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Abstract— Maintaining stable coexistence in microbial con-
sortia, particularly when one species grows faster than another
(i.e. the species are non-complementary), poses significant
challenges. We introduce a novel control architecture that
employs two bioreactors. In this system, the slower-growing
species is cultivated separately before being introduced into
the main mixing chamber. We analyze the open-loop dynamics
of this setup and propose a switching feedback mechanism
that controls the dilution rates to ensure robust regulation
of population density and composition within the microbial
consortium. Validated in silico using parameters from real
experiments, our approach demonstrates effective and robust
maintenance of microbial balance across various strains without
requiring genetic modifications.

I. INTRODUCTION

Microbes in nature are often organized in consortia com-
prising multiple interacting populations that cooperate to
achieve a common goal [1]. This self-organization increases
the survival fitness of the community and, by specialization
and division of labor, reduces the burden on each population
while increasing the overall efficiency of the consortium [2].
Over the past decade the translation of these advantages
to synthetically engineered biological systems has attracted
increasing interest [3] as it is an effective solution for the
efficient production of complex chemical compounds [4]–
[6].

In addition to the design of the phenotype of each
population, the realization of functional microbial consortia
requires stable, long-term coexistence between the different
populations therein. This is a challenging goal to achieve
as each population, engineered with different genetic regu-
latory networks, is burdened by a different metabolic load,
resulting in heterogeneous growth rates. Left uncontrolled,
this imbalance will ultimately lead to the extinction of
one or more populations, disrupting the proper functioning
of the consortium. Thus, the key issue of regulating the
microbial community’s composition, known as composition,
or ratiometric, control, is essential for creating consortia
capable of reliably performing some desired function [7].

A promising scalable approach to co-culturing multiple
bacterial populations involves using bioreactors to control
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Fig. 1. Schematic representation of the two-reactor architecture. The slower
species (species 2, in pink) is grown separately in chamber 2 and added at
rate D2 in chamber 1, where it is mixed with species 1 (in green). Species
2 is regulated at the desired concentration x̄0

2 in chamber 2 by means of
the dilution rate D0. The dilution rate D1 is used in combination with D2

to keep the two species at the desired concentrations in chamber 1.

both the density and composition of the consortium. Various
strategies for managing coexistence within a single biore-
actor have been explored. In [8] it was employed a deep
reinforcement learning algorithm to adjust the growth media
composition, ensuring coexistence of two microbial popu-
lations dependent on different substrates. Similarly, studies
in [9], [10] showed that modifying the dilution rate can
support robust coexistence of two complementary strains.
These approaches presume that growth conditions can be
selectively altered to favor one population over another.
However, it is not always feasible to create such conditions,
as the growth properties, determined by the cellular resources
consumed up to a given time, may remain fixed. In co-
cultures, this results in the population that consumes more
resources growing slower and potentially facing extinction.
In a single bioreactor, this is impossible or cumbersome
to avoid even when using a sophisticated feedback control
action, because of the competitive exclusion principle [11],
which from a dynamical systems standpoint translates into
the system being uncontrollable. Therefore, a more general
methodology is needed to guarantee long-term coexistence
of different microbial species in a bioreactor.

In this Letter, we propose an experimental platform en-
dowed with a control strategy for robust regulation of both
the density and the composition of a microbial consortium
made of two non-complementary strains (one population
persistently growing faster than the other). Specifically, we
propose to use two communicating bioreactors (turbidostats)
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(see Fig. 1); one hosting a mixture of both populations,
while the other being used as a reservoir where the slower
population is grown alone. By using as control inputs the
dilution rate D1 (inlet volumetric flow/volume) associated
with fresh media in the first reactor in combination with the
dilution rate D2, at which the slower population from the
reservoir (kept at a reference density therein by means of
the dilution rate D0) is added to the mixing chamber, our
strategy can guarantee coexistence of the two populations at
a desired ratio.

In what follows, we introduce in Section II a mathematical
model that describes the growth dynamics of cells within
each reactor and analyze its asymptotic behavior. Section
III outlines the statement of the control problem, which
is addressed in Section IV using an open-loop strategy.
A closed-loop control law is detailed in Section V. Both
strategies are validated in silico in Section VI using a model
parametrized with real experimental data from two Chi.Bio
turbidostats [12]. The proposed approach is versatile, suitable
for a broad range of non-complementary strains growing on
the same substrate, and does not require genetic engineering
interventions.

