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Abstract— In this article the solvability analysis of discrete-
time nonlinear singular switched systems with restricted switch-
ing signals is studied. We provide necessary and sufficient
conditions for the solvability analysis under fixed switching
signals and fixed mode sequences. The so-called surrogate
systems (ordinary systems that have the equivalent behavior
to the original switched systems) are introduced for solvable
switched systems. Incremental stability, which ensures that all
solution trajectories converge with each other, is then studied
by utilizing these surrogate systems. Sufficient (and necessary)
conditions are provided for this stability analysis using single
and switched Lyapunov function approaches.

I. INTRODUCTION

Singular systems can describe the behavior of many phys-
ical systems such as electrical circuits [1], [2], industrial
processes [3], constrained mechanical systems [4], robotics
[5], [6], economic systems [7], and neural networks [8],
among others. In literature, this system class has appeared
under many different names, e.g. systems with algebraic
constraints [9], descriptor systems [10], semi-state systems
[11], implicit systems [12], or difference-algebraic equations
[13], [14], [15].

In the present letter, we consider a class of switched sys-
tems where each mode is a discrete-time nonlinear singular
system of the form

Eσ(k)x(k + 1) = Fσ(k)(x(k)) (1)

where k ∈ Z≥0 is the time instant, x(k) ∈ Rn is the state,
σ : Z≥0 → {0, 1, 2, ..., p} =: P is the switching signal
determining which mode σ(k) is active at time instant k;
for each i ∈ P, Fi : Rn → Rn is some nonlinearity and
Ei ∈ Rn×n is singular. We refer to the pair (Ei, Fi) as
mode i.

We consider switching signals of the following form (see
also Fig. 1)

σ(k) = σj if k ∈ [ksj , k
s
j+1), j ∈ {0, 1, 2, ...}, (2)

where ksj ∈ Z≥0 denotes the switching time with ks0 = 0
and σj ∈ {0, 1, ..., p}. In this study, we assume that we
either know the switching signal completely (we know the
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switching times (ksj )j∈N and the mode sequence (σj)j∈N)
or just the mode sequence (σj)j∈N (the switching times are
unknown/arbitrary); the former is called a fixed switching
signal whereas the latter is called a fixed mode sequence.
In contrast to considering arbitrary switching signals, we
therefore only consider a subclass of switching signals or,
in other words, restricted switching signals.
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σ1 σj

0 ks1 − 1 ks1 ks2 − 1 ksj ksj+1 − 1

Fig. 1: Mode sequence (2)

If Ei are nonsingular i.e. system (1) being an ordinary
system, no further assumption on Fi is needed for ensuring
solvability with any initial value. However, if Ei for some
i is singular, the unique solvability is not guaranteed; this
is a well-known challenge in nonlinear singular systems,
see e.g. [16] and [17, Example 1.1]. Studies about the
solvability of system (1) have been extensively carried out;
however, in existing studies, the system has a linear term,
and the nonlinear term was considered only as a disturbance-
like term, and it is assumed that the solvability theory for
linear systems can still be applied (see e.g. [18], [19]). A
preliminary study with Fi considered as part of the state’s
dynamics is available in [17] under a strong assumption
of solvability for arbitrary switching signal. However, the
solvability condition under arbitrary switching signals is not
necessary for a particular (fixed) switching signal which has
already arisen in singular linear switched systems [20]. We
fill this gap in this paper by studying the solvability of system
(1) under restricted switching signals, which is our first main
contribution.

As our second main contribution we present the incremen-
tal stability analysis of (1); this stability notion has recently
been studied in the literature that extends the classical notion
of stability of an equilibrium point. Generally speaking, this
stability notion is related to the asymptotic convergence
behavior of the solutions to each other or to a particular
steady-state trajectory [21]. In literature, incremental stability
has been extensively studied in both continuous and discrete-
time domains, see e.g. [22], [23], [24], [25], [26] and
references therein. However, the existing studies that deal
with systems in the discrete-time domain lack incremental
stability analysis for singular nonlinear (switched) systems.
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As a summary, solvability theory for system (1) is studied
in this paper under restricted switching signals. Two types of
restricted switching signals are considered: fixed switching
signals and fixed mode sequences. For solvable systems,
we are able to establish surrogate systems, i.e. ordinary
systems that have equivalent behavior to the original singular
systems. Moreover, by utilizing these surrogate systems,
stability analysis is studied in terms of incremental stability.

