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Abstract— Biomolecular circuit performance depends upon
the reaction rate parameters. Any perturbation in these pa-
rameters can propagate to the output of the system, altering
its performance. A rigorous quantitation of the extent of
such deviations in response to variations in one or more
parameters, especially in nonlinear settings, is generally unclear.
To address this, we developed theoretical frameworks based
on the Banach Contraction Theorem and Interval Analysis.
We used a parametrized version of the Banach Contraction
Theorem to develop a method to bound steady-state variations
in terms of variations in multiple parameters, in the linearized
and in the nonlinear settings. We extended this to propose
a solution to the design problem of obtaining parametric
bounds given steady-state bound specifications. We developed a
complementary method based on Interval Analysis to rigorously
obtain steady-state intervals given parametric intervals. These
methods are illustrated using benchmark biomolecular circuit
examples. These results contribute to the analysis and design
of biomolecular systems in the presence of uncertainties.

I. INTRODUCTION

Determining how the solutions x(t) of

ẋ = f (x,u),x ∈ Rn×1,u ∈ Rm×1, (1)

depend on the parameters u is important for analysis and
design in multiple contexts. For a general nonlinear system,
even the solution at steady-state (ẋ = 0) can change qualita-
tively and quantitatively as the parameters are varied.

For biomolecular systems, where f is a polynomial or ra-
tional function of the states and the parameters, the paramet-
ric dependence of the steady-state, particularly in a qualita-
tive sense, has received much attention. Theoretical methods
have been used to identify constraints on the dynamics that
would guarantee the existence of the number of steady-states
[1], [2], [3], [4] as well as to structurally assess and tightly
bound the ratio between the changes in the output and the
changes in the input at steady-state for specific classes of
systems [5]. Robustness of the steady-state value to bounded
variations in a particular input parameter has also been much
investigated, with mechanisms such as integral feedback
control and incoherent feedforward loops being identified
as mechanisms that can make the steady-state independent
of the input parameter [6], [7], [8]. Numerical simulations
and linearized analyses have served as important methods to
support these studies. These have also underpinned efforts
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to quantitate the variation in the steady-states when one or
more parameters are perturbed [9], [10], [11], [12].

There are at least three striking aspects in obtaining the
parametric dependence of the quantitative variations in the
steady-state. One is the importance of this relation in the
design problem of finding parameter intervals to achieve
given steady-state specifications. Two is the nature of typi-
cal parametric perturbations, where a parameter value may
change relative to a nominal value and multiple parameter
values could change simultaneously. Three is the nonlinearity
that generally characterizes the relations between the param-
eters and the steady-states. Typically, analysis is done for a
linearized system around one of the possibly many steady-
states complemented with a random sampling of parameter
space. A rigorous estimate of the steady-state variations in
response to the variations in multiple parameters would help
address the analysis and design challenges.

Here we aim to develop rigorous quantitative bounds on
the steady-states of the system for bounded multi-parametric
perturbations. We addressed this using methods based on the
Banach Contraction Theorem and Interval Analysis. We used
a parametric version of the Contraction Mapping Theorem
to develop a method to express the steady-state bounds
in terms of the parametric bounds. We linearized around
the steady-state(s) and presented bounds on the deviations
from the steady-state in terms of the deviations around the
parameters. This naturally extends to the design of parametric
bounds for given steady-state bound specifications in the
linear and the nonlinear cases. We developed the Interval
Newton Algorithm to obtain steady-state intervals given the
parametric intervals, and, in the linear case, related these
intervals to each other, offering a complementary perspective
to the above analysis and design problems. These methods
are illustrated on benchmark biomolecular systems with
feedback and feedforward loops, including negative autoreg-
ulation, incoherent feedforward, and positive autoregulation
with multiple steady-states, which also highlight the salient
features of the methods.

II. CONTRACTION-BASED ANALYSIS
A. Background

The Banach Contraction Theorem can be used to obtain
bounds on the parametric dependence of the fixed point of
a contractive mapping.