II. MATHEMATICAL MODEL

We consider two microbial species growing as a con-
tinuous culture in a chemostat (labeled as chamber 1 in
Fig. 1), with a reservoir (chamber 2 in Fig. 1) in which
one species grows separately. The two species are assumed
to be independent, that is, they grow on the same substrate
but they do not directly condition the growth rate of each
other. The mathematical model of the former chemostat with
two species and two inputs can be obtained by applying
straightforward balance of mass law as in [13], yielding

ẋ1 = µ1(s1)x1 −D1x1 −D2x1,

ẋ2 = µ2(s1)x2 −D1x2 +D2(x
0
2 − x2),

ṡ1 =− 1
Y1
µ1(s1)x1 − 1

Y2
µ2(s1)x2

+D1(sin − s1) +D2(s2 − s1),

(1)

where the variables x1, x2 ∈ R≥0 and s1, s2 ∈ [0, sin]
denote the concentrations of the biomass of species 1 and
2 and of the substrate in chamber 1 and 2, respectively.
The mathematical model of the reservoir (chamber 2) can
be written as{

ẋ0
2 = (µ2(s2)−D0 −D2)x

0
2,

ṡ2 = − 1
Y2
µ2(s2)x

0
2 + (D0 +D2)(sin − s2),

(2)

where x0
2 ∈ R≥0 denotes the concentration of the biomass of

species 2 in chamber 2. Moreover, µi(·) is the growth rates of
species i (defined below), Yi is the yield coefficient, assumed
without loss of generality to be unitary for both species, and
sin is the concentration of the substrate in the inlet flows. The
control inputs Di are the dilution rates defined as the ratio
between the inlet flow rate and the culture volume. Specif-
ically, the control inputs D1(t) : R≥0 7→ [D1,min, D1,max],
with D1,min ≥ 0, and D0(t) : R≥0 7→ [D0,min, D1,max],
with D0,min > 0, dilute the concentrations in chambers 1 and

2, respectively, by injecting fresh substrate at concentration
sin, while the input D2(t) : R≥0 7→ [0, D2,max] is the
dilution rate due to the inlet flow of media from chamber
2 to chamber 1. The dilution rates are assumed to be the
same for both species, that is, the culture is well-mixed and
mortality and attachment of the bacteria are neglected [10].

The dynamics of systems (1)-(2) is characterized by the
growth rate functions µi(·) : [0, sin] 7→ R≥0, that are
typically assumed to be differentiable, strictly increasing,
and such that µi(0) = 0, for i = 1, 2, corresponding
to the substrate not having any inhibitory effect at high
concentrations [14]. The most common analytical growth rate
model, that we also consider here, is the so-called Monod
law [14]

µi(s) :=
µ∗
i s

ki + s
, i = 1, 2, (3)

where µ∗
i > 0 is the maximum growth rate of species i

and ki > 0 is a Michaelis-Menten constant. When the two
growth functions intersect more than once, it is possible to
design some control input D1(t) (setting D2 = 0) such that
both species survive [9], [10], [15]. On the contrary, when
it holds that

µ1(s) > µ2(s), for all s ∈ (0, sin], (4)

the growth functions intersect only at 0 and the two species
are said to be non-complementary [10], i.e. one species
always outgrowing the other. Therefore, in this condition,
from the Competitive Exclusion Principle (CEP) [16], it
follows that when inflow from the additional reservoir is not
available, i.e., D2 = 0, no control input D1(t) exists such
that more than one strain survives at steady state. However, in
our architecture (Fig. 1) coexistence is still made possible by
a controlled injection into the chemostat (chamber 1) of some
extra biomass of the slower species taken from the reservoir
(chamber 2) by means of the additional control input D2(t).

