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Abstract— This paper presents a method for robust model
predictive control (MPC) of linear parameter varying (LPV)
systems considering control policies that are affine functions
of the parameter, which is possible when only the ‘A’ and not
the ‘B’ matrix depends on the uncertain parameter (LPV-A
systems). This is less conservative than formulations in which
the policy is restricted to perturbations on a feedback law,
as it includes such policies as a special case. State and input
constraints are handled efficiently by bounding predicted states
in a sequence of polyhedra (i.e. tube MPC), that are param-
eterised by variables in the online optimisation. The resulting
controller can be implemented by online solution of a single
quadratic programming problem and can exploit rate bounds
on the LPV parameters, which requires a pre-processing step
at each iteration. Recursive feasibility and exponential stability
are proven and the approach is compared to existing methods
in numerical examples drawn from other publications, showing
reduced conservatism and improved regions of attraction.

Index Terms— Predictive control for linear systems, Linear
parameter varying systems, Robust control.

I. INTRODUCTION

A significant difficulty with robust MPC is that the control
policy used for predictions must have a feedback component
to achieve good performance in the presence of uncertainty.
This stands in contrast to MPC for deterministic systems,
where it is sufficient to optimise over open-loop control
sequences. Computing optimal feedback policies is computa-
tionally a difficult problem, and to obtain tractable solutions
in MPC, the policies considered are typically restricted to
some fixed class, reducing performance somewhat. Much
research effort in the control community has focused on
reducing this conservatism. For additive disturbances, it is
possible to optimise over policies that are affine functions of
this disturbance [1]. However, when the uncertainty enters
the state space equations multiplicatively as an unknown
parameter in the state space matrices this is difficult, as
the resulting optimisation problem becomes bilinear when
predicting over two or more steps. For such systems, robust
MPC formulations typically consider either: predicted con-
trol inputs from a linear state feedback law [2], perturbations
on a fixed state feedback law [3], or interpolation between
fixed state feedback laws [4]. A notable exception appears in
[5], which considers more general control policies when the
uncertainty is restricted to the ‘A’ matrix in a linear parameter
varying (LPV) formulation (termed ‘LPV-A’ systems in that
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paper). However, the policy is calculated via multiparametric
dynamic programming so is only suitable for systems with
a low dimensional state space. In this paper we introduce an
online MPC algorithm for such systems.

Nonlinear MPC methods are applicable to LPV models,
but typically require solution of a (nonconvex) nonlinear
programming problem online [6]. Typically the parameter in
LPV models is assumed to be time-varying but measurable
for the purposes of control, so in MPC of LPV models it
is desirable to formulate controllers that exploit knowledge
of this parameter in their prediction structure. To achieve
tractable online optimisations, early approaches generally
required conservative ellipsoidal bounding of the predicted
state yielding LMI constraints in the online optimisation [2],
[7]. A solution to these issues is to bound the predicted
state in a sequence of polyhedra (often called a ‘tube’) and
then use each polyhedron to tighten the constraints applied
in the online optimisation, a method that was applied to
systems with additive disturbances in [8], building on previ-
ous approaches that has considered constraint restrictions for
systems with additive disturbances [9]. Conservatism can be
reduced if the polyhedra are parameterised by variables in the
online optimisation [10], a technique which also allows tube
MPC to be applied to systems with time-varying parameters
by solving a single convex QP problem [11]. A survey of
such robust MPC techniques appears in [12]. Recently, tube
MPC has also been extended to LPV systems considering
rate bounds on the parameter [13] and more varied tube
parameterisations have been introduced [14].