Lemma 1 ([13]): Given a complete metric space (X ,dX )
and a metric space (U,dU ), let T : X×U → X be
• uniformly contracting in its first argument, that

is, uniformly Lipschitz in its first argument,
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dX (T (x,u),T (y,u)) ≤ lX dX (x,y) for all x,y ∈ X
and u ∈U , with 0 < lX < 1, and

• uniformly Lipschitz in its second argument,
dX (T (x,u),T (x,v)) ≤ lU dU (u,v) for all x ∈ X and
u,v ∈U , with lU > 0.

Then the solution x∗ : U→ X to the parametrized fixed point
problem

x = T (x,u) (2)

exists and is Lipschitz with constant lU (1− lX )−1, that is:

dX (x∗(u),x∗(v))≤
lU

1− lX
dU (u,v) for all u,v ∈U. (3)

For continuously differentiable mappings, the Lipschitz
constant can be obtained by taking the supremum of the
norm of the derivative mapping [14].

B. Results

Method: We combined these in the following method
to obtain quantitative bounds on the steady-state of (1) to
variations in the parameters,

Step 1: Define the parametrized fixed point problem
T (x,u) = x+C f (x,u), where C 6= 0. If C ≡ f−1

x ,
where fx =

∂ f
∂x , then this is the Newton’s method.

Step 2: Compute the Lipschitz constants lX and lU .
Choose C to ensure that lX < 1.

Step 3: Apply Lemma 1 to obtain the bounds.
The following theorem gives a sufficient condition for the

existence of such a C.
Theorem 1: If det( fx) 6= 0, a C can be found such that

lX = ‖I +C fx‖< 1.
Proof: Set I +C fx = A where A ∈ Rn×n such that

‖A‖< 1 (for example, I/2). Then C = (A− I) f−1
x is a unique

solution that exists when det( fx) 6= 0.
Remark 1: If det( fx) = 0, then a (minimum norm) solu-

tion for the underdetermined equations may be found for
n > 1.

Linear Analysis: A linearization around a steady-state x∗

of (1) may be used to perform a linear analysis. Assuming
that the steady-state has been calculated for a default pa-
rameter set u∗, the linearization gives a relation between the
deviation in the states around the steady-state ∆x= x−x∗ and
the deviation in the parameters around their default values
∆u = u−u∗,

fx∗∆x+ fu∗∆u = 0, (4)

where fu = ∂ f
∂u . Assuming f−1

x∗ exists, this implies ∆x =
− f−1

x∗ fu∗∆u and

‖∆x‖X ≤
∥∥∥ f−1

x∗ fu∗

∥∥∥
U→X
‖∆u‖U , (5)

where ‖ ·‖X and ‖ ·‖U are vector norms, and ‖ ·‖U→X is the
induced matrix norm.

Remark 2: The form of the bound (5) is the same as that
obtained by applying the above method to (4).

Proof: Let T (∆x,∆u)=∆x+C( fx∆x+ fu∆u). Then lX =
‖I +C fx‖ and lU = ‖C fu‖. If det( fx) 6= 0, choose C = (A−
I) f−1

x , where A = I/2⇒ lX = 1/2 < 1 and lU = ‖ f−1
x fu‖/2.

Application of (3) gives (5).

The bound obtained from the linearized analysis is com-
puted using the value of the point of linearization and is valid
locally. The bound obtained from the contraction analysis is
computed over a larger domain and is more general.

Linear Design: The linearization in (4) naturally provides
a way to obtain the bounds on the allowed parameter vari-
ations given the specified bounds on steady-state variations
through the rearrangement,

fu∗∆u =− fx∗∆x. (6)

The solution of (6) depends on the relation between the
number of parameters (m) and the number of states (n).
Typically m > n, and the least squares solution to the
underdetermined system, using the right pseudo-inverse [15],
can be used to obtain a design solution.

Design: A method for the nonlinear design problem may
be similarly obtained from the above method by interchang-
ing the roles of the states and the parameters. If n = m, then
the same steps apply. If m > n, as is typically the case, then
a solution may be obtained as in the underdetermined case.
The bound is

dU (u∗(x),u∗(y))≤
lX

1− lU
dX (x,y), (7)

where x,y ∈ X∗, the desired steady-state space, and lU =
‖A‖, lX = ‖C fx‖,C = (A− I) f T

u ( fu f T
u )−1,‖A‖< 1.

