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Abstract— This paper introduces a novel discrete-time con-
trol barrier function (DCBF) that stems directly from discrete-
time set invariance theory. The proposed DCBF provides
necessary and sufficient conditions for certifying control in-
variance and can be used to synthesize a constrained control
policy. Moreover, the DCBF can be constructed for arbitrary
sets of state and input constraints by taking advantage of
maximal output admissible set theory. The resulting DCBF-
based controller is proven to be safe and recursively feasible.
Numerical examples showcase the effectiveness of the scheme
by comparing it to existing constrained control approaches.

I. INTRODUCTION

Control barrier functions (CBFs) have recently garnered
attention from the constrained control community by serving
as both a certificate of safety and a tool for synthesizing
constrained control laws [1]. The principle behind CBF-
based control is to select an input that is as close as
possible to a nominal control action while also guaranteeing
constraint enforcement. Due to their conceptual simplicity,
computational efficiency, and overall performance, CBF-
based controllers have been implemented successfully on a
wide variety of applications [2]–[5].

The main challenge associated with this approach is that
identifying CBFs for arbitrary constraint sets is challenging.
As a result, it is common practice to rely on “candidate”
CBFs, i.e., scalar functions that ensure constraint satisfaction
when positive, but are not guaranteed to remain positive in
the future. Unfortunately, this myopic approach can cause
the CBF-based optimization problem to become infeasible,
especially as the number of state and input constraints in-
creases. As a result, the systematic design of CBFs is still an
open research question. In [6], the authors introduce control-
sharing barrier functions which are groups of CBFs that
retain their validity even when superimposed. Nonetheless,
finding functions with the control-sharing property is also
difficult. In [7], [8], the authors show how to construct a CBF
by introducing a prestabilizing controller (called the backup
policy) and integrating the resulting closed-loop dynamics
backwards in time to construct a valid CBF. Unfortunately,
the constructed CBF may not have a closed-form expression
since the ordinary differential equation is often solved nu-
merically. Another common constrained control approach is
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based on barrier Lyapunov functions [9]. These approaches,
while providing sufficient conditions for safety, are rarely
necessary as in the case of CBFs and may lead to more
conservative performance.

This paper proposes a paradigm shift to the discrete-time
domain, where we leverage the well-established maximal
output admissible set (MOAS) theory [10] to systematically
design suitable CBFs. The main contributions are as follows:
a) we define a discrete-time control barrier function (DCBF)
that provides necessary and sufficient conditions for control
invariance, b) we show how to systematically construct a
DCBF for general nonlinear systems subject to arbitrary
state and input constraints, c) we formulate a recursively
feasible DCBF-based constrained controller, d) we specialize
the proposed framework to the linear case, where we present
closed-form expressions for all results.

The DCBFs presented in this paper differ from the
discrete-time exponential CBFs (DECBFs) proposed in [11],
which provide only sufficient conditions for set invariance
by replacing the differential conditions of continuous-time
CBFs with difference equations. Although DECBFs have
been successfully implemented in discrete-time applications
[12], [13], they suffer from similar drawbacks as continuous-
time CBFs: finding a DECBF for arbitrary constraint sets is
challenging, and resorting to candidate DECBFs can lead to
infeasibility issues in the DECBF-based program.

The remainder of the paper is organized as follows: Sec-
tion II provides a brief overview of the theory behind CBFs
and DECBFs; Section III introduces the new DCBF for-
mulation and the associated DCBF-based program; Section
IV shows how, given arbitrary state and input constraints,
DCBFs can be obtained by projecting the MOAS onto the
state-space. The approach is then specialized to the linear
case, where the MOAS can be obtained in closed form;
Section V compares the performance of our approach with
existing constrained control strategies, namely: DECBFs
[11], model predictive control (MPC) [14], and command
governors (CGs) [15].