In the current work we introduce an MPC for LPV-A
systems where the uncertain parameter is assumed measur-
able at each time. Novelly for a tube MPC, we optimise
over policies in which the predicted control action is an
affine function of the future uncertain parameters, and can
achieve this by solving a single convex QP problem online.
For LPV-A systems where the parameter is measurable,
this is more general than optimising over perturbations on
state feedback policies (e.g. [3], [11]). This is motivated
by several systems of practical interest which are difficult
to handle with existing robust MPC approaches and where
gain-scheduled linear controllers have typically been applied
until now, including rider assistance systems for motorcycles
[15] and blade pitch control for offshore wind turbines [16],
which require feedback controllers gain-scheduled on vehicle
speed and wind speed respectively. To the best of the authors’
knowledge, this is the first tube-based MPC for LPV systems
that optimises a parameter-dependent control law online in a
convex QP. This extends the robust MPC framework of [11]
to LPV systems, with improvements including more general
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tube parameterisations, inclusion of rate bounds, relaxation
of the contractivity requirement on tube cross-sections, and
exponential (rather than asymptotic) stability results.

Notation

The subscript notation vk|t denotes the vector v at time
k, as predicted at time t. Superscripts in round brackets are
used to define affine dependencies of matrices on a time-
dependent parameter θt ∈ Rq in the form M(θt) = M (0) +∑q

i=1 ∆
(i)
M θt,i, with θt,i denoting element i of the vector

θt. The notation Co(M [j]) denotes the convex hull of the
vectors or matrices M [j] for j = 1, 2, . . . , r, where the square
brackets are intended to remind the reader that these are
vertices of a polytope and are distinct from the superscripts
in round brackets. We denote Minkowski summation for sets
A and B by A + B. Finally, we use 1 to denote a column
vector with 1 as each element.

II. PROBLEM FORMULATION

We consider an LPV-A system with an input ut ∈ Rm,
state xt ∈ Rn and parameter θt ∈ Rq , which is available to
the controller at any time t. The dynamics are given by

xt+1 = A(θt)xt +But (1)

where the matrix A(θt) ∈ Rn×n depends affinely on θt as
A(θt) = A(0) +

∑q
i=1 ∆

(i)
A θt,i where for all times t, θt lies

within a polytope Θ = Co(θ[j]). Matrix B ∈ Rn×m has
no such dependence. Optionally, we can impose rate bounds
δθt = θt − θt−1 ∈ D for a polytope D. The performance
objective is to minimise a worst-case quadratic function,

J0 = max
θ0,θ1,...

∞∑
t=0

(
xT
t Qxt + uT

t Rut

)
(2)

in which matrix Q ∈ Rn×n is positive semidefinite and
R ∈ Rm×m is positive definite. This minimisation must be
carried out while robustly (i.e. for all possible θ0, θ1, . . . ,
etc.) satisfying the mixed state-input constraints

F (θt)xt +Gut ≤ 1 (3)

where matrix F (θt) ∈ Rnc×n may depend affinely on θt as
F (θt) = F (0) +

∑q
i=1 ∆

(i)
F θt,i, but the matrix G ∈ Rnc×m

has no such dependence. Mixed state-input constraints are
considered for additional generality, noting that they are
required to constrain outputs of systems with direct feed-
through. Separable state and input constraints Fxx ≤ 1 and
Guu ≤ 1 may also be expressed in this form by choosing e.g.
FT = [Fx 0]T and GT = [0 Gu]

T . We make two assump-
tions on the system dynamics (1). Firstly, that the system
is quadratically stabilisable by a gain-scheduled feedback
K(θt) in the form: K(θt) = K(0)+

∑q
i=1 ∆

(i)
K θt,i. This will

allow the performance objective (2) to be upper bounded by
a quadratic function so that the MPC optimisation is a QP:

Assumption 1. There exists a gain-scheduled state feedback
K(θt) = K(0) +

∑q
i=1 ∆

(i)
K θt,i such that the system xt+1 =

A(θt)xt+BK(θt)xt admits a quadratic Lyapunov function.

We also make an observability assumption, which is required
for closed-loop stability:

Assumption 2. There exists some θ ∈ Θ such that the pair
(Q1/2, A(θ)) is observable.

