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Abstract— Volt/VAR control rules enable distributed energy
resources (DER) to autonomously regulate voltage in distri-
bution grids. The Volt/VAR rules provisioned by the IEEE
Standard 1547 take on a piecewise-linear shape. However, its
maximum slope is upper bounded to ensure stability, and
that may hamper its voltage regulation performance. This
limitation can be surpassed by adding a memory term to
the control rule, and thus, obtaining a so-termed incremental
control rule. This letter aims to optimally customize the shape
of incremental rules across buses to attain desirable voltage
profiles. Albeit this task can be posed as a bilevel program,
we pursue a more scalable approach by reformulating it as a
deep learning task. The idea is that Volt/VAR dynamics can be
captured by a recursive neural network (RNN). Interestingly,
the RNN weights correspond to the parameters of the control
rule; the RNN input to the grid loading conditions; and the
RNN output to the equilibrium voltages. Therefore, the optimal
rule parameters can be found upon training the RNN so
its output (equilibrium voltages) approach unity. Training is
performed by feeding the RNN with representative scenarios
of the anticipated grid loading conditions. The RNN depth
depends on the settling time of Volt/VAR dynamics. Because the
discrete-time Volt/VAR dynamics can be viewed as iterations of
a proximal gradient descent (PGD) algorithm, we also leverage
Nesterov’s accelerated PGD iterations to reduce the RNN depth.
The RNN is never implemented in the field. Training this
RNN is equivalent to solving the optimal rule design in a
more computationally efficient manner. Analytical findings and
numerical tests corroborate that the proposed solution can be
neatly adapted to single- and multi-phase feeders. The proposed
approach could be of general interest in designing piecewise-
linear controllers acting on linear plants.

I. INTRODUCTION

Local Volt/VAR control facilitates voltage regulation
on grids by providing reactive power compensation from
DERs equipped with smart inverters. Different from cen-
tralized control schemes that entail high communica-
tion/computational burden, local rules decide DER setpoints
based on local measurements. Albeit the shape of such rules
is prespecified, it is not clear how a utility can fine-tune
these rules on a per-bus basis and depending on grid loading
conditions to achieve better voltage profiles. This letter deals
with the problem of optimal rule design (ORD).

Volt/VAR control rules can be categorized into non-
incremental and incremental ones. The former compute DER
reactive power setpoints based on local voltage readings. The
IEEE Standard 1547.8 prescribes such non-incremental rules
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as piecewise-linear functions of voltage [1]. On the other
hand, incremental Volt/VAR rules compute the change in
VAR setpoints as a function of voltage [2]–[5].

The existing literature on ORD can be classified into
stability- and optimality-centric approaches. Stability-centric
ones study the effect of Volt/VAR rules as a closed-loop
dynamical system, which may be rendered unstable under
steep slopes of non-incremental rules [6], [7]. In fact, to en-
sure stability, non-incremental rules may have to compromise
on the quality of their steady-state voltage profile [4], [7].
Incremental rules do not experience stability limitations [8],
and can thus, achieve improved voltage profiles. Nonetheless,
such improvements may come at the expense of longer
settling times of the associated Volt/VAR dynamics [7].

Optimality-centric works focus on designing stable control
rules to minimize a voltage regulation objective. To this end,
optimization-based strategies have been employed to design
affine non-incremental rules using heuristics [9]–[11]. Two of
our recent works in [12] and [13] have addressed the problem
of optimally designing the slope, deadband, saturation, and
reference voltage. ORD in single-phase feeders is tackled as
a bilevel optimization in [12]. Reference [13] proposes RNN-
based digital twins that emulate non-incremental Volt/VAR
dynamics, and reformulates ORD as an RNN training task
for single-/multi-phase feeders.