A. Reduced system

Under the assumption that the sum of the control inputs
D0(t) and D2(t) is persistently exciting, that is, such that
(D0(t) + D2(t)) > 0, ∀t ≥ 0, the solutions of system (2)
are attracted to the invariant subspace S0 := {(x0

2, s2) :
x0
2+s2 = sin}. This can be demonstrated using invariant set

theory, as illustrated in [17], similarly to the approach used
in [15, Proposition 1] (see also [18] for further details). Thus,
if the initial condition x0

2(0) belongs to S0, the dynamics of
(2) on S0 can be reduced to

ẋ0
2 = (µ2(s2)−D0 −D2)x

0
2. (5)

Likewise, under the assumption that the sum of D1(t) and
D2(t) is persistently exciting, it can be proved using similar
arguments that the solutions of system (1) are attracted to
the invariant subspace S := {(x1, x2, s1) : x1 + x2 + s1 =
sin}. Thus, solutions rooted therein can be obtained from the
reduced order model{

ẋ1 = (µ1(s1)−D1 −D2)x1,

ẋ2 = (µ2(s1)−D1 −D2)x2 +D2x
0
2,

(6)



defined on the invariant set Sr := {(x1, x2) ∈ R2
≥0 : x1 +

x2 ≤ sin}.

B. Stability analysis of the reservoir model
Depending on the value of (D0 + D2), system (5) can

have one or two equilibria. One equilibrium is always at 0,
while the other is x̄0

2 = sin − s̄2, with

s̄2 =
k2(D0 +D2)

µ∗
2 − (D0 +D2)

. (7)

The point x̄0
2 is admissible and stable for 0 < (D0 +D2) <

µ2(sin). It becomes non-admissible, exchanging its stability
with the point at the origin, when (D0 + D2) = µ2(sin),
through a transcritical bifurcation.

C. Stability analysis of the chemostat model
System (6) has a richer dynamics depending on the values

of D1 and D2.
1) D1 > 0, D2 > 0: When D1 + D2 < µc

12, with
µ2(sin) < µc

12 < µ1(sin), there exists a stable equilibrium
point in Sr such that both species coexist. This point is
located at the intersection between the x1-nullcline (ẋ1 = 0)
and the x2-nullcline (ẋ2 = 0), obtained by solving the system
of equations

x1 + x2 − sin +
k1(D1 +D2)

µ∗
1 − (D1 +D2)

= 0, (8)

(µ2(s1)−D1 −D2)x2 +D2x
0
2 = 0. (9)

Moreover, there exists another equilibrium point, that is
unstable, lying on the x2-axis (x1 = 0) at the intersection
with (9). When D1 +D2 is above some critical value µc

12,
the coexistence point collides with the unstable point on the
x2-axis, exchanging stability via a transcritical bifurcation,
and ceases to be admissible. At this point only species 2
survives, because the total dilution rate in the bioreactor is
too high for species 1 to survive. However, note that the
complete extinction of species 1 is not possible in practice,
as experimentally some cells will not be flushed out. Due to
the nonlinearity of (9), the analytical expression of µc

12 is
cumbersome and is omitted here for the sake of brevity.

2) D1 ≈ 0, D2 > 0: The dynamics is similar to the
previous case, that is, there exists a stable equilibrium point
associated with coexistence whose position depends only on
D2. However, when D2 > µ1(sin), that is, the dilution rate
from the reservoir is higher than the maximum growth rate of
species 1, the faster species is flushed out from the bioreactor
(x̄1 ≈ 0) and as D2 increases the concentration of species
2 reaches asymptotically the same value as in the reservoir
(i.e., x̄2 ≈ x0

2).
3) D1 > 0, D2 = 0: Model (6) becomes the same model

described in [9], and as D1 varies from 0 to D1,max >
µ1(sin) we retrieve the same dynamics depicted in the phase
portraits shown in Fig. 2 from [9] (namely cases I, IV, V, VI).

4) D1 = 0, D2 = 0: All solutions converge to the
attractive equilibrium set E0 := {(x1, x2) ∈ Sr : x2 =
−x1+sin} corresponding to the biomass being in starvation
and therefore it is not an admissible working condition in
continuous culture (see case I in Fig. 2 from [9]).

III. CONTROL PROBLEM

Given the two-chambers bioreactor architecture, depicted
in Fig. 1, with two non-complementary microbial species, i.e.
such that condition (4) holds, whose mathematical model
and dynamics have been described in Sec. II, our control
objective is to control the dilution rates such that at steady
state the two species coexist and their concentrations are
regulated at a desired ratio. That is, we want to solve the
following problem.

