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Abstract— Communication scheduling is needed when con-
trol loops of several safety-critical systems are closed through
a shared communication medium. To enable schedulability,
control for each system is designed primarily to minimize its
communication demand. In this paper, we study communication
demand minimization for a class of perturbed multi-agent net-
worked control systems with a shared communication medium
and subject to input and coupled state constraints. First, a
framework to design communication schedule and control is
recalled such that state and input constraints are satisfied under
no coupling assumption. Then, a heuristic method is proposed to
decouple state constraints such that the overall communication
demand of the systems is minimized. Effectiveness of the
proposed results are illustrated through a numerical example.

I. INTRODUCTION

A networked control system (NCS) is a system whose
feedback loop is closed through a communication medium.
NCSs have several benefits such as reduced wiring costs,
increased system agility, and eased diagnosis and mainte-
nance. However, network imperfections such as bandwidth
limitation and packet losses may degrade the control per-
formance or cause instability [1], [2]. The communication
imperfections can be taken into account explicitly to ensure
the desired control performance. Another important consid-
eration in the design is the selection of a medium access
control (MAC) mechanism. There are two types of MAC:
1) random access schemes (aperiodic), and 2) scheduling
schemes (periodic) [3]. While random access schemes, such
as event-triggered and self-triggered control [4], may be used
to minimize energy consumption or utilization of the com-
munication medium, it is easier to guarantee performance
when scheduling schemes are used [5]. Scheduling schemes
are typically used in safety-critical applications, such as
autonomous driving, where safety is specified through state
and input constraints.

Constrained NCSs are a class of NCSs in which each
system is subject to state and input constraints. Model
predictive control (MPC) is used in [6] to minimize a cost
function using available communication resources in a so-
called token bucket network. This approach is extended in
[7] using tube-based MPC and the so-called multi-step robust

M. Baharaini and P. Falcone are with the department of Electrical
Engineering, Chalmers University of Technology, Gothenburg, Sweden.
masoudb/falcone@chalmers.se.

M. Zanon is with IMT School for Advanced Studies Lucca, Italy.
mario.zanon@imtlucca.it

A. Colombo is with DEIB, Politecnico di Milano, Italy.
alessandro.colombo@polimi.it

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by Knut and Alice Wallen-
berg Foundation.

control invariant (RCI) sets to guarantee robust satisfaction
of the constraints. A multi-step RCI set is invariant for a
maximum of H consecutive steps under open-loop feedback.
This work is further extended in [8], where output feedback
is designed using an event-triggered scheme. While the token
bucket network limits the communication rate, it does not
trivially translate to an MAC scheme for multi-agent NCSs.

Multi-agent constrained NCSs with a shared communi-
cation medium are considered in [9], where authors define
and use α, that is the longest time-interval during which the
invariance is presented under open-loop feedback. The set
of α of all systems is used as an instance of the so-called
Pinwheel Problem (PP) to find a feasible communication
schedule. This scheme is extended for general communica-
tion topologies and online schedules [10], optimal control
design [11], and optimal output feedback design [12]. In
these studies, state and input constraints are decoupled.

In this paper, we study the NCS class examined in [11]
and extend the results to cases with coupled state constraints.
As the controllers are distributed, one can choose to use
either a Distributed MPC (DMPC) which takes into account
the communication between controllers, or a Decentralized
MPC (DeMPC) which assumes no communication between
controllers, for the control design [13]. We consider a decen-
tralized scheme, which involves no communication between
the controllers. The lack of communication between the
controllers introduces unavoidable conservativeness [14].

The contributions of the paper are summarized as follows:
(a) control and communication scheduling design for a
class of multi-agent NCSs subject to coupled constraints
is formulated, (b) a solution for the formulated problem is
proposed using a constraint decoupling scheme, (c) sufficient
and necessary conditions for the existence of a feasible
schedule are provided, and (d) a heuristic method for optimal
constraint decoupling is proposed. The control and schedul-
ing design is performed using the tools and the results from
[10], [11], which are applicable with some modifications,
after the constraints are decoupled. The main contributions of
this paper are formulation of an optimal decoupling problem
to enable schedulability and proposing a heuristic scheme to
find a solution to the optimal decoupling problem.