III. INTERVAL-BASED ANALYSIS

A. Background

The theoretical framework developed above exploits the
contraction in a suitably defined fixed point problem to map
the variations in the parameters to the variations in the
steady-states, and vice-versa for design. The resulting bounds
are essentially relations between intervals of possible values
of the steady-states and the parameters. Next, we developed a
complementary framework, based on Interval Analysis [16],
that emphasizes the interval nature of the steady-states and
the parameters in obtaining the bounds.

Interval methods are a family of set-based methods that
offer a complementary perspective to point-based methods
with many applications such as approximating the range of
functions and solving equations, both linear and nonlinear,
as well as several conceptual advantages such as theoretical
constructions and validated numerical computations [17].

We briefly summarize the basics in a real-valued set-
ting. Points in R generalize to intervals, IR = {[a,a] : a ≤
a;a,a ∈ R}. For an element A = [a,a] ∈ IR, the radius and
midpoint are defined as rad(A) = (a− a)/2 and mid(A) =
(a+ a)/2, respectively. Arithmetic is defined based on the
endpoints A + B = [a + b,a + b], A − B = [a − b,a − b],
A× B = [min{ab,ab,ab,ab},max{ab,ab,ab,ab}], A÷ B =
A× [1/b,1/b], if 0 /∈ B. For division by intervals containing
0, an extended version of interval arithmetic can be used.

The next step in interval analysis is the notion of functions
over interval variables. A natural extension is one where each
instance of a real variable x is replaced by an interval X .
Briefly, interval extensions of standard functions are defined
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and these are used to obtain interval versions of functions
that are combinations of the standard functions. Typically, the
arithmetic defined above leads to the issue of overestimation,
called interval dependency. For example, if g(x) = x2 and
X = [−1,2], then the natural interval extension G(X) = X×
X = [−2,4] whereas a sharper range enclosure is [0,4].

We state three key elements of Interval Analysis that are
useful in addressing our problem. The first element relates to
the approximation of the range of function R(g;X) = {g(X) :
x ∈ X}} as tightly as needed by subdividing the domain X.

Theorem 2 ([17]): Consider a real-valued function g
whose subexpressions are all Lipschitz and let G be an
interval extension of g that is well-defined for some interval
X in the domain of g. Then there exists a positive real
number K, depending on G and X , such that, if X =∪k

i=1X (i),
then R(g;X)⊆∪k

i=1G(X (i))⊆G(X) and rad(∪k
i=1G(X (i)))≤

rad(R(g;X))+K maxi=1,...,k rad(X (i)).
The second element relates to bounding solutions of a

linear system of equations.
Theorem 3 (Oettli & Prager, [18]): Let A ∈ IRm×n, b ∈

IRm×1. The solution set Σ(A,b) = {z ∈ Rn×1|Ãz =
b̃ for some Ã ∈ A, b̃ ∈ b} satisfies

z ∈ Σ(A,b)⇔ |mid(A)z−mid(b)| ≤ rad(A)|z|+ rad(b). (8)
The third element relates to finding the zeroes of functions.

Interval Analysis offers a generalization of the Newton
method to find the zeroes of a function [17]. The interval
Newton operator is defined as

N(X) = mid(X)− g(mid(X))

Gx(X)
, (9)

where g is a real-valued continuously differentiable function
with a zero x∗ ∈ X , Gx is an interval extension of the
derivative of g with 0 /∈ Gx(X). Starting with an initial
enclosure X0 of x∗, a sequence of intervals are obtained,

Xk+1 = N(Xk)∩Xk, for k = 0,1,2, . . . . (10)

The following summarizes the properties of this iteration.
Theorem 4 (Interval Newton Method, [17]): Assume that

N(X0) is well-defined. If X0 contains a zero x∗ of g, then so
do all iterates Xk, k ∈ N. Furthermore, the intervals Xk form
a nested sequence converging to x∗.

The assumption that N(X0) is well-defined includes the
condition that 0 /∈ Gx(X).