II. PRELIMINARIES

This section summarizes existing results in CBF literature.
Please note we modified some notation with respect to its
original reference to ensure cohesiveness throughout the
paper.
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A. Continuous-time Control Barrier Functions

Consider a continuous-time system ẋ = f(x,u), with f
locally Lipschitz, x ∈ Rn, and u ∈ U ⊆ Rm. Nagumo’s
Theorem [16] states that a compact set C ⊆ Rn is control
invariant if and only if

∀x ∈ ∂C, ∃u ∈ U : f(x,u) ∈ TC(x), (1)

where TC(x) is the tangent cone to C in x [16, Def. 3.1]. In
essence, (1) states that, whenever x belongs to the boundary
of the set C, there exists an input u ∈ U such that the vector
field f does not point towards the exterior of C. Since this
condition is defined only on the boundary ∂C and provides
no insight whenever x ∈ Int(C), modern CBF literature
developed an equivalent condition that spans the entirety of
the set whenever C is given as the superlevel set of some
function h : Rn → R:

C = {x ∈ Rn | h(x) ≥ 0}. (2)

Definition 1: [17, Def. 2] A continuously differentiable
function h ∈ C1 : Rn → R is a control barrier function
(CBF) on the open set D ⊆ Rn for the set C ⊂ D satisfying
(2) if there exists an extended class K function α such that

sup
u∈U

[
ḣ(x,u)

]
≥ −α

(
h(x)

)
, ∀x ∈ D, (3)

where ḣ(x,u) = ∇h(x)f(x,u).
Proposition 1: [1, Cor. 2] The set C ⊂ Rn given in (2)

is control invariant if and only if h(x) is a CBF.
A CBF certifies the existence of an input u(t) ∈ U that
ensures x(t) ∈ C. A common approach for finding such an
input is to use CBF-based programs [1]. However, given an
arbitrary state constraint set X ⊆ Rn, the literature provides
few methods for systematically designing CBFs. In fact, even
when X is not control invariant, it is common practice to take
C = X and design a function h(x) that satisfies (2), but may
not satisfy (3). We call such a function a candidate CBF [8].
Since candidate CBFs cannot certify control invariance, they
are vulnerable to infeasibility issues when used in CBF-based
programs, especially under input constraints.

In this paper, we show that the discrete-time domain offers
a new perspective for the systematic design of CBFs given
arbitrary sets of state and input constraints. We will do so
by proposing a new discrete-time CBF formulation, which
differs from the one currently found in the literature and
summarized in the next subsection.

B. Discrete-time Exponential Control Barrier Functions

Consider a discrete-time system

x+ = f(x,u), (4)

where x ∈ Rn, u ∈ U ⊆ Rm, and f : Rn × Rm → Rn is a
continuous function. The following definition was proposed
as an extension to continuous-time CBFs.

Definition 2: [11, Def. 4] A continuous function h ∈
C0 : Rn → R is a discrete-time exponential control barrier

function (DECBF) for the closed set C ⊆ Rn satisfying (2)
if there exists a positive scalar λ ∈ (0, 1] such that

sup
u∈U

[
∆h(x,u)

]
≥ −λh(x), ∀x ∈ C, (5)

where ∆h(x,u) ≜ h
(
f(x,u)

)
− h(x).

Proposition 2: [11] The closed set C ⊆ Rn given in (2)
is control invariant if h(x) is a DECBF.
These results were obtained by replacing the continuous-
time CBF condition (3) with a difference equation. Given an
arbitrary state constraint set X ⊆ Rn, however, they provide
no guidance on how to construct a DECBF. In practice, the
approach is implemented by proposing a candidate DECBF
and tuning λ ∈ (0, 1] to help ensure xk ∈ X , ∀k ≥ 0.
Furthermore, DECBFs provide only sufficient conditions for
control invariance as opposed to the stronger necessary and
sufficient conditions provided by continuous-time CBFs.