III. PARAMETER-DEPENDENT CONTROL POLICIES

The proposed MPC uses a control policy affine in θk|t

uk|t(θk|t) = K(θk|t)xk|t + c
(0)
k|t +

q∑
i=1

c
(i)
k|tθk,i (4)

where the values c
(0)
k|t and c

(i)
k|t are to be optimised by

the MPC. To simplify notation in what follows, we will
define ck|t(θk|t) = c

(0)
k|t +

∑q
i=1 c

(i)
k|tθk,i such that we may

write uk|t(θk|t) = K(θk|t)xk|t + ck|t(θk|t). With this input
parameterisation, we may write the prediction dynamics as

xk+1|t = Ā(θk|t)xk|t +Bck|t(θk|t) (5)

and the constraint (3) applied to the predictions as

F̄ (θk|t)xk|t +Gck|t(θk|t) ≤ 1 (6)

where we define Ā(θk|t) = A(θk|t) + BK(θk|t) and
F̄ (θk|t) = F (θk|t) +GK(θk|t).

Compared to robust MPC using uk|t = Kxk|t + ck|t
with ck|t independent of the parameters such as [3], [9],
[11], the affine dependence of ck|t(θk|t) on θk|t provides
the controller with some additional freedom to allow for
different possible future values of θk|t. Values of θk for
k > t are not known at time t, but a suitable interpretation
is that the controller is planning different control inputs for
different values of θk that may occur. This is an ‘affine-
in-the-parameter’ formulation that is conceptually similar to
‘affine-in-the-disturbance’ formulations such as [1] in that
predictions of states and inputs depend on values that are
currently unknown, but will be known once time k is reached.

IV. BOUND ON MINIMAX COST FUNCTION

We now develop an autonomous form of the LPV pre-
diction dynamics (5) for quadratic bounding of the minimax
objective (2). To this end, we introduce the concatenation of
the variables c

(i)
k|t into a vector dk|t∈ Rmq which specifies

the control policy at a single prediction time k, and a further
concatenation of the dk|t for k = t to k = t + N − 1 into
a single vector dt∈ RNmq that specifies the entire control
policy over a prediction horizon of length N at a time t:

dk|t =


c
(0)
k|t

c
(1)
k|t
. . .

c
(q)
k|t

 , dt =


dt|t

dt+1|t
...

dt+N−1|t


We also define the unique matrices T and S(i) (for i =
0, 1, . . .) to shift up and select elements of dt such that

Tdt =


dt+1|t

...
dt+N−1|t

0

 , S(i)dt = c
(i)
t|t



i.e. T ∈ RNmq×Nmq is a block matrix with mq × mq
identity matrices on its superdiagonal and S(0) = [I 0 0 . . .],
S(1) = [0 I 0 . . .] etc. Finally, we introduce ∆

(i)
S = S(i) −

S(0) and a matrix-valued function S(θ)∈ Rm×Nmq defined
by S(θt) = S(0)+

∑q
i=1 ∆

(i)
S θt,i. With these definitions, the

prediction dynamics (5) under the control policy (4) can be
restated in the equivalent form[

xk+1|t
dk+1|t

]
=

[
Ā(θk|t) BS(θk|t)

0 T

] [
xk|t
dk|t

]
(7)

which is an autonomous LPV system , in which we have
inductively defined dk+1|t = Tdk|t with dt|t = dt.

Proposition 1 (Minimax performance bound). Let W ⪰ 0
be a matrix satisfying the linear matrix inequalities

W −
[

Ā(θ[j]) BS(θ[j])
0 T

]T
W

[
Ā(θ[j]) BS(θ[j])

0 T

]
⪰

[
Q+ (K(θ[j]))TRK(θ[j]) 0

0 (S(θ[j]))TRS(θ[j])

]
(8)

for j = 1, . . . , r, then the minimax performance objective
(2) is upper bounded as

max
θ0,θ1,...