B. Results

Method: In our problem, the steady-state depends on the
parameters and the parameters are in intervals, u∈U . There-
fore, we extended Theorem 4 to the case where the function
depends on the parameters. We considered a modification of
the operator in (9) to find the steady-states of (1),

N(X ,U) = mid(X)− F([mid(X),mid(X)],U)

Fx(X ,U)
, (11)

where F and Fx are the interval extensions of f and fx,
respectively.

Some properties of this modified operator are summarized
in the following theorem. For simplicity, we restricted to the
real-valued setting.

Theorem 5: If X0 contains an interval of zeroes X∗ =
x∗(U) of f , then so do all iterates Xk, k ∈ N. Furthermore,
the intervals Xk form a nested sequence that contain X∗.

Proof: The proof follows, with some modifications, the
proof of Theorem 4 [17]. X∗ ⊆ X0⇒ X∗ ⊆ Xk for all k ∈ N
by mathematical induction. The intervals Xk form a nested
sequence and contain X∗ from the definition (10).

Unlike in Theorem 4, the intervals Xk in Theorem 5 do
not converge to the interval X∗. This can be shown by means
of a counterexample. Consider f (x, [α,γ]) = α− γx, where
α ∈ [100,300] and γ ∈ [1,3]. For an initial interval X0 =
[0,800], Xk = [0,366.667],k ∈ N. This does not converge to
the desired X∗ = [100/3,300] even though it is a rigorous
bound, X∗ ⊂ Xk, k ∈ N.

The main challenge here is the overestimation in the
calculation of N(X ,U) in (11) due to interval dependency. In
order to obtain tighter bounds, we subdivided the parameter
intervals. We proved that the solution set can be approxi-
mated as tightly as needed by this subdivision.

Theorem 6: Assume that f and fx are continuously
differentiable. For the subdivision U = ∪m

i=1Ui, the
solution set X∗(U) = {x∗ : f (x∗,u) = 0 for some u ∈ U}
satisfies X∗(U) ⊆ ∪m

i=1 limk→∞ Xk(Ui) ⊆ limk→∞ Xk(U)
and rad(

⋃m
i=1 limk→∞ Xk(Ui)) ≤ rad(X∗(U)) +

K maxi=1...m rad(Ui), where K is a positive real number.
Proof: For k ∈N, the set Rk(U) = {x : x∈ Xk([u,u]),u∈

U} satisfies Rk(U) = Rk(
⋃m

i=1 Ui) =
⋃m

i=1 Rk(Ui) ⊆⋃m
i=1 Xk(Ui) ⊆ Xk(

⋃m
i=1 Ui) = Xk(U) by the inclusion

principle. Taking the limit and using Theorem 4 proves the
first part.

We used Theorem 2 on the operator in (11) to show
that rad(

⋃m
i=1 X1(Ui)) ≤ rad(R1(U)) + K1 maxi=1...m rad(Ui).

An inductive argument extends this to rad(
⋃m

i=1 Xk(Ui)) ≤
rad(Rk(U))+Kk maxi=1...m rad(Ui), where k ∈ N. A limit of
this expression proves the second part.

Based on these modified results, we formulated the fol-
lowing method to obtain bounds on the steady-state when
the parameters are in given intervals,

Step 1: Choose initial enclosure X0 that contains the
steady-state.

Step 2: Iterate as per (10) and (11). Use subdivision.
Step 3: End iteration as per a stopping criteria, such as on

rad(Xk), if required.
We note that the existence of such an X0 is typically

guaranteed by the bounded nature of the systems under
consideration. Conceptually, the subdivision in the interval
framework provides a seamless and rigorous link to lineariza-
tion.

If 0 ∈ Fx(X ,U), the extended arithmetic needs to be used
together with bisection. This is important in situations with
multiple steady-states that are pervasive in biomolecular sys-
tems. Division by a signed zero in (11) leads to two disjoint
intervals, each of which can be processed separately in the
spirit of the bisection method. Another layer of standard
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bisection at the mid-point of X is needed when 0 ∈ Fx(X ,U)
and 0 ∈ F([mid(X),mid(X)],U). We incorporated these in
Step 2 above.

Linear Analysis: In the linearized setting, (4) is an interval
linear equation,

Fx∗∆X =−Fu∗∆U, (12)

where, ∆X and ∆U are interval vectors, and Fx∗ and Fu∗
are interval extensions of fx∗ and fu∗, respectively. Equation
(8) can be directly used to obtain bounds on ∆X given the
parameter intervals ∆U .