This letter considers optimally designing incremental
Volt/VAR control rules. Although the general shape of the
rules is prespecified, fine-tuning the precise location of
breakpoints and customizing them per bus seem to have
an important effect on the steady-state equilibrium voltage
profiles. Technical contributions are on three fronts: c1)
Although the ORD task can be posed as a mixed-integer
nonlinear program, it does not scale well with the numbers
of DERs, nodes, and grid loading scenarios. To address this
challenge, the genuine idea here is to reformulate ORD as
a deep-learning task and leverage the fast software modules
for training RNNs. We have put forth a similar approach for
designing non-incremental control rules in [13]. However,
migrating from non-incremental to incremental rules is non-
trivial due to the different curve shapes, stability, and conver-
gence rate properties. The convergence rate is directly tied
to the depth of the RNN modeling the Volt/VAR dynamics.
c2) Using the properties of the proximal operator, we sim-
plify the convergence analysis and derive the convergence
rate for multiphase feeders. c3) To further expedite ORD
for incremental rules, we suggest implementing accelerated
Nesterov-type variants to yield a shallower RNN emulator.

Recent works [13], [14] also design incremental Volt/VAR
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Fig. 1. Non-incremental Volt/VAR control rule provisioned by the IEEE
Std. 1547 for the interconnection of DERs [1].

rules using NNs. Different from our approach where a RNN
is used only to speed up ORD, [13], [14] train single-layer
NNs to be used on the field. The NN of [14] is trained
on a per-bus basis using reinforcement learning to handle
transient voltage dynamics, whereas our RNN is trained prior
to deployment over different scenarios to drive steady-state
voltages to unity over the next couple of hours. Similar to
our approach, reference [13] trains NNs beforehand in a
supervised fashion: It first creates a labeled dataset upon
solving a number of optimal power flow (OPF) problems.
It subsequently trains the NN for each bus independently
based on optimal voltage-injection pairs locally for this bus
at equilibrium. However, this local mapping may not be a
bijection because the same value of optimal voltage at a
specific bus may correspond to different values of optimal
injection at that bus. Reference [15] also pursues an OPF-
then-learn approach to fit OPF solutions to piecewise-linear
rules using a sum-of-squares approach. Outside the domain
of Volt/VAR control, [16] employs an RNN to capture
frequency control dynamics. Focusing again on transient
behavior, the depth of this RNN [16] is controlled by the
length of the considered transient period. In contrast, we
analytically relate the RNN depth to the convergence rate
of Volt/VAR dynamics. Distinctly from [13], [14], [16], our
RNN is never implemented by DERs. Training this RNN is
equivalent to solving the ORD, yet more efficiently.

II. VOLT/VAR CONTROL RULES

Consider a radial feeder serving N buses indexed by n =
1, . . . , N . Let (qℓ,q) collect reactive loads and generations
at all nodes. Vectors (p,v) collect the net active power
injections and voltage magnitudes at all nodes. The impact
of q on v can be approximately captured using a linearized
grid model [6], [7]

v ≃ Rp+X(q− qℓ) + v01 = Xq+ ṽ (1)

where ṽ := Rp − Xqℓ + v01 models the underlying
grid conditions, and v0 is the substation voltage. Vector ṽ
represents the impact of non-controlled quantities (p,qℓ) on
voltages. Matrices (R,X) depend on the feeder topology.
For single-phase feeders, they are symmetric positive definite
with positive entries [17]. For multiphase feeders, they are
non-symmetric with positive and negative entries [4], [13].

Vector q in (1) carries the reactive injections by DERs
we would like to control. Per the non-incremental rules of
the IEEE Std. 1547 [1], DER setpoints are decided based
on the Volt/VAR curve of Fig. 1, which is parameterized by
(v̄, δ, σ, q̄). The standard further constrains these parameters
within a polytopic feasible set [1], [12]. The negative slope of
the linear segment of the curve in Fig. 1 can be expressed as
α := q̄

σ−δ . The interaction of Volt/VAR rules with the feeder
gives rise to the piecewise-linear discrete-time dynamics:

vt = Xqt + ṽ (feeder) (2a)

qt+1 = f(vt) (2b)

where f abstracts the control rule of Fig. 1 across inverters.
If ∥ dg(α)X∥2 < 1, where dg(α) is a diagonal matrix
carrying the rule slopes over all buses on its diagonal, then
the aforesaid dynamics are globally exponentially stable [7].