II. PRELIMINARIES

A. (Nonswitched) Nonlinear Singular Systems

To make the paper self-contained, we revisit in this section
the solution theory of the nonswitched case of system (1),
i.e. of the (nonswitched) Nonlinear Singular System (NSS)

Ex(k + 1) = F (x(k)), k = 0, 1, ... (3)

where E is singular with rankE = r < n. We will make the
following assumption for (3) (and later also for each mode
of (1)):

Assumption 2.1: The set S := {x ∈ Rn : F (x) ∈ imE}
of (3) is a (linear) subspace in Rn.

We call (3) locally uniquely solvable (for short just
solvable) if, for all k ∈ Z≥0 and for all x0 ∈ S there
exists a unique solution on [0, k] of (3) considered on [0, k]
with x(0) = x0. It has been pointed out in [17] that
system (3) is solvable if, and only if T ⊆ S ⊕ kerE
where T = { E+F (ς) | ς ∈ S } and E+ is a generalized
inverse1 of E. Furthermore, if solvable, its solution at any
k ∈ Z≥0 = {0, 1, ...} with x(0) = x0 ∈ S satisfies

x(k + 1) = ΠkerE
S E+F (x(k)) =: Φ(x(k)) (4)

where ΠkerE
S is the canonical projector from S ⊕ kerE to

S (see e.g. [28] for technical details). In other words, any
solution of (4) with x(0) ∈ S also solves (3). We call (4)
the surrogate (ordinary) system of (3).

Remark 2.2: The set S is a positively invariant set of the
solvable NSSs (3), i.e. x(k) ∈ S for all k ∈ Z≥0. This is a
direct consequence of the solvability in which a solution at
any time instant k, x(k), satisfies Eξ = F (x(k)) for some
ξ ∈ Rn, i.e. x(k) ∈ S.

By utilizing the surrogate ordinary system (4), we study
the incremental stability of the NSS (3) in the following
subsection.

B. Incremental Stability

Let x(k;x0) denote the solution of (3) via (4) at time
instant k ∈ Z≥0 with the initial condition x(0) = x0 ∈
S. Throughout the paper, we use the standard notations for
function classes2 K,L,K∞, and KL, see e.g. [29]. Moreover,

1A generalized inverse of M ∈ Rm×n is a matrix M+ ∈ Rn×m that
satisfies MM+M = M [27].

2A function α : R≥0 → R≥0 belongs to class-K if it is continuous,
zero at zero, and strictly increasing. If it is also unbounded, then α belongs
to class-K∞. Meanwhile, a function β : R≥0 → R≥0 belongs to class-L
if it is continuous, strictly decreasing, and limt→∞ β(t) = 0. A function
γ : R≥0 × R≥0 → R≥0 belongs to class-KL if it belongs to class-K in
its first argument and class-L in its second argument.

the norm || · || stands for the standard Euclidean norm, and
R≥0 denotes the set of all nonnegative real numbers.

Definition 2.3 (c.f. Def. 1 in [21]): The NSS (3) is called
asymptotically incrementally stable on a positively invariant
X ⊆ S ⊊ Rn if there exists β ∈ KL such that

||x(k;x′
0)− x(k;x′′

0)|| ≤ β(||x′
0 − x′′

0 ||, k) (5)

for all x′
0, x

′′
0 ∈ X , k ∈ Z≥0 and where x(k;x0) denotes the

solution of (3) with initial values x0.
Compared to existing definitions such as [21, Definition 1],

which is also defined globally on Rn, our definition above is
only considered on the subspace S which is a strict subspace
of Rn for any solvable NSS (3) with singular E (because
S ∩kerE = {0} is necessary for solvability). The following
proposition provides a sufficient and necessary condition for
incremental stability, which is inspired by the condition for
ordinary nonlinear systems.