Linear Design: In a similar fashion, using (8), given the
desired steady-state intervals, the positions of the states and
parameters in (12) can be interchanged to obtain the allowed
parameter intervals.

IV. EXAMPLES

The utility of the above methods is demonstrated using
benchmark biomolecular system examples [6], [7]. These
case studies also serve to highlight important features of the
methods.

Example 1 (Open loop): The open loop model is a standard
model to represent the constant production of a protein and
its degradation through a first-order process. Here, f (x,u) =
α− γx, with the state x ∈ R and u = [α,γ]T ∈ R2×1.

The linear analysis in (5) gives the variation |∆x| ≤
‖[ 1

γ∗ ,
−x∗
γ∗ ]‖‖∆u‖ around a steady-state x∗ for default pa-

rameters [α∗,γ∗]T . For the nonlinear analysis in (3), we
set T (x,u) = x+ c(α − γx). For c = 1

2γ
, lX = 1

2 and lU =

sup‖ [1,−x]
2γ
‖, where the supremum is over the parameter

space α ∈ [α,α],γ ∈ [γ,γ]. The bound is lU (1− lX )−1 =

sup‖ [1,−x]
γ
‖. The expression coincides with the one obtained

with the linearization, although it is valid over the entire
parameter space.

For the design problem in the linearized setting
(6) ⇒ [1,−x∗][∆α,∆γ]T = γ∗∆x, which is an
underdetermined system of equations. A solution is
[∆α,∆γ]T = [ x∗

1+(x∗)2 ,
−1

1+(x∗)2 ]
T γ∗

x∗ ∆x ⇒ ‖[∆α,∆γ]T‖ ≤
‖[ 1

1+(x∗)2 ,
−x∗

1+(x∗)2 ]
T‖γ∗|∆x|. The design problem in

the nonlinear setting (7) also has the same form
lX (1 − lU )−1 = sup‖[ 1

1+x2 ,
−x

1+x2 ]
T γ‖,x ∈ X∗ where we

chose C = [−1,x]T

2(1+x2)
.

In the Interval Analysis approach, we directly considered
the parameter space α ∈ [α,α],γ ∈ [γ,γ]. The natural interval
extensions are F(X ,U) = [α,α]− [γ,γ]X and Fx(X ,U) =
−[γ,γ]. For X0 = [0,x0], we carried out the iteration in (11).
The convergence of this iteration depended on a proper
choice of x0. Typically, a large enough value of x0 is
justifiable because of the bounded nature of these systems.
A rigorous bound for the steady-state is obtained as [33.05,
300] (Fig.1), which is quite close to the analytically expected
value of [100/3, 300]. To make the bound tighter, the
parameter intervals can be further subdivided.

The Contraction Analysis above gives a bound where the
maximum radius of the steady-state interval is 30100, which
is quite conservative relative to the bounds obtained from the
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Fig. 1. Steady-state bounds. Parameters for open loop: α ∈ [100,300],
γ ∈ [1,3], m = 10 subdivisions. Additional parameters for negative au-
toregulation: K ∈ [20/3,15] , m = 5. Additional parameters for positive
autoregulation: K = 10, n = 10 , m = 10.

Interval Analysis. The conservativeness originates from the
determination of the Lipschitz constants using the supremum
of the first derivative, which can increase as the parameter
ranges increase, as well as the form of the contraction used.
For a smaller parameter range of 0.1% around the nominal
values, the maximum radius of the steady-state interval for
the Contraction Analysis is 10.13. The corresponding interval
is [89.87,110.13], which is close to [99.80,100.20], the
steady-state interval from Interval Analysis.

For the linearized versions, the steady-state for de-
fault parameters needs to be calculated, for example, us-
ing the standard Interval Newton Algorithm. The inter-
val of variation of steady-states for given variations in
the parameters satisfies |mid(γ)∆x − mid(∆α − x∗∆γ)| ≤
rad(γ)|∆x|+rad(∆α−x∗∆γ). Complementarily, if the desired
bounds on the steady-state are known, allowed parame-
ter intervals satisfy |mid([1,−x∗])[∆α,∆γ]T −mid(γ∗∆x)| ≤
rad([1,−x∗][|∆α|, |∆γ|]T )+ rad(γ∗∆x).