In this paper, we provide a definition for discrete-time
control barrier functions (DCBFs) that is both necessary and
sufficient for the control invariance of a set C. Then, given
arbitrary state constraints X , we show how to construct a
control invariant subset C ⊆ X and find an associated DCBF.

III. DISCRETE-TIME CONTROL BARRIER FUNCTIONS

Consider the discrete-time system (4) and a set C ⊆ Rn.
As detailed in [16], C is control invariant if and only if

∀x ∈ C, ∃u ∈ U : f(x,u) ∈ C. (6)

Notice that the discrete-time control invariance condition (6)
is defined on the entirety of the set C, as opposed to only its
boundary ∂C as in the continuous-time case (1). With this in
mind, consider the following definition and its consequence.

Definition 3 (Discrete-time Control Barrier Function): A
continuous function h ∈ C0 : Rn → R is a DCBF for the
closed set C ⊆ Rn satisfying (2) if

sup
u∈U

[
h
(
f(x,u)

)]
≥ 0, ∀x ∈ C. (7)

Proposition 3: The closed set C ⊆ Rn given in (2) is
control invariant if and only if h(x) is a DCBF.

Proof: Let C be control invariant. It follows from (2)
and (6) that for all x ∈ C, there exists a control input
u ∈ U such that h

(
f(x,u)

)
≥ 0. Therefore, h is a DCBF.

Conversely, let h be a DCBF. It follows from (2) and (7)
that for all x ∈ C, there exists a control u ∈ U such that
f(x,u) ∈ C. Therefore, C is a control invariant set.
Note that, unlike the continuous-time case, h(x) does not
need to be continuously differentiable. As a result, it is
simple to obtain h(x) whenever C is defined by the the
intersection of multiple state constraints.

Remark 1: Given the set C = {x ∈ Rn | g(x) ≥ 0},
where g ∈ C0 : Rn → Rnc , condition (2) is satisfied by the
continuous function h(x) = min

(
g(x)

)
.

Remark 2: Given the polyhedral set C={x ∈ Rn | Hx ≤
c}, with H ∈ Rnc×n and c ∈ Rnc , condition (2) is satisfied
by the continuous function h(x) = min(c−Hx).
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A. Safe Control Invariant Sets

Given an arbitrary state constraint set X ⊆ Rn, Propo-
sition 3 has two consequences: (i) If the set X is control
invariant, then any DCBF h(x) is also a DECBF that satisfies
(5) with λ = 1; (ii) if the set X is not control invariant, then it
is impossible to find a DCBF for it. The second consequence
can be addressed by finding a control invariant subset C ⊂ X
and finding a DCBF for C.

Definition 4 (Safe Control Invariant Set): Given the con-
straint set X ⊆Rn, a control invariant set C ⊆Rn is safe if
C⊆X .

Based on Definitions 3 and 4, the design of a suitable
DCBF for arbitrary state constraints X can be achieved by
identifying a closed safe control invariant set C ⊆ X . We
give guidance for finding such a set C in Section IV. The
following subsection explains how the resulting DCBF can
be used to develop a control law that guarantees constraint
satisfaction.

B. Discrete-time Control Barrier Function-based Programs

Similar to CBFs [1], the proposed DCBFs can be used as
an add-on unit that bestows safety properties to a nominal
controller κ(x) by solving the DCBF-based program

min
u∈U

∥u− κ(x)∥2 (8)

s.t. h
(
f(x,u)

)
≥ 0.

The closed-loop system filtered by the DCBF-based program
has the following properties.

Theorem 1 (Recursive Feasibility and Safety): Given the
state constraint set X ⊆ Rn, let C ⊆ X be a safe control
invariant set and let h ∈ C0 : Rn → R be an associated
DCBF. Moreover, given a nominal controller κ : Rn → Rm

and the update equations xk+1 = f(xk,uk), let u(x) be the
solution to the DCBF-based program (8) at x. Then, given
the initial condition x0 ∈ C, the control law uk = u(xk) is
such that:

1) The DCBF-based program (8) is feasible for all k ≥ 0;
2) The closed-loop response satisfies xk ∈ X , ∀k ≥ 0.