DER equilibrium setpoints cannot be expressed in closed
form, but coincide with the minimizer of [6]

min
−q̄≤q≤q̄

1

2
q⊤Xq+q⊤(ṽ−v̄)+

1

2
q⊤ dg−1(α)q+δ⊤|q| (3)

where |q| applies the absolute value on q entrywise. Prob-
lem (3) depends on rule parameters (v̄, δ, α, q̄) across all
buses. We stack all rule parameters into the 4N -long column
vector z := [v̄; δ;α; q̄]. We denote by qz(ṽ) the equilibrium
setpoints, and by

vz(ṽ) = Xqz(ṽ) + ṽ (4)

the related equilibrium voltages reached by Volt/VAR rules
parameterized by z under grid conditions ṽ. Since (3) has a
strictly convex objective, the equilibrium qz(ṽ) is unique [6].

Optimal rule design (ORD) can be stated as the task of
selecting z to bring equilibrium voltages vz(ṽ) close to unity.
To cater to diverse conditions, the utility may sample S
loading scenarios {ṽs}Ss=1 for the next hour, and find z as

z∗ ∈ argmin
z

F (z) :=
1

S

S∑
s=1

∥vz(ṽs)− 1∥22 (ORD)

subject to (4) and z ∈ Z.

The focus is on equilibrium voltages as utilities and reliabil-
ity standards focus primarily on time-averaged voltages and
ignore transient effects. Once found, the customized rules
z∗ are sent to DERs to operate autonomously over the next
hour. Note that vz(ṽs) depends on z because the equilibrium
setpoints qz(vs) in (4) are the minimizers of problem (3),
which is parameterized by z. When solving (ORD) for non-
incremental rules, the feasible set Z consists of the polytopic
constraints imposed on z by the IEEE Std. 1547 as well
as additional constraints on α to ensure ∥ dg(α)X∥2 < 1;
see [18]. Hence, the feasible set Z can be quite confined.
This can lead to less desirable voltage profiles, i.e., higher
objective values F (z∗).

The aforesaid issue can be addressed by replacing the
non-incremental Volt/VAR rules of IEEE Std. 1547 by incre-
mental ones as suggested in [2]–[4], [8], [19]. Incremental
rules express the change rather than the actual value in

6553



reactive setpoints as a function of voltage. One option for
incremental rules is to implement a proximal gradient descent
(PGD) algorithm solving (3) as proposed in [4]. In this
case, the control rule updates coincide with the iterations of
PGD. Using incremental rules, there are no major stability
limitations. Thus, set Z is enlarged as we only need to ensure

z ≥ 0 and 0.95 · 1 ≤ v̄ ≤ 1.05 · 1 and q̄ ≤ q̂ (5)

where q̂ is the vector of reactive power ratings across DERs.
PGD is an extension of gradient descent to handle con-

straints and non-differentiable costs [4]. At iteration t, PGD
proceeds in two steps: s1) It first computes the gradient of
the first two terms of the cost in (3), which is Xqt+ṽ−v̄ =
vt − v̄. Here qt is the latest estimate of the minimizer of
(3); s2) PGD then updates qt+1 as the minimizer of

min
−q̄≤q≤q̄

1

2
q⊤ dg−1(α)q+δ⊤|q|+ 1

2µ
∥q− (vt− v̄)∥22 (6)

for a step size µ > 0. The last problem involves the last two
terms in the cost of (3) regularized by the Euclidean distance
of q to the gradient (vt − v̄) computed in step s1).

Converting PGD to control rules, step s1) is run by
the feeder when injecting qt and measuring local voltage
deviations vt − v̄; see (7a). Step s2) is run by each DER
independently as (6) is separable across buses; see (7b)–(7c).
Solving (6) yields the next update as derived before in [4]:

vt = Xqt + ṽ (feeder) (7a)

ytn = α̃n ·
(
qtn − µ(vtn − v̄n)

)
(7b)

qt+1
n = gn

(
ytn
)

(7c)

where gn(yn) is the proximal operator shown in Figure 2.
The operator depends on the transformed parameters

α̃n :=
1

1 + µ/αn
and δ̃n :=

δn
1 + µ/αn

. (8)

We henceforth switch the representation of rule parameters
from z = [v̄; δ;α; q̄] to z̃ := [v̄; δ̃; α̃; q̄]. This is without
loss of generality as the transformation in (8) is a bijection,
and so one can work exclusively with z̃. The feasible set Z̃
is defined by (5) along with the additional constraint α̃ ≤ 1.