Proposition 2.4: Consider the NSS (3) under Assumption
2.1 via its surrogate system (4). Then, this system is asymp-
totically incrementally stable on S if, and only if, there exist
a continuous function V : S × S → R≥0 and functions
α1, α2 ∈ K∞, α3 : R≥0 → R≥0 such that

α1(||x′ − x′′||) ≤ V (x′, x′′) ≤ α2(||x′ − x′′||), (6a)
V (Φ(x′),Φ(x′′))− V (x′, x′′) ≤ −α3(||x′ − x′′||) (6b)

hold for all x′, x′′ ∈ S.
Proof: The proof is similar to the proof of incremental

stability analysis for ordinary systems in [21, Theorem 5] by
considering the augmented system

z(k + 1) = Φ̃(z(k)) (7)

with z =
[
x′

x′′

]
∈ S × S and Φ̃ =

[
Φ(x′(k))

Φ(x′′(k))

]
where Φ is as

in (4) and then stability of (7) w.r.t. the diagonal set ∆ :=
{ [ xx ] ∈ S × S | x ∈ S } is shown. The complete proof is
omitted due to length limitations.

Such function V satisfying (6) is called an incremental
Lyapunov function for (3). A similar idea will also be applied
to the forthcoming incremental stability analysis for switched
systems.

III. SOLUTION THEORY

Recall the NSSS (1). Define for each mode i ∈ {0, 1, ..., p}
the set Si := {x ∈ Rn : Fi(x) ∈ imEi}. The solvability
notion used in this study is described as follows.

Definition 3.1 (c.f. Def. 4.2 in [17]): The NSSS (1) is
called locally uniquely solvable (for short just solvable) w.r.t.
a fixed and known switching signal σ of the form (2) if, for
all k0, k1 ∈ Z≥0, k1 > k0 and for all xk0

∈ Sσ(k0) there
exists a unique solution of (1) under σ considered on [k0, k1]
with x(k0) = xk0 .

For the given switching signal, this solvability notion
requires the existence of a unique solution considered on
any time interval with any arbitrary initial time instant and,
furthermore, for any consistent initial value at that initial
time instant. The solvability characterization for system (1)
with respect to the solvability notion above is studied under
the following assumption on the set Si:
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Assumption 3.2: For each i ∈ {0, 1, ..., p}, Si is a linear
subspace in Rn.

Two types of restricted switching signals are considered in
this study. The first one is the case with a fixed and known
mode sequence denoted by (σ0, σ1, ...). This case covers
any switching signals that have the given mode sequence
with arbitrary switching times. The second one is the case
of a fixed and known switching signal σ where both its
mode sequence and switching times are fixed and known.
Based on the solvability notion in Definition 3.1, the NSSS
(1) is solvable w.r.t. (σ0, σ1, ...) if it is solvable w.r.t. all
switching signals with the mode sequence (σ0, σ1, ...) and
with arbitrary switching times. We first present the solvability
condition in the following theorem for system (1) under a
fixed and known switching signal.

Theorem 3.3: The NSSS (1) under Assumption 3.2 is
solvable w.r.t. a fixed and known switching signal σ : Z≥0 →
{0, 1, ..., p} in the sense of Definition 3.1 if, and only if,

Tσ(k) ⊆ kerEσ(k) ⊕ Sσ(k+1) for k = 0, 1, 2, . . . ; (8)

where Ti = {E+
i Fi(ς)|ς ∈ Si}. Furthermore, if it is

solvable, its solution at any time instant k ∈ Z≥0 satisfies
the following surrogate ordinary system

x(k + 1) = Φσ(k+1),σ(k)(x(k)), x(0) ∈ Sσ(0) (9)

where Φi,j is called the one-step map from mode-j to mode-i
given by

Φi,j(x(k)) := Π
kerEj

Si
E+

j Fj(x(k)), (10)

the matrix E+
j is a generalized inverse of Ej and Π

kerEj

Si
is

the canonical projector from Si ⊕ kerEj to Si. //
Proof: Due to Assumption 3.2, the proof is similar

to the proof of the solvability under arbitrary switching
signals in [17]. Therefore, the complete proof is omitted here,
however, in the following discussion, we highlight the main
idea of the proof with a fixed and known switching signal
to provide some additional insights.

