically, after collecting additional M = 106 trajectories,
we obtain V̂ = 2.5 · 10−4, abiding our guarantees.

Finer Partitioning: Consider again system (17), where D
is uniformly partitioned into 812 regions. For this partition
we have k = 20. We sample N = 106 initial conditions
x0 ∼ UD, we collect trajectories of length H = 9, and we
consider `1 = 3 and `2 = H , whose results are reported in
Table I, with the latter needing a domino completion adding
4857 sequences. We highlight the trade off between ` and ε: a
smaller ` provides tighter ε, but the corresponding abstraction
generates more spurious behaviours. Finally, observe that
equation (16) holds generally for any q ≥ k, not only for
q = k: this allows us to relate guarantees for experiments
of different finite horizons. For example, suppose that we
consider the probabilistic behavioural inclusion of S in S`1
until horizon H ′ = 12. Following similar steps as in the
proof of Proposition 2, leveraging (16), we can conclude

PN [P[S �B12 SN3 ] ≥ 1− 0.16] ≥ 1− 10−12.

We verify these bounds numerically by sampling M = 106

trajectories of length H ′ = 12: we obtain V̂ = 1.49 · 10−3.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a method to construct a finite, data-
driven abstraction of an unknown affine deterministic system
under uniform random sampling of a set of initial conditions.
Note that, with little effort, this can be generalised to other
classes of distributions, e.g. piecewise constant. We introduce

2True values are |det(A−1)| = 1.96, ||A||2 = 0.75, and dmin = 0.11.

the notion of probabilistic behavioural inclusion, and use
it to bound the probability of unseen behaviours of the
concrete system. We then build an `-complete automaton
that generates behaviours of the concrete system, based on
trajectories up to time H; under additional assumptions, our
construction holds for infinite time. Future work includes the
extension to control synthesis and stochastic systems.
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