Example 2 (Negative Autoregulation): The negative au-
toregulation model is another standard model, in which a
negative feedback on the expression of a protein is im-
plemented by the repression of its own production. Here,
f (x,u) = α

1+x/K − γx, with state x ∈ R and u = [α,γ,K]T ∈
R3×1.

The linear analysis (5) gives the variation |∆x| =∥∥∥ [ K∗
x∗+K∗ −x∗ α∗x∗

(x∗+K∗)2
]

α∗K∗
(x∗+K∗)2

+γ∗

∥∥∥‖∆u‖ around a steady-state x∗ for the

default parameters [α∗,γ∗,K∗]T . For the nonlinear analysis
in (3), we set T (x,u) = x + c( α

1+ x
K
− γx). For c = (2(γ +

αK
(x+K)2 ))

−1, lX = 1/2 and lU = sup‖c
[ K

x+K −x αx
(x+K)2

]
‖, where

the supremum is over the parameter space α ∈ [α,α],γ ∈
[γ,γ],K ∈ [K,K]. The bound is lU (1− lX )−1.

For the design problem in the linearized setting, (6)
may be solved using the right pseudo-inverse to ob-
tain a bound on the parametric variations given the
bounds on the steady-state specifications, ‖[∆α,∆γ,∆K]T‖ ≤
‖ λ ∗

σ∗ [
K∗

x∗+K∗ ,−x∗, α∗x∗
(x∗+K∗)2 ]

T‖|∆x|, where λ = αK
(x+K)2 + γ and
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σ = ( K
x+K )

2 + x2 + ( αx
(x+K)2 )

2. The design problem in the
nonlinear setting (7) also has the same form lX (1− lU )−1 =
sup‖ λ

σ
[ K

x+K ,−x, αx
(x+K)2 ]

T‖,x ∈ X∗ where we chose C =
1

2σ
[ −K

x+K ,x,
−αx

(x+K)2 ]
T .

We implemented the modified Interval Newton Approach
to obtain steady-state bounds [10.99,60.94] (Fig.1), as in the
example above. The linear analysis and design inequalities
are

∣∣mid(Fx∗)∆X−mid(−FT
u∗∆U)

∣∣ ≤ rad(Fx∗)|∆X | +
rad(−FT

u∗∆U) and
∣∣mid(FT

u∗)∆U−mid(−Fx∗∆X)
∣∣ ≤

rad(FT
u∗)|∆U | + rad(−Fx∗∆X), respectively. For the same

parameter ranges, the linear analysis gives the steady-state
interval as [−71.93,88.73], where the steady-state for the
linear analysis was calculated from the standard Interval
Newton algorithm. This is expected as the linear analysis
would be valid only locally. For a 10% variation around the
nominal parameters the linear and nonlinear analyses give
the steady-state intervals as [21.31,32.71] and [22.95,31.62],
respectively, which are closer to each other.

To assess the conservativeness of the bounds, we per-
formed a numerical comparison with a random sampling of
the parameter space. The parameters were sampled uniformly
(N = 106) and this sampling was repeated M = 103 times.
The mean and standard deviation of the upper and lower
bounds were 59.54± 0.16 and 12.06± 0.04, respectively.
These compare favourably with the bound [10.99, 60.94]
obtained from the Interval Analysis (Fig. 1).

Motivated by the Interval Analysis approach, we investi-
gated the steady-state bound for the case of perturbations due
to temperature changes, which typically result in bounded
changes in all parameters. For perturbations due to tempera-
ture changes, it is customary to quantitate the bounds using a
temperature co-efficient Qy, which is the ratio of the values
of y(T ) ten degrees apart, Qy = y(T + 10)/y(T ) [9]. The
following gives Qx∗ for the negative autoregulation example.

Proposition 1: If Qα = [2,3], Qγ = [2,3], and QK =
[2/3,3/2], then Qx∗ = [2/3,3/2].