On every time interval [k, k + 1] with a given x(k), the
solution x(k + 1) must satisfy{

Eσ(k)x(k + 1) = Fσ(k)(x(k))

Eσ(k+1)ξ = Fσ(k+1)(x(k + 1))

for some ξ ∈ Rn, which is equivalent to{
x(k + 1) ∈ {E+

σ(k)Fσ(k)(x(k))}+ kerEσ(k)

x(k + 1) ∈ Sσ(k+1)

(by the preimage formula3). The solvability condition (8)
is necessary and sufficient by applying the projector lemma
in [17, Lemma 2.3]4 with U = Tσ(k), V = Sσ(k+1) and

3For any matrix M ∈ Rn×n and x ∈ imM , M−1{x} = {M+x} +
kerM where M+ is a generalized inverse of M and M−1X is the
preimage of M ∈ Rn×n over a set X i.e. M−1X = {ξ ∈ Rn : Mξ ∈
X}.

4Consider a set U ⊆ Rn and two subspaces V,W ⊆ Rn, then V ∩
({u} + W) is a singleton for all u ∈ U if, and only if, U ⊆ V ⊕ W . In
that case

V ∩ ({u}+W) = {ΠW
V u}, (11)

W = kerEσ(k), from which also the surrogate system (9)
follows.

Remark 3.4: One may wonder how really necessary the
solvability notion from Definition 3.1 is for switched systems
compared to nonswitched systems. Note that solvability for
individual modes is not always sufficient nor necessary for
particular switching signals and, furthermore, solvability is
dependent upon the mode sequence; this already happens
in linear systems, see [20], the justification for nonlinear
systems is similar and thus omitted. Furthermore, it is not
always possible to derive surrogate systems (9) without the
solvability notion in Definition 3.1, see Remark 3.8 in [17]
for a counter-example.

Now, by applying the solvability condition (8) to all
switching signals that belong to a given mode sequence, we
are able to establish a necessary and sufficient condition for
solvability under a fixed mode sequence.

Proposition 3.5: The NSSS (1) under Assumption 3.2
is solvable w.r.t. the fixed and known mode sequence
(σ0, σ1, . . .) if, and only if,

Ti ⊆ Si ⊕ kerEi for all i ∈ {0, 1, . . . , p} (12a)
Tσj

⊆ Sσj+1
⊕ kerEσj

for j = 0, 1, 2, . . . . (12b)

Furthermore, if solvable, the surrogate ordinary system (9)
is valid for every switching signal with the given mode
sequence.

Proof: The sufficiency is obvious since (12) implies that
(8) is satisfied by all switching signals with the given mode
sequence. For the necessity, solvability w.r.t. the given mode
sequence (σ0, σ1, . . .) implies solvability w.r.t. any arbitrary
switching signal with the given mode sequence. Thus, for all
k, i ∈ Z≥0 and all switching signals with σ(k) = σ(k+1) =
σi, Ti ⊆ Si⊕kerEi. Furthermore, at all switches from mode
σj to σj+1, the condition (8) is also satisfied, which implies
Tσj

⊆ Sσj+1
⊕ kerEσj

for j = 0, 1, ... .
We close this section with the following remark which

reveals that in fact, the set Sσ(k) is a positively invariant set
of the mode that is active at time instant k.

Remark 3.6: From the proof of Theorem 3.3, for any time
instant k ∈ Z≥0, x(k) ∈ Sσ(k). This is a direct consequence
of the solution x(k) satisfying Eσ(k)ξ = Fσ(k)(x(k)) for
some ξ ∈ Rn.

IV. INCREMENTAL STABILITY

Consider the solvable NSSS (1) which can be analyzed via
its surrogate ordinary switched system (9). In this case, the
surrogate ordinary switched system (9) can be seen as a time-
varying system, where incremental stability characterization
and contraction analysis for time-varying (ordinary) systems
can be applicable [23]. However, the existing conditions are
required to be checked for every time step, which is not
necessary for (9) since for some time intervals, the system
stays at a certain mode, and thus it can be characterized by
mode-wise approach. Furthermore, in the existing studies for
time-varying systems, the characterizations for incremental

where ΠW
V : V ⊕W → V is the canonical projector from V ⊕W to V .

916



stability were considered in a positively invariant set X,
which also serves as the consistency set of the system that
is defined globally, i.e. on [k0,∞). We note in general
that the consistency set of NSSS (1) which corresponds to
each mode may be different i.e. it is not necessary to have
Si = Sj , i ̸= j. Therefore, in this study, we define new
incremental stability notions with respect to a time-dependent
set.