∞∑
k=t

(
xT
k|tQxk|t + uT

k|tRuk|t

)
≤

[
xt

dt

]T
W

[
xt

dt

]
(9)

under the scheduled control policy (4).

Proof. If (8) holds for all j, then the analo-
gous expression with A(θ[j]), S(θ[j]),K(θ[j]) replaced by
A(θk|t), S(θk|t),K(θk|t) holds at all prediction times k as
A(θ) ∈ Co(A(θ[j])), S(θ) ∈ Co(S(θ[j])) and K(θ) ∈
Co(K(θ[j])). The results follow by multiplying (8) on the
left and right with [xT

t d
T
t ] and its transpose respectively, then

summing over k = t, . . . ,∞. The matrix T is nilpotent,
such that dt converges to 0 in finite time, and therefore by
Assumption 1, the autonomous system (7) is asymptotically
stable so that limt→∞[xT

t d
T
t ] = 0.

The expression (9) is a convex quadratic function of xt

and dt and can be used as the objective function of a QP to
optimise over control policies of the form (4).

V. CONSTRAINT HANDLING USING TUBES

To apply constraints, we bound the predicted state xk|t of
the system in polyhedral tube cross-sections Tk|t defined by

Tk|t = T (αk|t) = {x ∈ Rn| V x ≤ g(αk|t)} (10)

where αk|t∈ Rs is a vector of variables in the online op-
timisation that determines the shape and size of the tube
cross-section at prediction time k. The function g(α), which
parameterises the class of possible tube cross-sections, is
assumed to be affine in α. We also assume that there exists
some value α∗ such that the set T (α∗) is an admissible set
for uk|t = K(θk|t)xk|t (i.e. positively invariant and within
the constraint bounds). This implies that V cannot be chosen
arbitrarily but must be constructed through an algorithm to

find an admissible polyhedron. Such a polyhedron exists due
to Assumption 1. Considering possible parameterisations, if
we choose g(α) = V z + γg0 where αT = [zT , γ] for
some vector z and scalar γ, this gives the ‘homothetic’
parameterisation described e.g. in [17] which is produced
by translating and scaling a polyhedron {x ∈ Rn| V x ≤ h}
around the state space. For a state space of dimension n,
this implies n + 1 decision variables αk|t in the online
optimisation to parameterise the tube cross section Tk|t for
each prediction time k. A second possibility is to choose the
dimension of α to match the number of rows of V and define
g(α) = α, which gives the parameterisation found in [11].
In that case, each tube cross-section T (αk|t) is defined by
V x ≤ αk|t. This is more flexible, but could require more
decision variables in the online optimisation.

To ensure that the sequence of tube cross-sections T (αk|t)
contains all possible future states under the dynamics (1), we
apply the following conditions for all k = t, . . . , t+N − 1
and all possible θk|t over the prediction horizon:

Tk|t ⊆ {x ∈ Rn| Ā(θk|t)x+Bck|t(θk|t) ∈ Tk+1|t} (11)

Tk|t ⊆ {x ∈ Rn| F̄ (θk|t)xt +Gck|t(θk|t) ≤ 1} (12)

In words, (11) ensures that Tk|t is a subset of the preimage
of Tk+1|t under the system dynamics and (12) ensures that
constraints (3) will be satisfied. For the final predicted set
Tt+N |t, we apply the corresponding terminal conditions

Tt+N |t ⊆ {x ∈ Rn| Ā(θk|t)x ∈ Tt+N |t} (13)

Tt+N |t ⊆ {x ∈ Rn| F̄ (θk|t)xt ≤ 1} (14)

which ensure that this final tube cross section is an admis-
sible set under the feedback uk|t = K(θk|t)xk|t.