Proof: Given xk ∈ C, it follows by Definition 3 that
the DCBF-based program (8) is feasible at xk. Since the
solution exists, the one-step update xk+1 = f

(
xk, u(xk)

)
is guaranteed to satisfy h(xk+1) ≥ 0, and (2) implies
xk+1 ∈ C. Recursive feasibility then follows directly from
the requirement x0 ∈ C. As for safety, it is sufficient
to note that, due to Definition 4, the set C is such that
xk ∈ C ⇒ xk ∈ X .

Although (8) is generally a nonlinear program, given
a control-affine system f(x,u) = fx(x) + fu(x)u and
polyhedral constraints U = {Mu ≤ b}, C = {Hx ≤ c},
the DCBF-based program (8) reduces to a quadratic program
(QP)

min
u

∥u− κ(x)∥2 (9)

s.t. Hfu(x)u ≤ c−Hfx(x),

Mu ≤ b.

IV. CONSTRUCTING SAFE INVARIANT SETS

In this section, we leverage the rich literature on maximal
output admissible sets (MOASs) to construct a safe control
invariant set for arbitrary safety sets under input constraints.
We first introduce the approach for general nonlinear systems
and then specialize it to linear systems.

A. Maximal Output Admissible Sets

Let the nonlinear system in (4) be stabilizable, and x̄ :
Rl → Rn and ū : Rl → Rm be two C0 functions such that

x̄(r) = f
(
x̄(r), ū(r)

)
, ∀r ∈ Rl. (10)

By construction, r ∈ Rl is a parametrization of all the
possible equilibrium points of the system. It can also be
treated as the reference for a prestabilizing control law
π : Rn × Rl → Rm such that the sequence of maps

Πk+1(x, r) = fπ
(
Πk(x, r), r

)
, (11)

with Π0(x, r) = x, and fπ(x, r) ≜ f
(
x, π(x, r)

)
, satisfies

lim
k→∞

Πk(x, r) = x̄(r). (12)

Notably, the map Πk : Rn × Rl → Rn takes any state x to
the k-th step of its closed-loop trajectory under the feedback
policy π, subject to a constant reference r. Given a C0 output
function c : Rn×Rm → Rp, define a set of output constraints
Y ⊆ Rp that captures all the state and input constraints, i.e.

c(x,u) ∈ Y ⇐⇒ (x,u) ∈ X × U , (13)

let cπ(x, r) ≜ c
(
x, π(x, r)

)
, be the output constraint function

of the prestabilized system.
Definition 5 (Maximal Output Admissible Set): Given the

nonlinear system (4) subject to output constraints c(x,u) ∈
Y , let π(x, r) be a prestabilizing control law such that (11)-
(12) hold. Then, the MOAS of the prestabilized system is

O∞ ≜ {(x, r) ∈ Rn×Rl | cπ
(
Πk(x, r), r

)
∈ Y, ∀k ∈ N}.

Since the size and shape of the MOAS depends on the
prestabilizing control law, the choice of π(x, r) influences
the degree to which O∞ is an inner approximation of C.
Note that, if the nominal control law κ(x) is stabilizing, it
is always possible to set π(x, r) = κ(x).

B. MOAS-based Safe Control Invariant Sets

Let ProjxO∞ ⊆ Rn be the projection of O∞ ⊆ Rn × Rl

onto the state-space Rn. That is,

ProjxO∞ = {x ∈ Rn | ∃r ∈ Rl, (x, r) ∈ O∞}. (14)

Then, we have the following result.
Proposition 4: ProjxO∞ is a safe control invariant set.