A. Single Lyapunov Function Approach

Consider the time-dependent set Ŝ(k) defined by Ŝ :
Z≥0 → {S0,S1, ...,Sp} with Ŝ(k) = Sσ(k). Following
Definition 1 in [30] for a time-dependent positively invariant
set w.r.t. a dynamical system, by Remark 3.6, the time-
dependent set Ŝ(k) is a time-dependent positively invariant
set w.r.t. system (1). Throughout the rest of the paper,
||x(k)||X (k) denotes the distance of vector x(k) to set X (k)
defined by ||x(k)||X (k) = inf

ξ∈X (k)
||x(k)− ξ||.

Definition 4.1 (c.f. Def. 1 in [23]): The NSSS (1) is
called asymptotically incrementally stable w.r.t. a fixed
switching signal σ on a time-dependent positively invariant
set X (k) if there exists β ∈ KL such that

||x′(k;x′
0)− x′′(k;x′′

0)|| ≤ β(||x′
0 − x′′

0 ||, k) (13)

for all x′
0, x

′′
0 ∈ X (0) and all k ∈ Z≥0.

Compared to Definition 1 in [23] which is defined on a
constant positive invariant set and is defined also globally
on Rn, our Definition 4.1 is defined on a time-dependent
positive invariant set, and furthermore, it cannot be defined
globally on Rn since Si ⊊ Rn for all i. Moreover, the
incremental stability notion above is defined nonuniformly
w.r.t. time since we are only interested in initial conditions
x(0) = x0 ∈ Sσ(0).

Lemma 4.2 (Single Lyapunov function): Consider the
NSSS (1) under Assumption 3.2 via its surrogate switched
system (9). This system is asymptotically incrementally
stable w.r.t. a fixed and known switching signal σ of the
form (2) on the time-dependent positively invariant set
Ŝ(k) if, and only if, there exist a continuous function
V : Rn × Rn → R≥0, functions α1, α2 ∈ K∞, and
α3 : R≥0 → R≥0 such that for k = 0, 1, ...

α1(||x′(k)− x′′(k)||) ≤ V (x′(k), x′′(k))

≤ α2(||x′(k)− x′′(k)||), (14a)

V (x′(k + 1), x′′(k + 1))− V (x′(k), x′′(k))

≤ −α3(||x′(k)− x′′(k)||) (14b)

hold for all solutions x′ and x′′ of (1) with the given
switching signal σ.

Proof: The proof is similar to the proof for time-varying
systems in [23, Theorem 9] by considering the switched
augmented system

z(k + 1) = Φ̃k(z(k)) (15)

with z(k) =
[

x(k)′

x(k)′′

]
∈ Sσ(k) × Sσ(k) and Φ̃k =

[
Φσ(k+1),σ(k)(x(k)

′)

Φσ(k+1),σ(k)(x(k)
′′)

]
where Φi,j is the one-step map as in

(10). The claim then follows from showing that the switched
diagonal set ∆(k) :=

{
[ xx ] ∈ Sσ(k) × Sσ(k)

∣∣ x ∈ Sσ(k)

}
is asymptotically stable for (15). Similar to [31, Theorem 1]
and [32, Chapter 5], this stability is shown via the existence
of a Lyapunov function W : R2n → R≥0 and functions
α1, α2 ∈ K∞, α3 : R≥0 → R≥0 such that for k = 0, 1, ...

α1(||z(k;x0)||∆(k)) ≤ W (z(k;x0)) ≤ α2(||x(z;x0)||∆(k)),

W (Φσ(k+1),σ(k)(z(k;x0)))−W (z(k;x0))

≤ −α3(||z(k;x0)||∆(k)),

for all x0 ∈ Sσ(0). We omit details due to space limitations.

A function V that satisfies Lemma 4.2 is called an
incremental Lyapunov function. Note that while Lemma 4.2
provided a characterization (i.e. necessary and sufficient) of
incremental stability in terms of a Lyapunov function, one
may argue that the condition (14) is not practical since it
needs to be checked for all explicit solutions. Therefore,
we provide a sufficient condition in the following corollary,
which is more convenient to check by utilizing the one-
step map introduced in Theorem 3.3, in particular, it doesn’t
require knowledge of the solutions.