Control problem: Design some control inputs D0(t),
D1(t), and D2(t) for system (5)-(6), under condition (4),
such that:

1) coexistence of the two species is guaranteed for all
time, that is, xi(t) ≥ xi,min, ∀t > 0, i = 1, 2, where
xi,min > 0 is some safety value to avoid extinction of
species i;

2) the total biomass is regulated to a desired value to
guarantee efficient utilization of the resources, that is,

x1(t) + x2(t) = ODd, as t → +∞, (10)

where ODd is the desired optical density in chamber
1, assumed for the sake of simplicity to be an exact
proxy of the total biomass therein;

3) the ratio x2/x1 between the concentration of the two
species in chamber 1 is robustly regulated at steady
state to a desired value rd, that is,

x2(t) = rd · x1(t), as t → +∞. (11)

Notice that the above control problem corresponds to re-
quiring that all solutions of system (5)-(6), starting from
any initial conditions in S0 ∪ Sr, converge to the point of
intersection between the two curves defined in (10) and (11)
(Fig. 2.a), that is, to the point

xd := (x1,d, x2,d) =

(
ODd

1 + rd
, rd

ODd

1 + rd

)
. (12)

In the following, we assume that the concentrations x1,
x2 and x0

2 are either directly or indirectly measurable, for
example via fluorescent reporters or state observers.

IV. OPEN-LOOP CONTROL

A simple open-loop controller that solves the control
problem described above can be designed by exploiting the
dynamics of the system described in Sec. II, that is, by
choosing constant values D̄0, D̄1 and D̄2 so as to make
the nullclines (8) and (9) intersect at the desired point (12).
Specifically, setting D̄12 := D̄1 + D̄2 by using (8) and (10)
we obtain

D̄12 =
µ∗
1(sin −ODd)

(sin −ODd + k1)
, (13)

Moreover, by using (9) and (12) we get

D̄2 = rd
ODd

1 + rd
· D̄12 − µ2(sin −ODd)

x̄0
2

, (14)

where the steady-state value x̄0
2 in the reservoir can be

reached by setting the control input D0 to D̄0 = µ2(sin −
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Fig. 2. a) Graphical representation of the control objective. The green
and blue lines represent the sets where x1 + x2 = ODd and x2 = rdx1,
respectively. The black dashed line delimits the invariant set Sr . Finally,
the orange dashed lines indicate the safety bounds for each species (i.e.
x1,min, x2,min). b) Graphical representation of the closed-loop control
strategy. Sr is divided in four regions (R1, R2, R3, R4) by the switching
surfaces Σ1 and Σ2 (blue lines). The control actions D1 and D2 steer the
trajectory of the system (blue arrows) onto xd (red star). c) Block diagram of
the closed-loop control architecture. The switching controller SC regulates
the concentrations of the biomasses x1 and x2 in chamber 1 to the desired
levels x1,d and x2,d, respectively. The control input D0, regulating x0

2 in
chamber 2 to the desired level x̄0

2, is computed by a PI controller with a
feed-forward disturbance compensation.

x̄0
2)− D̄2, obtained from setting the first term in (5) to zero.

Obviously, we also have that D̄1 = D̄12 − D̄2. Further
details about the derivation of (13)-(14) are reported in
[18]. Although this feed-forward control action is simple and
solves the control problem in nominal conditions, as we will
see later in Sec. VI, it neither guarantees robustness to pertur-
bation nor faster convergence. The coexistence requirement,
as defined in Sec. III, is fulfilled by the open-loop controller
provided that the initial condition (x1(0), x2(0)) is chosen
beneath the intersection between the nullcline (8) and the
constraint x1 ≥ x1,min.

V. CLOSED-LOOP CONTROL

In biological applications robustness is as important as
precision in the regulation and open-loop strategies cannot
often reject external perturbations and uncertainties in the
model parameters. Therefore, we propose next a closed-loop
switching controller that can globally and robustly guarantee
regulation of the desired density and composition.