The rest of the paper is organized as follows. In Section II
several definitions and results from the literature are recalled,
the control and communication scheduling design problem
is formulated, a solution for the formulated problem is pro-
vided through a constraint decoupling scheme, and a second
problem for optimal decoupling is formulated. In Section III
necessary and sufficient conditions for the existence of a
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feasible schedule for the first problem under the optimal
decoupling scheme are provided. Then a heuristic method
is proposed to find a solution to the optimal decoupling
problem. Effectiveness of the proposed results are illustrated
in Section IV through a numerical example. The paper is
finally concluded in Section V.

Notation: Given two sets P,Q ⊂ Rn, the Minkowski sum
P ⊕Q and the Pontryagin difference P ⊖Q are defined by
{p+q : p ∈ P, q ∈ Q} and {p : p⊕Q ⊆ P}, respectively.
Given matrix F and set P , set FP is defined as {Fp : p ∈
P}. Set of integers Iba is defined as {a, a + 1, . . . , b} for
arbitrary integers a and b. Cardinality of set S is defined
as |S|. Vector inequality h1 ≤ h2 is defined element-wise.
Lexicographic optimization

lex max
x

(f1(x), . . . , fn(x))

yields optimizer x⋆, where f1(x
⋆) = maxx f1(x) and

fi(x
⋆) = max

x
fi(x) s.t. fj(x) = fj(x

⋆), ∀j ∈ Ii−1
1 , i ∈ In2 .

II. PRELIMINARIES

In this section, we formulate two problems. The first
problem is to design a communication schedule and control
for a class of multi-agent NCSs with a shared communication
medium and in the presence of coupled state and input
constraints. The first problem is answered in the literature in
the absence of constraint coupling. We leverage the available
results and suggest a set of decoupled state constraints to
solve the first problem. As the set of decoupled constraints is
not unique and has an impact on schedulability, we formulate
the second problem to determine an optimal set of decoupled
constraints to facilitate schedulability.

A. Control and Scheduling Design Problem

Consider a set of discrete-time systems described by

xi(t+ 1) = Aixi(t) +Biui(t) + Fiwi(t) (1a)
xi(t) ∈ Xi ⊂ Rni , ui(t) ∈ Ui, wi(t) ∈ Wi (1b)

for i = Iq1, where Xi and Ui are admissible sets for state
and input, and Wi is an admissible set for the unknown
disturbance. Pair (Ai, Bi) is assumed to be controllable and
admissible sets Xi,Ui and Wi are convex polytopes which
include zero in their interiors. Additionally, (1) is subject to

q∑
i=1

Gixi ≤ h, (2)

where Gi ∈ RN×ni and h ∈ RN
>0.

Consider a class of multi-agent NCSs depicted in Fig. 1.
The systems, described in (1) and (2), share a communication
medium. At each time instant, the communication schedule
δ(t) specifies which system gets access to the communication
channel. In other words, the feedback loop for each system
i is closed at time instant t if and only if δ(t) = i.

Problem 1. Design decentralized control policies for a set
of systems described in (1) and (2) and a communication

system 1 S

S

S

A

A

A

Communication 
Scheduler

Wireless 
Channel

system 2

system q

controller 1

controller 2

controller q

Fig. 1. Multi-agent NCS with a shared communication medium

schedule for the described NCS such that all input and state
constraints are satisfied for all wi(t) ∈ Wi, i ∈ Iq1 and t ≥ 0.

Remark 1. One can consider Problem 1 under a more
general communication topology. We refer to [10] for those
topologies and skip the nuances for brevity.

B. Scheduling and Control Design for Decoupled Systems

Next, several results are recalled from the literature, to
solve Problem 1 when coupled constraints (2) are omitted.

Definition 1 (Robust Control Invariant Set). Set Ci is called
a robust control invariant (RCI) set for system i, described
in (1), if Ci ⊆ Xi and

∀xi ∈ Ci, ∃ui ∈ Ui =⇒ (Aixi +Biui + Fiwi) ∈ Ci, (3)

for any wi ∈ Wi.

Definition 2 (Maximal RCI Set). Set Ci,∞ is called the
maximal RCI (MRCI) set for system i, described in (1), if
Ci,∞ is an RCI set and Ci ⊆ Ci,∞, for all RCI sets Ci.