These set theoretic conditions can be converted to con-
straints on the parameters αk|t using the following lemma,
which gives a sufficient condition:

Lemma 1 (Subsets of parameterised sets). Let P1(β1) =
{x : V1x ≤ g1(β1)} and P2(β2) = {x : V2x ≤ g2(β2)},
where g1 and g2 are affine functions of vectors β1 and β2,
and let H∗(g1(β

∗
1), V1, V2) be a matrix with rows hT

i as

hT
i = argmin

h≥0, hTV1=vT
2,i

hT g1(β
∗
1) (15)

for any β∗
1 ∈ Rs, where vT2,i denotes the i’th row of V2.

Then P1(β1) ⊆ P2(β2) if the inequality

H∗(g1(β
∗
1), V1, V2)g1(β1) ≤ g2(β2). (16)

holds for the given values of β1 and β2.

Proof. Note that if P1(β1) is an empty set, the subset
condition holds trivially. If P1(β1) ̸= ∅, then considering
the rows vT2,i of V2, the subset relation holds if and only if

max
x∈P1(β1)

vT2,ix ≤ g2,i(β2) (17)

for all i where g2,i(β2) denotes the i’th element of g2(β2).
We define a Lagrange dual function (see e.g. [18]) associated
with the maximisation as L(x, h) = vT2,ix + hT (g1(β1) −



V1x) in which h ≥ 0 denotes the Lagrange multipliers of
the constraints V1x ≤ g1(β1) defining P1(β1). As the term
hT (g1(β1)−V1x) is nonnegative we have the bound vT2,ix ≤
L(x, h) for any h ≥ 0 and any x ∈ P1(β1). If we choose
h according to (15) such that hTV1 = vT2,i then L(x, h) =
hT g1(β1) as the terms involving x cancel. Hence for any
x ∈ P1(β1), we have the bound vT2,ix ≤ hT g1(β1), but
also (16) implies hT g1(β1) ≤ g2,i(β2) so that (17) holds as
required. As this holds for all rows i, the result follows.

As the rows of H∗(g1(β
∗
1), V1, V2) are Lagrange mul-

tipliers of (17), at most n = dim(x) constraints will be
active at the maximum and the complementary slackness
condition hT (g1(β1) − V1x) = 0 implies that h contains at
most n nonzeros, so the resulting matrix H∗(g1(β

∗
1), V1, V2)

is sparse. Using Lemma 1, we define parameter-dependent
matrices Hp(θk|t) and Hf (θk|t) to apply (11) and (12)
as Hp(θ) = H

(0)
p +

∑q
i=1 ∆

(i)
Hp

θi, Hf (θ) = H
(0)
f +∑q

i=1 ∆
(i)
Hf

θi where ∆
(i)
Hp

and ∆
(i)
Hf

for i = 1, . . . , q are

∆
(i)
Hp

= H∗(g(α∗), V, V∆
(i)

Ā
) (18)

∆
(i)
Hf

= H∗(g(α∗), V, ∆
(i)

F̄
) (19)

where we have defined ∆
(i)

Ā
= ∆

(i)
A + B∆

(i)
K and ∆

(i)

F̄
=

∆
(i)
F +G∆

(i)
K . Matrices H

(0)
p and H

(0)
f are similarly

H(0)
p = H∗(g(α∗), V, V Ā(0)) (20)

H
(0)
f = H∗(g(α∗), V, F̄ (0)) (21)

where we have defined Ā(0) = A(0) + BK(0) and F̄ (0) =
F (0) +GK(0). Using Hp(θk|t) and Hf (θk|t), we may state
sufficient conditions for (11) and (12):

Proposition 2 (Tube constraints). If, for a given θk|t,

Hp(θk|t)g(αk|t) + V Bck|t(θk|t) ≤ g(αk+1|t) (22a)
Hf (θk|t)g(αk|t) +Gck|t(θk|t) ≤ 1 (22b)

then (11) and (12) hold, i.e. the tube cross sections will bound
the predicted state and satisfy state and input constraints.