Proof: The steady-state is a solution to α

1+x/K − γx =

0⇒ x2 +Kx−K α

γ
= 0⇒ x2 +K0QKx−K0QK

α0Qα

γ0Qγ
= 0. We

note that QK = [2/3,3/2] = Qα/Qγ . Therefore, the equation
is x2+K0x[ 2

3 ,
3
2 ]−K0

α0
γ0
[ 2

3 ,
3
2 ]

2 = 0. We set x = y[2/3,3/2]⇒
(y2+K0y−K0

α0
γ0
)[ 2

3 ,
3
2 ]

2 = 0. So, solution of y only depended
on α0, γ0, and K0 and Qx∗ = [2/3,3/2].

Remark 3: A direct computation can be used to show that
Qx∗ for the open loop example is [2/3,3/2] when Qα = [2,3]
and Qγ = [2,3].

Example 3 (Positive Autoregulation): The positive autoreg-
ulation model is another standard model, in which a positive
feedback on the expression of a protein is implemented
by the activation of its own production. Here, f (x,u) =
α

x
x+K − γx, with x ∈ R and u = [α,γ,K]T ∈ R3×1. Often,

co-operativity is included in the model in terms of a Hill co-
efficient n in the activation function, f (x,u) = α

xn

xn+Kn − γx.
The condition n > 1 is useful in the analysis and design
of systems with multiple steady-states. In case there are
multiple steady-states, the analysis and design methods based
on linearization may be performed by linearizing about one

of the steady-states. For simplicity, we presented the analysis
and design methods for a fixed value of n.

The linear analysis (5) gives the variation |∆x| =∥∥∥
[

(x∗)n
(x∗)n+(K∗)n −x∗ − α∗(x∗)nn(K∗)n−1

((x∗)n+(K∗)n)2

]
−α∗(K∗)nn(x∗)n−1

((x∗)n+(K∗)n)2
+γ∗

∥∥∥‖∆u‖ around a steady-state

x∗ for the default parameters [α∗,γ∗,K∗]T . The nonlinear
analysis (3) is performed with T (x,u) = x + c(α xn

xn+Kn −
γx). For c = (2(γ − αKnnxn−1

(xn+Kn)2 ))
−1, lX = 1/2 and lU =

sup‖c
[

xn
xn+Kn −x − αxnnKn−1

(xn+Kn)2

]
‖, where the supremum is over the

parameter space α ∈ [α,α],γ ∈ [γ,γ],K ∈ [K,K]. The bound
is lU (1− lX )−1. Care needs to be exercised in the supremum
to exclude the region where fx = 0.

For the design problem in the linearized setting, (6) may
be solved using the right pseudo-inverse, ‖[∆α,∆γ,∆K]T‖ ≤
‖ λ ∗

σ∗ [
(x∗)n

(x∗)n+(K∗)n ,−x∗, −α∗(x∗)nn(K∗)n−1

((x∗)n+(K∗)n)2 ]T‖|∆x|, where λ = γ −
αKnnxn−1

(xn+Kn)2 and σ = ( xn

xn+Kn )2 + x2 + (αxnnKn−1

(xn+Kn)2 )
2. The design

problem in the nonlinear setting (7) also has the same form
lX (1− lU )−1 = sup‖ λ

σ
[ (x)n

(x)n+(K)n ,−x, −α(x)nn(K)n−1

((x)n+(K)n)2 ]T‖,x ∈ X∗

where we choose C = 1
2σ

[ −xn

xn+Kn ,x, −αxnnKn−1

(xn+Kn)2 ]T .
The modified Interval Newton Algorithm naturally over-

comes the limitation imposed by fx = 0 to obtain the rigorous
bounds for each of the steady-states (Fig. 1). This highlights
the importance of the interval-based method in such situa-
tions. The linear analysis and design versions are similar to
the above examples. We also note that an identical result to
Proposition 1 may be obtained for this example.

Example 4 (Incoherent Feedforward Loop): The Incoher-
ent Feedforward Loop model is a benchmark for a variety of
phenomena such as pulse generation, fold-change detection
and adaptation. A simple version of an Incoherent Feedfor-
ward Loop model has f (x,u) = [ f1(x,u), f2(x,u]T = [α −
γx1,

α

1+x1/K − γx2]
T with the state x = [x1,x2]

T ∈ R2×1 and
the parameters u = [α,γ,K]T ∈ R3×1. The input is lumped
with the parameter α in this model.