The MRCI set for system i is its largest RCI set and a
closed-loop feedback policy exists such that xi(t) ∈ Ci,∞ ⊆
Xi and ui(t) ∈ Ui for all t ≥ 0, when xi(0) ∈ Ci,∞. How-
ever, condition xi(0) ∈ Ci,∞ does not guarantee invariance
for systems within the described NCS, since feedback loops
are open at some time instants. To investigate invariance
under such conditions, the open-loop behavior of the systems
is studied next.

Definition 3 (Safe Time Interval). Safe time interval αi is
defined as

αi := max
j

{j : ∀x0 ∈ Ci,∞, ∃u0, . . . , uj−1 ∈ Ui

s.t. Aj
ix0 +

j−1∑
k=0

A
(j−1−k)
i (Biuk + Fiwk) ∈ Ci,∞} (4)

for any disturbance wk ∈ Wi, k ∈ Ij−1
0 .

Safe time interval αi specifies the maximum number of
time instants during which state invariance can be guaranteed
using an open-loop input sequence for system i, described
in (1). Hence, one can guarantee state and input constraints
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satisfaction for system i, when the feedback loop for system
i is closed at least once during any αi consecutive time
instants. Given a set of the safe time intervals {αi}, one
can formulate a scheduling problem such that all feedback
loops are closed frequently enough, as specified next.

Definition 4 (Pinwheel Problem (PP)). Find an infinite
sequence {δ(t)} with δ(t) ∈ Iq1 such that

∃t ∈ It0+αi−1
t0 s.t. δ(t) = i, ∀i ∈ Iq1, ∀t0 ≥ 1. (5)

The existence of a communication schedule that satisfies
(5) depends on the set of safe time intervals. As αi increases,
the communication demand for system i decreases. Hence,
maximization of αi is discussed next.

Lemma 1. [from [11]] Inequality αi(C1) ≤ αi(C2) holds if
C2 = γC1, U2 = γU1, and γ ≥ 1, where C1 and C2 are RCI
sets for system (1) and U1 and U2 are the admissible sets for
the corresponding inputs.

Lemma 2. [from [11]] Assume that ∆C and ∆U are compact
polytopes that include the origin in their interiors and

xi ∈ ∆C =⇒ ∃ui ∈ ∆U s.t. Aixi +Biui ∈ ∆C. (6)

Then, inequality α(C1) ≤ α(C2) holds for C2 = C1⊕∆C and
U2 = U1 ⊕ ∆U , where C1 and C2 are RCI sets for system
(1) and U1 and U2 are the admissible sets for the inputs.

Lemma 1 and 2 imply that αi increases or remains the
same, as the RCI set used in (4) enlarges. This is the reason
why in Definition 3, the largest RCI set, i.e., Ci,∞ is used.

Remark 2. Safe time interval αi can be defined based on
any RCI set Ci. While Lemma 1 and 2 imply that αi is
maximal in certain cases when defined based on Ci,∞, they
do not prove this in general. Nevertheless, we defined αi in
(4) based on Ci,∞ set since we are not aware of any approach
to find an RCI set that yields a larger αi if such set exists.

Conjecture 1. To maximize αi, defined in (4), one can
maximize the admissible set Xi, all other things being equal.

Remark 3. Consider safe time interval αi as a function of
X , with an arbitrary RCI set C ⊆ X . We argue that αi(X1) ≤
αi(X2) holds, with X1 and X2 as admissible sets for the state
xi, if X1 ⊆ X2. Since any RCI set C for which αi(X1) is
maximal is also an RCI set in case of the admissible set X2,
αi(X2) is at least equal to αi(X1). However, Conjecture 1
may not hold in general since the safe time interval αi is
defined based on the MRCI set Ci,∞.

The last ingredient needed to provide a solution to Prob-
lem 1 is to design a decentralized control policy for each
system, given MRCI set Ci,∞, and hence αi, for all systems
and a corresponding feasible schedule. In order to design

such controllers, consider the following formulation

min
x̄,u

α−1∑
k=0

(
x̄⊤
k Qx̄k + u⊤

k Ruk

)
+ x̄⊤

αPf x̄α (7a)

s.t. x̄0 = x0 ∈ C∞, (7b)
x̄k+1 = Axk +Buk, (7c)
uk ∈ U , (7d)
x̄α ∈ X̄f , (7e)

where Q, R, and Pf are positive definite matrices with
appropriate sizes and X̄f := C∞ ⊖

(⊕α−1
j=0 AjFW

)
. Note

that index i is omitted for brevity.
The optimization problem (7) returns a sequence of αi

control inputs, which are successively applied to system i
until the next state measurement is received. Upon receiving
the state measurement, the remaining sequence of inputs is
discarded, and the optimization problem is solved again using
the latest state measurement, denoted by x0. Note that this
scheme guarantees recursive feasibility, see Lemma 3 from
[11], and therefore, it guarantees satisfaction of state and
input constraints.