The controller is designed by defining two switching
surfaces, Σ1 := {(x1, x2) ∈ Sr : x1 = x1,d} and Σ2 :=
{(x1, x2) ∈ Sr : x2 = x2,d}, which divide the domain Sr

into four regions (see Fig. 2.b), R1 where x1 < x1,d and
x2 > x2,d, R2 where x1 > x1,d and x2 > x2,d, R3 where
x1 < x1,d and x2 < x2,d, and R4 where x1 > x1,d and
x2 < x2,d. We denote by Σij the boundary between regions
Ri and Rj .

Theorem 1: Choosing x̄0
2 > x2,d as set-point for the

reservoir, and the switching control inputs as
• D1 = D+

1 and D2 = 0, with µ2(sin) < D+
1 < µ1(sd),

with sd := sin −ODd, when x ∈ R1,
• D1 = D−

1 and D2 = 0, with D−
1 > µ1(sin), when

x ∈ R2, so that the bioreactor is in flush-out mode,
• D1 = D2 = 0 when x ∈ R3, so that way the biomass

is left to grow freely,
• D1 = 0 and D2 = D−

2 , with D−
2 > µ1(sin), when

x ∈ R4,
the setpoint xd, as defined in (12), is attractive for all
solutions of system (6) in Sr.

Proof: This can be proved by showing that the inter-
section of the two switching surfaces, Σ1 ∩Σ2 is attracting.
Let n1 = [1 0]T , n2 = [0 1]T be the normal vectors to
Σ1 and Σ2, respectively, and f1(x), f2(x), f3(x), and f4(x)
the vector fields of system (6) in each of the four regions
determined by our choice of the switching control inputs,
that is,

f1(x) = [(µ1(s1)−D+
1 )x1, (µ2(s1)−D+

1 )x2]
T ,

f2(x) = [(µ1(s1)−D−
1 )x1, (µ2(s1)−D−

1 )x2]
T ,

f3(x) = [µ1(s1)x1, µ2(s1)x2]
T ,

f4(x) = [(µ1(s1)−D−
2 )x1, (µ2(s1)−D−

2 )x2 +D−
2 x

0
2]

T .

The boundary Σ13 is a stable sliding region because
nT
2 f1(x) < 0 and nT

2 f3(x) > 0, since (µ2(s1) − D+
1 ) <

(µ2(s1)− µ2(sin)) and µ2(s1) > 0, respectively. Moreover,
solutions sliding on Σ13 are attracted towards xd because
therein nT

1 f1(x) > 0 and nT
1 f3(x) > 0, since, if D+

1 <
µ1(sd), ẋ1 > 0 when x1 < x1,d. This is because the
intersection between the nullcline (8) and Σ2 lies above
xd, and µs(s1) > 0, respectively. Similarly, Σ34 is a stable
sliding region because nT

1 f3(x) > 0 and nT
1 f4(x) < 0, since

(µ1(s1)−D−
2 ) < (µ1(s1)−µ1(sin)). Moreover, solutions on

Σ34 are attracted towards xd because therein nT
2 f3(x) > 0

and nT
2 f4(x) > 0, since (µ2(s1) − D−

2 )x2 + D−
2 x

0
2 >

(µ2(s1)−D−
2 )x2+D−

2 x2 > (µ2(s1)−D−
2 )x2+D−

2 x2,d >
µ2(s1)x2 > 0, where we used x0

2 > x2,d > x2. Likewise,
Σ24 is a stable sliding region because nT

2 f4(x) > 0 and
nT
2 f2(x) < 0, since (µ2(s1)−D−

1 ) < (µ2(s1)−µ1(sin)) <
0. Solutions on Σ24 are attracted towards xd because therein
nT
1 f4(x) < 0 and nT

1 f2(x) < 0, since (µ1(s1) − D−
1 ) <

(µ1(s1)−µ1(sin)) < 0. Finally, the boundary Σ12 has always
a crossing region, in which solutions from R2 cross the
boundary because nT

1 f2(x) < 0 while nT
1 f1(x) changes sign

at the intersection of Σ12 with the nullcline (8). However, all
crossing solutions will then converge onto Σ13 since ẋ2 < 0,
and therefore they will move towards xd, as proved above.
This concludes the proof.