Proof: Let x ∈ ProjxO∞. Then, there exists a
r ∈ Rl such that (x, r) ∈ O∞. By definition of O∞,
cπ
(
Π0(x, r), r

)
= cπ(x, r) = c

(
x, π(x, r)

)
∈ Y . By (13),

it follows that x ∈ X and, thus, ProjxO∞ ⊆ X . Let
u = π(x, r) and note that c(x,u) ∈ Y implies u ∈ U .
Further, f(x,u) = fπ(x, r) = fπ

(
Π0(x, r), r

)
= Π1(x, r).

It follows by definition of O∞ that
(
f(x,u), r

)
∈ O∞. Thus,
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f(x,u) ∈ ProjxO∞ and ProjxO∞ is control invariant by (6).

It follows from Proposition 3 that any continuous function
h ∈ C0 : Rn → R such that ProjxO∞ = {x | h(x) ≥ 0} is
a DCBF for ProjxO∞. This observation serves as a bridge
between the rich literature on MOASs and the emerging CBF
literature. While computing the MOAS for general nonlinear
systems is difficult, methods for estimating it for certain
classes of nonlinear systems can be found in [18], [19]. The
following section specializes these results to linear systems,
for which the MOAS can be computed in closed form.

Remark 3: The idea of constructing a CBF by prestabi-
lizing the system and finding the associated invariant set
has been previously explored in the so-called “backup”
CBF literature [7], [8]. This approach differs from ours in
two significant points: First, backup CBFs have only been
proposed in continuous-time, which not only makes it more
challenging to compute h(x), since it requires solving a
differential equation, but also because it requires the ability to
compute its derivative ḣ(x,u); second, backup CBFs presta-
bilize the system around the target reference (e.g., the origin),
as opposed to letting r be a free variable that parametrizes
all the possible references of the prestabilizing control law.
Therefore, as illustrated in Fig. 1, the control invariant set
ProjxO∞ is larger than the invariant sets featured in [7], [8].

C. Linear Systems

Consider the discrete-time, linear system

xk+1 = Axk +Buk, (15)

where x ∈ Rn, u ∈ Rm, and the pair (A,B) is stabilizable.
Let the state X ⊆ Rn and input U = {Mu ≤ b} constraint
sets be polyhedral. Then, there exist matrices C ∈ Rp×n

and D ∈ Rp×m such that we can define outputs yk =
Cxk +Duk, and a set of output constraints Y = {y ∈ Rp :
Ly ≤ a}, with appropriately sized matrix L and a, such that
Cx + Du ∈ Y ⇐⇒ (x,u) ∈ X × U . Let Gx ∈ Rn×m

and Gu ∈ Rm×m be such that G = [G⊤
x G⊤

u ]
⊤ is a basis

for null(
[
A− In B

]
). Consider the prestabilizing policy

π(x, r) = Gur−K(x−Gxr), with gain matrix K ∈ Rm×n.
We can define the closed-loop matrices Aπ = A−BK, Bπ =
B(Gu +KGx), Cπ = C −DK and Dπ = D(Gu +KGx).
With this, the map Πk : Rn × Rm → Rn has a closed-form
expression:

Πk(x, r) = Ak
πx+

(
k−1∑
i=0

Ai
π

)
Bπr, k ∈ {0, 1, 2, . . .}.

Note that Π0(x, r) = x. As detailed in [10], the MOAS of
the prestabilized linear system is

O∞ = {(x, r) : CπΠk(x, r) +Dπr ∈ Y, ∀k ∈ N}. (16)

For the considered polyhedral constraint sets X and U , O∞
is a polyhedron [10]. Furthermore, if Aπ is Schur, (Aπ, Cπ)
is observable, and Y is compact, then O∞ is compact and the
following inner approximation is finitely determined [20]:

Oϵ
∞ ≜ O∞ ∩ (Rn ×Rϵ), (17)

Fig. 1. Example of the strictly output admissible set Oϵ
∞ ⊂ R2 × R

and its projection ProjxOϵ
∞ ⊂ R2. Also plotted is the control invariant

set associated to the prestabilized origin (see Remark 3). This particular
example refers to the constrained double integrator system detailed in
Example 1.