C. Optimal Constraint Decoupling Formulation

The recalled scheme described in Subsection II-B does not
guarantee satisfaction of the coupled state constraints (2). In
order to satisfy the coupled constraints in a decentralized
fashion, we decouple the constraints by

Gixi ≤ hi,

q∑
i=1

hi ≤ h, hi ≥ 0. (8)

Using (8), the updated admissible set for each system i is

X u
i (hi) := {xi ∈ Xi : Gixi ≤ hi}. (9)

Remark 4. In order to solve Problem 1, use X u
i as the state’s

admissible set, find a communication schedule that satisfies
(5), and update control inputs by solving (7) recursively.

The selection of hi impacts the size of the set X u
i (hi) and

hence the size of the MRCI set Ci,∞. As a result, value of
the safe time interval αi is a function of hi. The set {αi} in
turn impacts existence of a feasible schedule, as described in
(5). Therefore, to enable schedulability, one can formulate

min
δ(1),...,δ(Tr),Tr,h1,...,hq

Tr (10a)

s.t. δ(t) ∈ Iq1, Tr ∈ N, (10b)

Tr ≤
q∏

i=1

αi(hi), (10c)

t+αi(hi)−1∑
k=t

ηi(k) ≥ 1, ∀i ∈ Iq1, ∀t ∈ ITr
1 , (10d)

ηi(k) =

{
1 if i = δ(k mod Tr)

0 if i ̸= δ(k mod Tr)
, (10e)

q∑
i=1

hi ≤ h, hi ≥ 0, (10f)
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where δ(0) := δ(Tr), and the optimizer δ⋆(1), . . . , δ⋆(T ⋆
r )

is the periodic part of a feasible schedule, if it exists. The
optimization problem (10) is formulated based on the fact
that existence of a feasible schedule for the PP implies that
a periodic feasible schedule also exists for the PP, see [10]
for additional details on schedulability of an instance of the
PP. Note that the optimization problem (10) is combinatorial
and generally intractable. Hence, we propose solving an
alternative optimization problem, to maximize the safe time
intervals collectively, as follows:

lex max
h1,...,hq

(
min
i∈Iq1

αi(hi)

)
(11a)

s.t.
q∑

i=1

hi ≤ h, hi ≥ 0. (11b)

Problem 2. Solve the optimization problem (11), where
αi(hi) is defined as in (4) and subject to Ci,∞ ⊆ X u

i (hi).

The larger each safe time interval αi is, the less communi-
cation time-slots need to be allocated to the system i. Since
the communication time-slots are limited, increase of the safe
time intervals facilitates schedulability. Hence, Problem 2 is
formulated to maximize the safe time intervals collectively.

Remark 5. Optimization problem (11) is primarily used as
a proxy for schedulability; i.e., finding {hi} such that the
corresponding set {αi} is schedulable. However, there might
exist cases where (11) yields a non-schedulable set {αi(hi)},
while (10) has a feasible solution.

III. MAIN RESULTS

In this section, we provide the main results that are:
necessary and sufficient conditions for existence of a feasible
schedule for Problem 1 under optimal constraint decoupling
and a heuristic method to solve Problem 2.

Lemma 3. For any set of hi, specified in (8), inclusion

X u
i (hi) ⊆ X u

i (hj), (12)

holds for all hj if hi ≤ hj .

Proof. x ∈ X u
i (hi) =⇒ x ∈ X u

i (hj) based on (9).

Lemma 4. Inequality αi(hi) ≤ ᾱi holds, where

ᾱi := max
t

{t : Wt
i ⊆ C̄i,∞}, Wt

i :=

t−1⊕
j=0

Aj
iFiWi, (13)

and C̄i,∞ is the MRCI set for system i, described in (1), with
X u

i (h) as the admissible set for the state.