Albeit the problem physics predetermine the shape of the
rule (7b)–(7c), its breakpoints in Figure 2 can be fine-tuned
on a per-bus basis to improve voltage profiles. As with
non-incremental rules, the rules in (7b)–(7c) are driven by
local data, but now qt+1

n depends on (vtn, q
t
n), and not vtn

alone. Non-incremental and incremental rules alike solve (3).
Hence, they both converge to the same unique equilibrium.
The advantage of incremental rules is that they are globally
exponentially stable for all α as long as µ < 2/λmax(X); see
[4] and Proposition 1 here. It is worth stressing that z here
does not have the same physical interpretation as in non-
incremental rules (slopes, deadband, or saturation), though
z parameterizes (3) in the same way for both rules. Our
ORD does not optimize over µ, which is assumed fixed.
As evident from (3), µ does not affect steady-state profiles,
but only transient behavior. One could augment z with step
sizes customized per bus and pursue ORD formulations to

Fig. 2. Proximal operator g(y) expressed as a sum of four shifted ReLUs.

minimize settling times subject to voltage constraints. This
goes beyond the scope of this letter.

Accelerated incremental rules. Although PGD rules en-
large Z , their settling times can be long. They reach an
ε-optimal cost of (3) exponentially fast; particularly within
− 2 log ε

log 2 κ (X) iterations, where κ(X) is the condition number
of X. Works [4], [20] put forth accelerated incremental rules
based on accelerated PGD (APGD), shown to be globally
exponentially stable. These rules need − 2 log ε

log 2

√
κ (X) iter-

ations to attain an ε-optimal cost, and take the form

vt = Xqt + ṽ (feeder) (9a)

ỹtn := (1 + βt) y
t
n − βty

t−1
n (9b)

qt+1
n := gn

(
ỹtn
)

(9c)

where βt :=
t−1
t+2 , while ytn and gn(yn) are as defined in (7b)–

(7c). Updates (9) remain local, but introduce additional
memory as qt+1

n depends on (vtn, q
t
n) and (vt−1

n , qt−1
n ).

III. DEEP LEARNING FOR ORD IN 1ϕ FEEDERS

Solving (ORD) is challenging as it is a nonconvex bilevel
program. Although it can be modeled as a mixed-integer
nonlinear program, such an approach does not scale well
with the number of DERs or scenarios for non-incremental
rules [13]. Seeking a more scalable solution, we reformulate
(ORD) as a deep learning task. The key idea is to design an
RNN that emulates Volt/VAR dynamics under the rule of (7).
To this end, note that gn(yn) is a piecewise-linear function
with four breakpoints. This operator can be expressed as
the superposition of four rectified linear units (ReLUs) as
illustrated in Fig. 2, where ReLUs are denoted by ρ(·). The
intercepts of the ReLUs depend linearly on (δ̃n, q̄n).

Building on this, one APGD iteration for DER n can be
implemented by the 4-layer Deep Neural Network (DNN) in
Fig. 3, whose weights depend affinely on (v̄n, δ̃n, α̃n, q̄n).
This DNN takes (qtn, v

t
n) as its input, and computes

(qt+1
n , ytn) at its output. It is termed ICn and will be used

as a building block to emulate Volt/VAR dynamics. This
is achieved by the RNN of Fig. 4. Here blocks ICn are
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Fig. 3. A NN emulating the accelerated rules of (9). Plain rules can be
modeled by dropping the second layer (setting βt = 0) and output ytn.

Fig. 4. RNN implementation for accelerated incremental Volt/VAR rules.

arranged vertically to model the parallel operation of DERs.
Their outputs qt+1 are multiplied by X, and the new voltage
is computed as vt+1 = Xqt+1 + ṽ. This is repeated T
times, with each repetition being referred to as layer. In other
words, the RNN of Figure 4 is T layers deep. Thanks to the
RNN structure, there is weight sharing, so the number of
RNN weights is 4N rather than 4NT .

The RNN takes a vector ṽs as its input, and the rule pa-
rameters z̃ as weights. At its output, it computes Φ (ṽs; z̃) =
vT
z̃ (ṽs), that is the voltage induced by the control rules (7a)

or (9a) at time t = T under conditions ṽs and rule parameters
z̃. The voltage vT

z̃ (ṽs) approaches the equilibrium voltage
vz̃(ṽs) as T approaches infinity. How can one select the
RNN depth T so that the RNN output approximates well
equilibrium voltages? This is determined by the rate at
which Volt/VAR dymamics converge to their equilibrium.
As Volt/VAR dynamics coincide with the PGD iterations, we
next determine T leveraging the convergence rate of PGD.