Proof. The subset relations (11) and (12) may be written as

{x ∈Rn| V x ≤ g(αk|t)}
⊆ {x ∈ Rn| V (Ā(θk|t)x+Bck|t(θk|t)) ≤ g(αk+1|t)}

{x ∈Rn| V x ≤ g(αk|t)}
⊆ {x ∈ Rn| F̄ (θk|t)x+Gck|t(θk|t) ≤ 1}

from which the results follow by applying Lemma 1.

Proposition 3 (Terminal constraints). If, for a given θk|t,

Hp(θk|t)g(αN |t) ≤ g(αN |t) (23a)
Hf (θk|t)g(αN |t) ≤ 1 (23b)

then conditions (13) and (14) hold, i.e. the terminal tube
cross-section Tt+N is an admissible set.

Proof. Follows from Proposition 2 by substituting k = N ,
k + 1 = N and ck|t(θk|t) = 0

VI. MPC ALGORITHM AND CLOSED-LOOP PROPERTIES

Online, we perform a pre-processing step before the QP
solution to consider rate bounds in a similar manner to [13].
The preprocessing determines θ

[j]
k|t for j = 1, . . . , r such

that θk|t ∈ Co
(
θ
[j]
k|t

)
= Θk|t at each prediction time k. This

is conservative but straightforward, and we calculate Θk|t as

Θk|t = ({θt}+ (k − t)D) ∩Θ (24)

in which ‘+’ denotes the Minkowski sum of sets. This
calculation can be simplified in some cases, for example if
both Θ and D are hyper-rectangles as in [13].

Optimisation 1.

minimise
x,αk|t,c

(i)

k|t

[
xt

dt

]T
W

[
xt

dt

]
subject to V xt ≤ g(αt),

Hp(θ
[j]
k|t)g(αk|t) + V Bck|t(θ

[j]
k|t) ≤ g(αk+1|t),

Hf (θ
[j]
k|t)g(αk|t) +Gck|t(θ

[j]
k|t) ≤ 1,

Hp(θ
[j]
N |t)g(αN |t) ≤ g(αN ),

Hf (θ
[j]
N |t)g(αN |t) ≤ 1,

for all j = 1, . . . , r

for all k = t, . . . , t+N − 1

The MPC algorithm can now be stated as:

Algorithm 1. Repeat for all times t = 0, 1, . . .

1) Measure the current state xt and θt,
2) Perform pre-processing to apply rate bounds and find

θ
[j]
k|t for k = t, t+ 1, . . . , t+N and j = 1, 2, . . . , r,

3) Solve Optimisation 1 and apply the control ut =
K(θt) + ct(θt) to the system.

We prove that Algorithm 1 remains feasible and stabilises
the system, with the state approaching the origin exponen-
tially in closed-loop if Optimisation 1 can be solved at t = 0.

Theorem 1 (Recursive feasibility). If there is a solution to
Optimisation 1 at time t and the state xt evolves according
to the dynamics (1) with the control policy (4), then there
exists a solution to Optimisation 1 at time t+ 1.

Proof. Considering the sets Θk|t resulting from pre-
processing, we have Θk|t+1 ⊆ Θk|t. Hence due to the affine
dependence of the constraints in Optimisation 1 on θ

[j]
k|t, if the

variables c
(i)
k|t and αk|t satisfy constraints at time t, the same

values will satisfy these constraints at time t+1. This is the
case for all variables except for αt+N+1|t+1 and c

(i)
t+N+1|t+1

which did not appear in Optimisation 1 at time t. For these
we choose αt+N+1|t+1 = αt+N |t and c

(i)
t+N+1|t+1 = 0 as

the terminal conditions (13) and (14) ensure that T (αt+N |t)
is an admissible set for ut = K(θt)x. We have therefore
constructed a feasible point at time t+ 1.