Proof. Since X u
i (hi) ⊆ X u

i (h), inclusion Ci,∞ ⊆ C̄i,∞ holds
as well. Furthermore,

Wt
i ⊆ {Ak

i x0 +

j−1∑
k=0

(
Aj−k−1

i Biuk

)
} ⊕Wt

i , (14)

for all x0 ∈ Ci,∞ and corresponding uk ∈ Ui. Inclusion (14)
and definition of αi(hi) imply that Wt

i ⊆ Ci,∞, ∀t ≤ αi(hi).

Since Ci,∞ ⊆ C̄i,∞, one can conclude that Wt
i ⊆ C̄i,∞, ∀t ≤

αi(hi) and thus, ᾱi ≥ αi(hi) holds by definition.

Lemma 5. A necessary condition for existence of a feasible
schedule for the described NCS is schedulability of the
instance {ᾱi} by PP.

Proof. Assume that there exist a set of feasible hi and αi(hi)
such that {αi} is accepted by PP. Therefore, an infinite
sequence {δ(t)} exists that satisfies (5) for all αi(hi). Since
ᾱi ≥ αi for all i, due to Lemma 4, the same sequence of
{δ(t)} also satisfies (5) for ᾱi. Therefore {δ(t)} is a feasible
schedule for {ᾱi}, which leads to a contradiction.

One may use Lemma 5 to verify that the necessary
condition is met before attempting to find any optimal
decoupling through optimization. Set {ᾱi} may be used to
reduce computation, for instance by halting the search for an
hi that increases αi(hi), when αi(hi) = ᾱi.

Lemma 6. A sufficient condition for existence of a feasible
schedule for the described NCS is schedulability of instance
{αi(hi)} by PP, for an arbitrary set of hi that satisfies (11b).

Proof. Since {αi(hi)} is accepted by PP, then there exists an
infinite sequence {δ(t)} that satisfies (5). Furthermore, the
state admissible set for each system is decoupled as defined
in (9). Therefore, one can solve optimization problem (7)
to obtain the control inputs for each system. Since (7) is
recursively feasible, see Lemma 3 from [11], all constraints
are satisfied robustly, and {δ(t)} is a feasible schedule.

In order to solve the optimization problem (11), we
provide a procedure based on Conjecture 1 and Lemma 3
statements. Conjecture 1 posits that in order to increase the
safe time interval for a given system, one can enlarge its state
admissible set, and Lemma 3 states that one can increase the
admissible set for each system i by increasing the elements
of the vector hi. In order to find a suboptimal solution for the
optimization problem (11), we suggest the following steps:

1) select α and adjust hi such that αi(hi) = α for all i,
2) increase α and update hi successively as long as (11b)

is respected, to maximize the minimum αi(hi),
3) if (11b) is violated, αi(hi) has to be lower than α, i.e.,

equal to (α− 1), for one or several systems,
4) select a system and fix its corresponding hi such that

αi(hi) = α− 1 with a minimal hi,
5) repeated the above step until (11b) is respected,
6) repeat the max-min problem for the rest of the systems.

Remark 6. In order to increase αi(hi), one can increase hi

incrementally. Furthermore, αi(hi) ≥ α may be infeasible.

Remark 7. Equality αi(hi) = α may hold for a range of
hi, i.e., h1 ≤ hi < h2. Furthermore, since

∑
i hi ≤ h, for a

given hi that satisfies αi(hi) = α, it is of interest to minimize
hi subject to αi(hi) = α.

Next, we specify the described heuristic method to solve
Problem 2. Consider {h0

i } as an initial guess for solving (11),
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defined by

h0
i,j :=

{
0 if Gi,j = 0
h(i)
Mj

if Gi,j ̸= 0
(15)

where Mj is the number of vectors Gi,j ̸= 0 for all i ∈ Iq1
and G⊤

i :=
[
G⊤

i,1 . . . G⊤
i,N

]
, h0

i :=
[
h0
i,1 . . . h0

i,N

]⊤
.

Using {h0
i } as an initial guess, Algorithms 1-4 provide a

heuristic method to solve the optimization problem (11).