where Rϵ ≜ {r ∈ Rm : L(CGx + DGu)r ≤ (1 − ϵ)a}
is the strictly steady-state admissible reference set for some
small ϵ ∈ (0, 1). The set Oϵ

∞ is called the strictly output
admissible set and can be computed using [10, Algorithm
3.2]. As before, we consider the projection onto the state-
space

ProjxOϵ
∞ = {x ∈ Rn : ∃r ∈ Rϵ, (x, r) ∈ Oϵ

∞}. (18)

Following the same process as in Proposition 4, it can be
shown that ProjxOϵ

∞ is also a safe control invariant set. In
addition, when ϵ → 0, we recover ProjxO∞. See Fig. 1 for
an example of Oϵ

∞ and its projection.

Under the previously stated assumptions, Oϵ
∞ is a finitely

determined polyhedron. Thus, we can find a matrix H ∈
Rnc×n and vector c ∈ Rnc for some finite integer nc > 0
such that ProjxOϵ

∞ = {x ∈ Rn : Hx ≤ c}. Because this
set is control invariant, it follows from Proposition 3 that
h(x) = min(c − Hx) is a DCBF. Let κ : Rn → Rm be
a nominal controller with desired performance properties.
Then, we can formulate the following DCBF-based QP

min
u

∥u− κ(x)∥2 (19a)

s.t. HBu ≤ c−HAx, (19b)
Mu ≤ b, (19c)

where (19b) is equivalent to h(Ax + Bu) ≥ 0 and (19c)
ensures u ∈ U .

V. EXAMPLES

We present two examples to demonstrate the usefulness
of DCBFs synthesized from the MOAS. The first example
is a double integrator system and the second is a pitch
pointing control problem for a fixed-wing F-16 aircraft. For
each example, we provide a comparison with MPC [14], CG
[15], and DECBF-based control [11]. In all examples, we let
ϵ = 0.05 and solve the optimization problems in MATLAB
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using YALMIP [21] with MOSEK [22]. Projections are
computed with MPT3 [23]. All computations are performed
in a laptop PC running Windows 10 with an Intel i5 @ 1.60
GHz CPU and 16 GB RAM.

TABLE I
OPTIMIZATION PROBLEM SOLVE TIMES

Double integrator F-16 pitch pointing
Avg [ms] Max [ms] Avg [ms] Max [ms]

CG 0.98 1.24 1.41 1.68
DECBF 0.93 1.08 1.25 1.77

MPC 2.71 6.33 3.22 4.45
DCBF 1.41 2.15 1.49 2.01

Example 1: Consider a double integrator system x =
[x ẋ]⊤, u = ẍ, with sampling time 0.1 seconds and system
matrices

A =

[
1 0.1
0 1

]
, B =

[
0
0.1

]
.

The state constraint set is X = {x : |x| ≤ 1} and the input
constraint set is U = {u : |u| ≤ 1.5}. The initial condition
is x0 = [0 0]⊤ and the nominal controller is κ(x) =
−26.8(x− 1.1)− 12.6ẋ, which stabilizes the system to the
unsafe point [1.1 0]⊤. We choose prestabilizing controller
π(x, r) = −2(x − r) − 2.2ẋ. The candidate DECBFs are
b1(x) = 0.25−0.25x−0.1ẋ and b2(x) = 0.25+0.25x+0.1ẋ.
We tuned the parameters λi in the DECBF-condition (5) to
be close to 1 (high performance) while retaining feasibility
of the DECBF-based program, this led to λ1 = λ2 = 0.42.

Fig. 2 compares the closed-loop behavior of the different
control strategies. As expected, CG exhibits the slowest
response, whereas MPC achieves the fastest response. Our
approach outperforms DECBFs and achieves comparable
results with MPC while being less computationally intensive
(see Table I). It is also worth noting that, given a different
initial condition x0, the DECBF-based program may become
infeasible, whereas the DCBF-based program is guaranteed
to remain recursively feasible whenever x0 ∈ ProjxOϵ

∞ ⊂
X .