Although as stated earlier, complete extinction of species
1 is not possible, some trajectories starting within R1 ⊂ Sr

may still violate the coexistence bounds defined in Sec. III.
The set of initial conditions (x1(0), x2(0)) ∈ R1 yielding
trajectories that temporarily violate those bounds can be re-
moved by choosing D+

1 = µ2(sin)+ϵ, with ϵ > 0 arbitrarily
small, so that the nullcline (8) intersects at the uppermost
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Fig. 3. Comparison between model predictions and the experimental data
obtained from open-loop characterization experiments conducted using the
Chi.Bio reactor. Two different E. coli strains implementing genetic toggle-
switches from [19] (panel a) and [20] (panel b) were used in the experiments.
The top panels depict the temporal evolution of the biomass in the in vivo
experiment (orange) and in the numerical simulation (gray). The bottom
panels show the inputs applied to the bioreactors. The experimental data
are collected using a single reactor (i.e. setting D0 = D2 = 0).

point the line x1 = x1,min. Therefore, initial conditions must
be chosen so that x2(0) ≤ −x1,min + sin − k1(µ2(sin)+ϵ)

µ∗
1−(µ2(sin)+ϵ) .

The controller implemented in the reservoir (chamber 2)
to regulate x0

2 is a PI controller with a disturbance compen-
sation. Specifically, the dilution rate D0 in (5) is chosen as
D0 = DPI −D2, where DPI is an action computed using
the same proportional-integral controller presented in [12]
for the regulation of the turbidity. This controller ensures
that the error ePI(t) = x̄0

2−x0
2(t) converges to zero, so that

the density of species 2 in the reservoir x0
2 is regulated to

the desired value x̄0
2.

VI. IN SILICO VALIDATION

We validated the designed controllers in silico to assess
their performance, stability, and robustness. Specifically, we
simulated the experimental platform shown in Fig. 1 imple-
mented using two Chi.Bio reactors [12] and including the
technological constraints imposed by the experimental plat-
form. Each reactor measures the density of the biomasses at
every minute by measuring the turbidity of the liquid (i.e. the
optical density) and updates the duty-cycle of the peristaltic
pumps that dilute the cultures with fresh media. The dilution
rates are saturated to 0.065 min−1 for safety reasons. In all
control experiments we set the desired reference signals to
ODd = 0.7 and rd = 1. The parameters of the simulated
set-up were parametrized from real data as explained below.

A. Model parametrization

For the identification of the parameters in system (6),
we conducted open-loop characterization experiments using
the commercially available reactor Chi.Bio [12]. Specif-
ically, we characterized the growth dynamics of two E.
coli strains embedding two different implementations of a
genetic toggle-switch, presented in [19] and [20]. In each
experiment, using a single Chi.Bio reactor, we grew a single
strain in LB media supplemented with 50µg/µL kanamycin
and 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG), at
37◦C, shaking at half the maximum speed available on the
platform. During these experiments, the culture was diluted
using the maximum available dilution rate until the optical

Time [minute]

D
2

D
1

x 1
+x

2
x 2

/x 1

a)

Time [minute]

D
2

D
1

x 1
+x

2
x 2

/x 1

b)

Fig. 4. In silico validation of the open-loop (a) and closed-loop (b) control
strategies. The top panels show the evolution in time of x2/x1 and x1+x2,
depicted as gray solid lines, with their reference values (dashed green lines)
and, for those in (b), the average trajectory over a time window of 30
minutes (blue solid line). The reference values are set as ODd = 0.7 and
rd = 1. The bottom panels show the inputs applied to the first chamber. The
control parameters of the closed-loop controller are set to D+

1 = 0.013,
D−

1 = D−
2 = 0.065.

density dropped below 0.3. Then, cells underwent a recovery
phase where the dilution rate was kept close to zero for 60
minutes. Finally, the cells’ growth was excited changing the
dilution rates every 15 to 30 minutes for 1 hour (Fig. 3).