The bounds from the linearized analysis (5) are, ‖∆x‖ ≤
‖− f−1

x fu‖‖∆u‖ where, fx =

[
−γ∗ 0

− α∗K∗
(x∗1+K∗)2

−γ∗

]
and fu =[

1 −x∗1 0

K∗
x∗1+K∗ −x∗2

α∗x∗1
(x∗1+K∗)2

]
. For the nonlinear analysis (3), we set

T (x,u) = [x1,x2]
T +C[α−γx1,

α

1+ x1
K
−γx2]

T . For C = −1
2 f−1

x ,

lX = 1/2 and lU = sup‖C fu‖. The bound is lU (1− lX )−1 =
‖ f−1

x fu‖. For the linearized design problem, (6) may be
solved using the right pseudo-inverse, ‖[∆α,∆γ,∆K]T‖ ≤
‖− f †

u∗ fx∗‖|∆x|, where f †
u = f T

u ( fu f T
u )−1. The design problem

in the nonlinear setting (7) also has the same form lX (1−
lU )−1 = sup‖− f †

u fx‖,x ∈ X∗ where we chose C = (−I/2) f †
u .

Interval Analysis can also be used to obtain the bounds (Fig.
2). The linear analysis and design inequalities are similar to
the above examples.

V. CONCLUSION

Quantifying the extent of variation in the steady-states of
biomolecular circuits in response to parametric perturbations
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Figure 3

Incoherent Feedforward Loop
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Fig. 2. Steady-state bounds. Parameters for incoherent feedforward loop:
α ∈ [200,300], γ ∈ [2,3], K ∈ [20/3,15], m = 100 subdivisions.

is challenging. We developed a method based on the Con-
traction Mapping Theorem to compute rigorous steady-state
bounds for given changes in the parameters. We linearized
at a steady-state and computed bounds on the local steady-
state variations for local parametric variations, finding the
same form as those obtained by the nonlinear method.
These naturally extend to the design problem of bounding
parameters for given steady-state bound specifications. We
also developed a complementary method based on Interval
Analysis, to incorporate the parametric uncertainties directly
in the above analyses and linear design. These methods are
illustrated on benchmark examples.

Based on the theoretical results and the examples pre-
sented here, we found the nonlinear analysis using the
interval method to be the most useful. This is strikingly
observed in Example 3 where this method could capture
multiple steady-states and their intervals. This is a direct con-
sequence of computing using intervals and of the bounded
nature of the problem. Further, the bounds computed using
Interval Analysis can be as tight as needed. The Contraction
Analysis is also rigorous, but its bounds necessarily depend
on the contraction used and can be conservative due to the
determination of the Lipschitz constant from the supremum
of a first derivative, with a larger domain over which the
supremum is obtained enhancing the conservativeness. It is
interesting to note that the contraction framework is general,
with the Newton’s method also a form of a contraction.
However, in the point-wise sense, the Newton’s method
does not simultaneously capture all the steady-states, as in
Example 3, where the Jacobian is singular. Linear analysis
approximates the nonlinear analysis and is contingent on an
a priori identification of the point of linearization, possibly
through other nonlinear methods. However, due to its relative
simplicity, linear analysis may be useful in an initial study
and in cases where only local analysis is desired.

The method of BDC decomposition can also provide tight
bounds for the ratio of the change in steady-state value to
the change in the input parameter values for certain classes

of systems that satisfy assumptions such as non-singularity
of the Jacobian and monotonicity [5]. For Example 1, we
found these bounds to be [1,−x]

γ
= [[1/3,1], [−300,−100/9]],

where the value of steady-state was calculated directly. The
similarity in the expression with an intermediate step in
the Contraction Analysis was noteworthy. Based on these
expressions, we conjectured that the BDC decomposition
could be considered as a form of Contraction Analysis
where Lemma 1 is applied to each parameter individually.
Exploring the connection between these methods would be
an interesting subject for future study.
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