Example 2: Consider the pitch dynamics model of an F-
16 aircraft given in [24] and let us discretize it with a
sampling time of 0.1 seconds. The state vector is x =
[θ q α δe δf ]

⊤ which collects the pitch, pitch rate, angle
of attack, elevator deflection and flaperon deflection, respec-
tively. The input vector is u = [δec δfc]

⊤ which collects the
elevator and flaperon deflection commands, respectively. The
state and input matrices are

A =


1 0.1 0.2 −0.1 0
0 1.1 4.2 −0.8 −0.1
0 0.1 1.1 −0.1 0
0 0 0 0.1 0
0 0 0 0 0.1

 , B =


0 0
−1 −0.1
−0.1 0
0.9 0
0 0.9

 .

Pitch pointing control requires mild angle of attack variations
and the control surface deflections are usually limited [24].
The set of safe states is X = {x : |α| ≤ 4π/180, |δe| ≤
25π/180, |δf | ≤ 20π/180} and there are no input con-
straints as they are virtual commands (i.e., U = R2). In this
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Fig. 2. Simulation of the double integrator model. It can be seen that
all approaches successfully enforce the safety constraints on the position x
and input u and the system converges to a safe point close to the desired
reference. The bottom plot shows the state-space trajectory each approach
follows and it can be seen that the system under the DCBF travels along
the boundary of ProjxOϵ

∞.

example, we consider the same nominal and prestabilizing
controllers (i.e., π = κ) and design them via LQR with
state and input weight matrices Q = diag([10 0 10 0 0])
and R = 10−3I2, respectively. Given the candidate DECBFs
b1(x) = π/45− α, b2(x) = 5π/36− δe, b3(x) = π/9− δf ,
b4(x) = π/45 + α, b5(x) = 5π/36 + δe and b6(x) =
π/9 + δf , we were unable to identify suitable parameters
λi ∈ (0, 1], i = 1, . . . , 6, that retain feasibility of the
DECBF-based program when using the input weight matrix
R = 10−3I2. Thus, we designed a milder nominal controller
for the DECBF approach by increasing the input weight
matrix to RDECBF = 0.09I2, which then enabled us to select
λi = 0.9, i = 1, . . . , 6. Although this ad-hoc solution works
for the given initial conditions, there is no guarantee that the
DECBF will be recursively feasible for other x0. In contrast,
the DCBF proposed in this paper requires no such tuning and
is guaranteed to work for any x0 ∈ ProjxOϵ

∞.

Fig. 3 compares the closed-loop response of each method
when tasked with reaching a reference pitch θr = π/20 and
flight path angle γr = 13π/360, with γ = θ − α. Similar
to the previous example, our approach achieves comparable
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results with MPC with faster solve times (Table I). In this
case, the CG outperforms the DECBF since we had to detune
the control law to retain feasibility of the DECBF-based
program. It is also worth noting that, since we took π = κ,
the MOAS used for the CG and the DCBF is the same, which
explains their similar solvetimes (see Table I).
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Fig. 3. Simulation of the F-16 aircraft model. It can be seen that all
approaches successfully enforce the safety constraints on the angle of attack
α and control surfaces deflection δe, δf . Furthermore, the pitch θ and flight
path angle γ converge to the desired references.

VI. CONCLUSION

In this paper, we introduced a new definition of discrete-
time control barrier functions and provided necessary and
sufficient conditions for control invariance. We then showed
that the DCBF can be obtained for arbitrary state and input
constraints by finding a prestabilizing controller and project-
ing the maximal output admissible set onto the state space.
Numerical simulations showed that, in addition to being
safe and recursively feasible, the proposed DCBF-based
controller can achieve performances comparable to MPC
while incurring lower computational costs. In future work,
we will explore the relationship between the prestabilizing
control policy and the associated MOAS.
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