Corollary 4.3: Consider the NSSS (1) under Assumption
3.2 with a fixed and known switching signal σ of the form (2)
via its surrogate switched system (9) and a time-dependent
positively invariant set Ŝ(k). If there exist a continuous
function V : Rn × Rn → R≥0, functions α1, α2 ∈ K∞,
and α3 : R≥0 → R≥0 such that for k = 0, 1, ...

α1(||x′ − x′′||) ≤ V (x′, x′′) ≤ α2(||x′ − x′′||), (16a)

V (Φσ(k+1),σ(k)(x
′),Φσ(k+1),σ(k)(x

′′))− V (x′, x′′)

≤ −α3(||x′ − x′′||) (16b)

hold for all x′, x′′ ∈ Ŝ(k) then this system is asymptotically
incrementally stable w.r.t. σ on Ŝ(k).

B. Switched Lyapunov Function Approach

The conditions in Lemma 4.2 and Corollary 4.3 require
a single incremental Lyapunov function. If every mode
as an individual (non-switched) system is asymptotically
incrementally stable on its consistency space, then we can
utilize the corresponding incremental Lyapunov functions of
all modes to formulate a switched incremental Lyapunov
function for the switched system composed of those modes.
This is provided in the following theorem.

Theorem 4.4 (Switched Lyapunov function approach):
Consider the solvable NSSS (1) under Assumption 3.2.
Assume each mode i is asymptotically incrementally
stable on Si with the corresponding incremental Lyapunov
function Vi : Si × Si → R≥0 and class-K∞ functions α1i,
α2i and α3i satisfying Proposition 2.4. If the following
two conditions hold: (1) For all x, x′, x′′ ∈ Si ∩ Sj with
||x′|| = ||x′′|| and all i, j ∈ {0, 1, ..., p}:

Vi(x
′, x′′) = Vj(x

′, x′′) (17a)
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αi(||x||) = α1j(||x||), α2i(||x||) = α2j(||x||),
α3i(||x||) = α3j(||x||)

(17b)

and (2) for k = 0, 1, ...:

Vσ(k+1)(Φσ(k+1),σ(k)(x
′),Φσ(k+1),σ(k)(x

′′))

−Vσ(k)(x
′, x′′) ≤ −α3(||x′ − x′′||) ∀x′, x′′ ∈ Sσ(k)

(18)

with α3 : R≥0 → R≥0, α3(||x||) = α3i(||x||) if x ∈ Si and
0 otherwise, then system (1) is asymptotically incrementally
stable w.r.t. the given fixed and known switching signal σ
on Ŝ(k).

Proof: For the given switching signal, we construct the
following incremental (switched) Lyapunov function from
the incremental Lyapunov functions of individual modes as
follows:

V : R2n → R, V (x1, x2) =

{
Vi(x1, x2) if x1, x2 ∈ Si

0 otherwise.

Condition (17a) ensures that V is well defined for all
x1, x2 ∈ Rn, i.e. it guarantees that V (x) is unique for
every x1, x2 ∈ Rn. From the functions α1i, α2i, α3i of all
individual modes, we also construct for the switched system
the corresponding functions αℓ : R≥0 → R≥0, ℓ = 1, 2, 3
defined by

αℓ(||x||) =

{
αℓi(||x||) if x ∈ Si

0 otherwise.

Since Si are subspaces, {0} ∈ Si and Si ∩ Sj ⊇ {0}. Thus,
α1, α2 ∈ K∞ under conditions (17b). Since each Vi and
αℓi, ℓ = 1, 2, 3 satisfy (6), the functions V and αℓ defined
above satisfy

α1(||x′ − x′′||) ≤ V (x′, x′′) ≤ α2(||x′ − x′′||).

and together with condition (18) implies the incremental
stability on Ŝ(k) w.r.t. the given switching signal σ.

Such a piecewise function V in the proof above is called
a switched Lyapunov function; the term comes from the
fact that V switches over the individual Lyapunov functions
depending on in which consistency space the solution is in
at a given time. Compared to the single Lyapunov function
approach presented in Lemma 4.2, the switched Lyapunov
function approach is simpler in terms of finding the Lya-
punov function since it is formulated from the Lyapunov
functions of the individual modes. However, stability for
each mode is required here; this assumption is not required
in the single Lyapunov function approach, i.e. the switched
system may contain unstable modes. Nevertheless, the single
Lyapunov approach requires a Lyapunov function that fits the
whole switched system, which is intuitively more difficult to
find.