Theorem 2 (Exponential stability). When the scheduled con-
trol policy (4) is applied using the solution of Optimisation



1, and the state xt follows the LPV-A dynamics (1), then[
xt

dt

]T
W

[
xt

dt

]
≤ ε

t
n−1

[
x0

d0

]T
W

[
x0

d0

]
for some 0 ≤ ε < 1 where n = dim(x), so both xt and dt
converge exponentially to zero in closed-loop.

Proof. Multiplying (8) on the left and right by [xT
k|td

T
k|t] and

its transpose respectively, noting that as θk|t ∈ Co(θ
[j]
k|t) the

analogous inequality holds for any given θk|t, then summing
that inequality over k, . . . , k + n− 1 gives:[

xk|t
dk|t

]T
W

[
xk|t
dk|t

]
−
[

xk+n|t
dk+n|t

]T
W

[
xk+n|t
dk+n|t

]
≥ max

θk|t,θk+1|t,...

k+n−1∑
j=k

(
xT
j|tQxj|t + uT

j|tRuj|t

)
(25)

The observability condition of Assumption 2 implies
that the right hand side of this expression is pos-
itive definite in xk|t and dk|t. Denoting [xT

k|td
T
k|t]

by sk|t, we can therefore find constants δ1 and δ2
such that δ1∥s∥2 ≤ sTWs ≤ δ2∥s∥2 for all s

and maxθk|t,θk+1|t,...

∑k+n−1
j=k

(
xT
j|tQxj|t + uT

j|tRuj|t

)
≥

δ1∥sk|t∥2. Hence, considering predicted values at time t,

sTk+n|tWsk+n|t ≤ (1− δ1/δ2)s
T
k|tWsk|t (26)

for all t. Due to recursive feasibility, the actual (not pre-
dicted) values satisfy sTt+nWst+n ≤ sTt+n|tWst+n|t so by
putting k = t in (26), sTt+nWst+n ≤ (1 − δ1/δ2)s

T
t Wst

holds in closed-loop operation of the MPC. Assumption 2
implies that the quantity xT

t Qxt+uT
t Rut can equal zero for

at most n time steps in closed-loop operation for a nonzero
xt. From (25) the same therefore applies to sTt Wst, and (26)
implies that after n timesteps it must decrease by at least a
factor of ε = 1− δ1/δ2. The given result follows.

VII. SIMULATION EXAMPLES

A. Example 1

The first comparison uses a system from [2], such that
A(1), A(2), B and x0 are defined by:

A(1) =

 0.2730 0.0660 0.3021 −0.5012
0.2717 0.4416 0.5602 −0.7123
0.3051 −0.7865 0.7651 −0.3121
0.7962 −0.1452 0.5231 −0.9345



A(2) =

 0.2093 −0.1981 0.2394 0.5671
0.2717 0.4598 0.5602 1.3782
−0.4700 0.6700 −0.8600 −1.2400
0.3456 −0.6312 −1.4594 1.8936



B =

 0.2300
0.2601
0.1213
1.3452

 , x0 =

 −0.3964
0.4377
−1.0905
1.1137


and the uncertain matrix A(θ) is given by the expression
A(θ) = θA(1) + (1 − θ)A(2). The control objectives are
specified by Q = I , R = 1, and the constraints |u| ≤ 2 and
|x3| ≤ 1.4. The time variation of θ ∈ [0, 1] is the sigmoid

θ = 1 − 1
1−e(t−10) centered at t = 10. For this system, a

suitable state feedback K(θ) = θK(1) + (1 − θ)K(2) may
be found by solving the LMI optimisation (see [19]):

maximise Trace(X)

subject to:
X 0 0 A(j)X +BY (j)

0 Q−1 0 X
0 0 R−1 Y (j)

∗ ∗ ∗ X

 ⪰ 0

and defining K(j) = Y (j)X−1. We compute the maximal
admissible set, V x ≤ g0, define H