Algorithm 1 Heuristic method for solving problem (11)

1: normalization: Gi,j :=
Gi,j

h(j)
and h(j) := 1, ∀j ∈ IN1 , ∀i ∈ Iq1

2: select a set of step sizes: e.g., steps =
[
0.1 0.05 0.02 0.01

]
3: compute h0

i , described in (15), and αi(h
0
i ) for all i ∈ Iq1

4: define α = mini
(
αi(h

0
i )
)

for all i ∈ Iq1 and define S := Iq1
5: update hi for all i ∈ Iq1 using Algorithm 3 with h0

i and α as its inputs
6: while |S| > 1 do
7: α = α+ 1
8: find hnew

i for all i ∈ S using Algorithm 2
9: if Algorithm 2 returns ”no solution” for system k then

10: set h = h− hk , remove k from S, and jump to line 8
11: end if
12: minimize hnew

i using Algorithm 3 for all i ∈ S
13: while

∑
i∈S hnew

i > h do
14: use Algorithm 4 to select one of the systems in S, i.e., k
15: set h = h− hk , remove k from set S
16: end while
17: hi = hnew

i for all i ∈ S
18: end while
19: if |S| = 1 then
20: hnew

i = h where i ∈ S, α = αi(h
new
i ), and

21: minimize hnew
i using Algorithm 3, and set hi = hnew

i
22: end if
23: return h1, . . . , hq and α1(h1), . . . , αq(hq)

Algorithm 1 is summarized as follows:
• start from an initial guess hi and compute αi(hi),
• set α to the minimum αi,
• find minimal hi such that αi(hi) = α for all systems,
• increase α and find hi such that αi(hi) = α,
• find minimal hi such that αi(hi) = α,
• if feasible hi for achieving αi(hi) = α does not exist,

select one or several of the systems whose hi is fixed
and satisfies αi(hi) = α− 1,

• repeat increasing α for the remaining systems.
Next, Algorithms 2-4 are described.

• Algorithm 2 increases hi, based on given step sizes,
until αi(hi) ≥ α. It returns ”no solution” if such hi ≤ h
does not exist. One may also consider returning hi =
h after line 4; while this works within the proposed
procedure, it may increase the computational burden.

• Algorithm 3 lowers hi, based on given step sizes, to
find the minimal hi such that αi(hi) ≥ α.

• Algorithm 4 finds the system that has the highest con-
tribution to the violated constraints. For each hnew(j) >
h(j), one inequality constraint is violated, by ∆jh
amount. Each system has a different normalized impact
on this violation, specified by ∆jhi. Note that ∆jhi > 1
is treated the same as ∆jhi = 1 since resetting hnew

i (j)
with hi(j) negates this constraint violation. Cost J(i)
is the sum of the normalized impacts, for system i, on
all the violated constraints. In order to avoid violation

of the constraints, the system with the highest cost is
selected to be removed. This implies that the removed
systems have lower α versus the remaining systems.

Algorithm 2 Find hnew
i such that αi(h

new
i ) ≥ α

1: compute αi(h)
2: if αi(h) < α then
3: return ”no solution”
4: end if
5: for p = 1 to number-of-steps do
6: hnew

i = hi + steps(p)× 1
7: if hnew

i ≤ h then
8: hi = hnew

i and compute αi(h
new
i )

9: if αi(h
new
i ) < α then

10: jump to line 6
11: end if
12: return hi

13: end if
14: for q = 1 to N do
15: set hnew

i = hi and hnew
i (q) = hi(q) + steps(p)

16: if hnew
i ≤ h then

17: hi = hnew
i and compute αi(h

new
i )

18: if αi(h
new
i ) < α then

19: jump to line 14
20: end if
21: return hi

22: end if
23: end for
24: end for
25: return ”no solution”

Algorithm 3 minimize hi subject to αi(hi) = α
1: for p = 1 to number-of-steps do
2: hnew

i = hi − steps(p)× 1
3: if hnew

i ≥ 0 then
4: compute αi(h

new
i )

5: if αi(h
new
i ) ≥ α then

6: hi = hnew
i and jump to line 2

7: end if
8: end if
9: for q = 1 to N do

10: hnew
i = hi and hnew

i (q) = hi(q)− steps(p)
11: if hnew

i ≥ 0 then
12: compute αi(h

new
i )