Theorem 4.4 can be easily extended to characterize the
incremental stability of the NSSS (1) with respect to a fixed
and known mode sequence in which the switching times are
arbitrary, or with respect to arbitrary switching signals (both
mode sequence and switching times are arbitrary) by con-
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-5

0

5

Fig. 2: Solution trajectories of the switched system in Ex-
ample 4.5

sidering the condition in Theorem 4.4 to be satisfied by the
involved switching signals. In particular, Lyapunov function
construction methods in ordinary systems can be utilized,
such as Yoshizawa method [33], least square optimization
approach [34], collocation approaches [35], [36] and linear
programming approach [37]. We close this part by providing
an example illustrating the derived theoretical results.

Example 4.5: Consider system (1) composed of the fol-
lowing two modes:

(E0, F0(x)) =

[
1 0 0
0 1 0
0 0 0

]
,

 sin(x1)+cos(x2)

sin(x1)−cos(x2)x2+x
1
3
3

x
1
3
3

 ,

(E1, F1(x)) =

[
2 1 0
0 −1 0
0 0 0

]
,

 e1−x1+x
1
3
3 sin(x2)

e1−x1−x
1
3
3 sin(x2)x2+x

1
3
3 e1−x1

x
1
3
3 e1−x1


 .

Geometric computations provide kerE0 = kerE1 =
span{(0, 0, 1)⊤}, S0 = S1 = span{(1, 0, 0)⊤, (0, 1, 0)⊤}.
Since kerEi ⊕ Sj = Rn, ∀i, j ∈ {0, 1}, the condition (8)
holds independently of Tσ(k) i.e. the switched system is solv-
able w.r.t. any arbitrary switching signal (each mode as an in-

dividual system is also solvable). Choosing E+
0 =

[
1
2

1
2 0

1
2 − 1

2 0
0 0 0

]
and E+

1 =

[
1
2

1
2 0

0 −1 0
0 0 0

]
and with ΠkerE0

S1
= ΠkerE1

S0
=

[
1 0 0
0 1 0
0 0 0

]
provide

Φ0(x(k)) = Φ0,0(x(k)) = Φ1,0(x(k)) =

[
sin(x1)
cos(x2)

0

]
and

Φ1(x(k)) = Φ1,1(x(k)) = Φ0,1(x(k))

=

[
(1+ 1

2x
1
3
3 )e1−x1

(−1−x
1
3
3 )e1−x1+x

1
3
3 sin(x2)x2

0

]
.

As an individual system, each mode is incrementally stable
by considering the functions α1(ξ) = ξ2, α2(ξ) = ξ2,
α2(ξ) = 0 for both modes and simple incremental Lyapunov
function Vi(x) = x2

1+x2
2+x2

3, i = 0, 1. Now, by considering
the switched incremental Lyapunov function as in the proof
of Theorem 4.4, the switched system is incrementally stable
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w.r.t. any switching signal. The trajectories of the solutions
for x1 under the periodic switching signal σ(k) = 0 if k ∈
[0, 10)∪[20, 30)∪· · · and σ(k) = 1 if k ∈ [10, 20)∪[30, 40)∪
· · · is shown in Fig. 2, which illustrates incrementally stable
trajectories (trajectories of x3 are not shown since its solution
is x3(k) = 0 for k = 1, 2, ... and therefore not exciting).

V. SUMMARY

A knowledge gap in the solvability of discrete-time non-
linear singular switched systems with fixed switching signals
has been addressed in this paper. Surrogate ordinary systems,
which have equivalent behaviors to the original singular
systems, have been established by utilizing the one-step map
from the current mode to the successive mode. Via these
surrogate systems, we are able to establish sufficient (and
necessary) conditions for incremental stability using single
and switched Lyapunov function approaches.

The results with a fixed mode sequence but arbitrary
switching times can also be used for switched systems with
the switching rule triggered also by events as long as the
mode sequence is known; if the mode sequence is not known,
one may refer to studies with arbitrary switching signals such
as [17]. Therefore, one possible extension for future work
is designing state-feedback control algorithms for switched
systems including ones with event-triggered switching rules.
Other possible extensions could be observer designs and
further studies for systems with inputs.
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