Using Genetic Algorithm (GA) optimization (as imple-
mented in [21]), we estimated the growth parameters for
each strain to be: µ∗

1 = 0.026, µ∗
2 = 0.013, k1 = 20.32,

k2 = 31.25, and sin = 88.75. The ranges for the µ∗
i were

set according to typical values in literature [20], while the
other parameters’ ranges were obtained heuristically. The
intervals were set as follows: [0.001, 0.05] for µ∗

1 and µ∗
2,

[0.01, 100] for k1 and k2, [1, 100] for sin to start the GA
optimization. The total number of iterations was 200, and
the initial population of the GA algorithm was set to be 150
individuals. In Fig. 3 the model’s predictions are depicted
alongside the experimental data, demonstrating the model
ability to capture quantitatively the growth dynamics of the
microbial species under varying conditions. The data used
for validation were different from those employed for the
parameters identification. The quality of the predictions was
quantified using the Root Mean Squared Error (RMSE),
which proved to be low for the estimation of both popu-
lations’ trajectories (i.e. RMSE = 3.18 for species 1 and
RMSE = 1.73 for species 2) and comparable with the RMSE
of the identification data set (i.e. RMSE = 1.86 for species
1 and RMSE = 1.09 for species 2).

B. Control validation

Firstly, we simulated model (1)-(2) under the action of
the open-loop controller, described in Sec. IV (with dilution
rates equal to D̄1 = 0.016, D̄2 = 0.0051, D̄0 = 0.0044),
including also the technological constraints described above,
observing that the desired density and configuration were
reached asymptotically (see Fig. 4.a). However, the conver-
gence time was excessively long, namely taking 97 · 103
min and 116 · 103 min to reach the desired optical density
and ratio, respectively, rendering this strategy unfeasible in
practice for in vivo implementation.

Instead, as shown in Fig. 4.b the switching control strategy
developed in Sec. V was able to guarantee a much faster



CVCV

a) b)

Fig. 5. Robustness analysis of the closed-loop controller. Mean (bar
height) and standard deviation (whisker) of ēr (panel a) and ēOD (panel
b), for increasing value of the coefficient of variation CV . Each bar is
obtained by averaging 100 simulations each computed with different values
of parameters (µ∗

1, µ
∗
2, k1, k2).

settling time (at 5%), namely, 40.5 min and 52.6 min for
the optical density and the ratio between the two species,
respectively, at the cost of a relatively small residual error
at steady state. We quantified the relative residual errors by
evaluating the average deviation from the desired values in
the last 60 minutes of the experiments, that is, ēr = |(r̄ −
rd)/rd|, where r̄ = 1/60 ·

∫ tf
tf−60

(x2(τ)/x1(τ))dτ , where
tf = 150min, and similarly for ēOD, obtaining 0.026 and
0.0004, respectively.

Finally, we assessed the robustness of the proposed
switched controller against variations in the parameters of
the growth functions µi(s), i = 1, 2. Specifically, the values
of the parameters (µ∗

1, µ
∗
2, k1, k2) were randomly drawn from

normal distributions, each centered on their nominal value,
say η, with a standard deviation equal to σ = CV · η,
where CV is the coefficient of variation. For each value of
CV , taken in the interval [0.05, 0.3], we evaluated the mean
and standard deviation of the residual errors ēOD and ēr,
over 100 simulations, each computed with different values of
the parameters (µ∗

1, µ
∗
2, k1, k2). The results of this analysis,

reported in Fig. 5, highlight that, even when a consistent
mismatch is present between the identified parameters and
their true value (CV = 30%), the average steady-state
residual errors remain below 0.05 for the ratio and 0.01 for
the optical density.

VII. CONCLUSION

We introduced a dual-reactor architecture to steer the
overall density and the composition of a two-strain con-
sortium. We analyzed its open-loop dynamics and then
formulated two tailored control strategies. These strategies
were validated in silico with model parameters identified
experimentally. Our approach enables long-term coexistence
within a consortium of non-complementary cell populations
without the integration of additional synthetic circuits into
the cells. This capability is crucial for supporting the si-
multaneous growth of different populations in a consortium,
potentially across varied species such as bacteria and yeasts.
We are currently implementing a prototype of the proposed
architecture, shown in Fig. 1, featuring two Chi.Bio reactors.
Ongoing in vivo experiments aim to further validate the
effectiveness of our control strategies, with results to be
detailed in forthcoming publications.
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