13: if αi(h
new
i ) ≥ α then

14: hi = hnew
i and jump to line 9

15: end if
16: end if
17: end for
18: end for
19: return hi

Algorithm 4 find k ∈ S with highest impact on the
inequality

∑
i∈S hnew

i > h

1: hnew =
∑

i∈S hnew
i

2: J(i) = 0 for all i ∈ S
3: for all j = 1 to N do
4: if hnew(j) > h(j) then
5: ∆jh = hnew(j)− h(j)

6: ∆jhi =
hnew
i (j)−hi(j)

∆jh
for all i ∈ S

7: J(i) = J(i) + min(∆jhi, 1) for all i ∈ S
8: end if
9: end for

10: find k such that J(k) = maxi J(i)
11: return k
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IV. NUMERICAL RESULTS

Consider a network of three systems described by:

Ai =

[
1 1.1− 0.1i
0 1

]
, Fi = Bi =

[
0.5
1

]
, |ui| ≤ 0.5,

with |xi,1| ≤ 5, |xi,2| ≤ 1, |w1| ≤ 0.13, |w2| ≤ 0.11, |w3| ≤
0.07, and coupled constraints−1

−1
−1

 ≤

 0 1 0 −1 0 0
0 0 0 1 0 −1
0.2 0 0 0 −0.2 0

x ≤

11
1

 .

One can compute the upper bounds for the safe time inter-
vals, described in (13), i.e., ᾱ1 = 6, ᾱ2 = 7, ᾱ3 = 9.
Note that the upper bounds satisfy the necessary condition,
specified in Lemma 5. In this case, a simple round-robin is
a feasible schedule, i.e., δ := 1 2 3 1 2 3 . . ..

Next consider the initial guess, described in (15), i.e.,

[
h0
1 h0

2 h0
3

]
=

0.5 0.5 0
0 0.5 0.5
0.5 0 0.5


The corresponding safe time intervals in this case are
α1(h

0
1) = 2, α2(h

0
2) = 3, α3(h

0
3) = 6. Note that the

above initial guess does not satisfy the sufficient condition
in Lemma 6. That there is no schedule that satisfies (5) for
the above safe time intervals, based on exhaustive search.

Next, we provide steps taken by Algorithm 1 in order to
solve (11). First, α = 2 is selected and

[
h1 h2 h3 h

]
=

0.39 0.33 0 1
0 0.33 0.21 1

0.15 0 0.06 1

 .

Since h1 + h2 + h3 < h, α is increased to 3, which yields

[
h1 h2 h3 h

]
=

0.52 0.44 0 1
0 0.44 0.28 1

0.27 0 0.09 1

 .

Since h1 + h2 + h3 < h, α is increased to 4, which yields

[
h1 h2 h3 h

]
=

0.65 0.55 0 1
0 0.55 0.35 1

0.43 0 0.15 1

 .

This time h1(1)+h2(1) > h(1), and a violation has occurred.
In this case, J =

[
0.65 0.55 0

]
, and system one is

removed, i.e.,

h⋆
1 =

0.520
0.27

 ,
[
h2 h3 h

]
=

0.55 0 0.48
0.55 0.35 1
0 0.15 0.73

 .

Since the above solution still has a violation, h2(1) > h(1),
cost J is recomputed, i.e., J =

[
N.A. 1 0

]
. This implies

that system 2 has to be eliminated as well, which results in

[
h⋆
1 h⋆

2

]
=

0.52 0.44
0 0.44

0.27 0

 ,
[
h3 h

]
=

 0 0.04
0.35 0.45
0.15 0.73

 .

Since only one system is remained, h⋆
3 = h is selected,

and thus α1(h
⋆
1) = α2(h

⋆
2) = 3, α3(h

⋆
3) = 7. A feasible

schedule for these safe time intervals is δ := 1 2 3 1 2 3 . . ..

V. CONCLUSIONS

In this paper we formulated an optimal constraint decou-
pling scheme in order to minimize communication demand
for a class of multi-agent perturbed networked control sys-
tems with coupled state constraints. We proposed a heuristic
method to solve the formulated problem and illustrated its
effectiveness through a numerical example. In future works,
our plan is to extend the proposed control and communi-
cation scheduling design scheme to include systems with
coupled dynamics. Additionally, we aim to expand the results
to cover systems with chance constraints.
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