(j)
p and H

(j)
f according

to (18) and (19), and use a homothetic tube, g(α) = V z +
γg0 where αT = [zT , γ]. Table I and Figure 1 show the
results of the LPV-A tube MPC of Algorithm 1 compared
with the LMI-based technique for MPC of LPV systems from
[2]. Yalmip [20] and the solvers OSQP [21] and MOSEK
were used for numerical experiments in MATLAB, using the
default solver settings in each case. For N = 5, Algorithm
1 achieves better performance in terms of computation time
and closed-loop cost than the LMI-based algorithm from [2].
For Algorithm 1, the constraint u0 ≥ −2 is active at the
initial time in Fig 1, while the LMI-based method shows
conservatism as u0 ̸= −2.

B. Example 2

We additionally consider the example system from [11]:

A(0) =

[
0.261 −1.098
0.891 0.419

]
B =

[
0.319
−1.308

]
∆

(1)
A =

[
0 0.125

−0.125 0

]
∆

(2)
A =

[
0.025 0
0.125 −0.025

]
∆

(3)
A =

[
−0.025 −0.125

0 0.025

]
with Θ ⊆ R3 defined as the unit simplex. The control ob-

jectives are given by Q = I and R = 1 and K was chosen as
the corresponding LQR feedback K =

[
0.484 −0.440

]
.

There is an input constraint |u| ≤ 12.5 and a state constraint
|x2| ≤ 41.7. The tube is parameterised as V x ≤ α, with
V defined by the maximal admissible set, as in [11], but
additionally we apply rate bounds |δθt| ≤ 0.2.

We consider 4 different MPC controllers using natural
modifications of Optimisation 1: Robust MPC, i.e. the con-
troller does not know parameter θt at each time t; LPV MPC,
which exploits knowledge of this parameter and optimises a
control policy uk|t = Kxk|t + ck|t; LPV with rate bounds,
which further uses knowledge of the rate bounds to relax
constraints; and finally, the LPV-A MPC of this paper which
uses both rate bound knowledge and a scheduled policy to
optimise a policy uk|t = Kxk|t + c(θk|t). Additionally, we
compare with the robust MPC algorithm of [11], choosing
N = 6 for all methods. For each we perform a closed-loop
simulation from the initial condition x0 = [−40 − 20]T for
the same randomly-chosen sequence θt satisfying the rate
bounds, with the results shown in Table II. Inspecting Table
II, the methods of this paper require less computation time
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Fig. 1. Performance comparison of LPV MPC controllers (Example 1).
Dashed: Quasi-min-max MPC, Solid: LPV Tube MPC (N=5) with sched-
uled policy. Constraint boundaries are also shown as dotted lines.

MPC Algorithm N=5 N=10 Quasi-Min-Max
(Alg. 1) (Alg. 1) [2]

Solver OSQP OSQP MOSEK
Closed-loop cost 11.2 11.1 14.8
Computation time /ms 5.41 10.43 7.81

TABLE I
COMPARISON OF COST AND COMPUTATION TIME FOR EXAMPLE 1

MPC Algorithm Robust LPV + rate + sched- Robust
(Alg. 1) (Alg. 1) bound uling [11]

Solver OSQP OSQP OSQP OSQP OSQP
ROA volume 5863 7731 8979 9824 6198

Closed-loop cost 4530 4522 3045 3002 4546
Comp. time /ms 3.08 3.16 3.19 4.37 5.70

TABLE II
COMPARISON OF COST AND COMPUTATION TIME FOR EXAMPLE 2

than those of [11] yet can provide reductions in closed-
loop cost and regions of attraction (ROA) when considering
this LPV system. We also calculate the ROA for θ0 = 0,
which are shown in Figure 2. Compared to robust MPC,
the assumption that the LPV parameter is measurable with
rate bounds provides a larger ROA. Using the gain-scheduled
policy of this paper provides a further improvement, with no
additional assumptions required on the system dynamics.
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