Proposition 1: For the RNN of Fig. 4 to ensure
∥Φ (ṽ; z̃) − vz̃(z̃)∥2 ≤ ϵ1 for all ṽ, while emulating the
control rules of (7) with µ = 2/ (λmin(X) + λmax(X)) and
κ = λmax(X)/λmin(X), its depth T should be

T ≥
(
κ− 1

2

)
log

(
2∥X∥2∥q̂∥2

ϵ1

)
. (10)

Proof: If qz(ṽ) = gz̃(ỹ) at equilibrium, rule (7c) yields:

∥qt − qz(ṽ)∥2 = ∥g
(
yt
)
− gz̃ (ỹ) ∥2 ≤ ∥yt − ỹ|2

= ∥ dg(α̃)(I− µX)
(
qt−1 − qz(ṽ)

)
∥2

≤ ∥dg(α̃)∥2 · ∥I− µX∥2 · ∥qt−1 − qz(ṽ)∥2
≤ ∥I− µX∥2 · ∥qt−1 − qz(ṽ)∥2. (11)

The first inequality stems from the non-expansive property of
the proximal operator g. The next equality follows from (7b).
The second inequality from the sub-multiplicative property
of the spectral norm. The last inequality follows by the
definition of spectral norm and because α̃n ≤ 1 for all n.

If ∥I − µX∥2 < 1, inequality (11) implies that the
dynamics in (7) are a non-expansive mapping, and thus, they
converge exponentially fast to q∗. Condition ∥I−µX∥2 < 1
holds when µ < 2/λmax(X). The norm ∥I−µX∥2 achieves
its minimum of κ−1

κ+1 when µ0 := 2/ (λmin(X) + λmax(X)).
Plugging µ0 in (11) and unfolding dynamics over t yields

∥qt−qz(ṽ)∥ ≤
(
κ− 1

κ+ 1

)t

∥q0−qz(ṽ)∥ ≤ 2

(
κ− 1

κ+ 1

)t

∥q̂∥.

For the voltage approximation error ∥vT − vz̃(ṽ)∥2 =
∥X
(
qT − qz̃(ṽ)

)
∥2 at time T to be smaller than ϵ1:

∥vT − vz̃(ṽ)∥2 ≤ 2

(
κ− 1

κ+ 1

)T

∥X∥2∥q̂∥2 ≤ ϵ1.

This can be achieved by selecting T such that

T ≥
log
(

2∥X∥2∥q̂∥2

ϵ1

)
log
(
1 + 2

κ−1

) ≥
(
κ− 1

2

)
log

2∥X∥2∥q̂∥2
ϵ1

.

where the last inequality follows from log(1+x) ≤ x. QED
Plugging the values ∥X∥2 = 0.463 and κ = 848 for

the IEEE 37-bus feeder, ∥q̂∥2 = 0.1, and ϵ1 = 10−5 in
(10), yields T ≥ 2, 892 layers, which is relatively large. A
key contributor to this large T is the κ term in (10). This
promulgates the adoption of accelerated rules (9), which are
known to also converge exponentially fast, but with a O(

√
κ)

dependence. Interestingly, during implementation, one does
not need to fix T to the above worst-case bounds. Leveraging
dynamic computation graphs offered by Python libraries such
as Pytorch, one may determine T ‘on the fly’ depending on
the convergence of vt between pairs of successive layers.

Since the RNN emulates Volt/VAR dynamics, it can surro-
gate vz(ṽs) in (ORD). Then (ORD) can be posed as training
a RNN over its weights z̃ ∈ Z̃ or z ∈ Z . Grid loading
scenarios {ṽs}Ss=1 are treated as features and equilibrium
voltages vz(ṽs) as predictions that should be brought close
to the target value of 1. The RNN can be trained using
stochastic projected gradient descent (SPGD) as [13]

z̃i+1 =

[
z̃i − λ

2B
∇z̃i

(∑
s∈Bi

∥Φ(ṽs; z̃)− 1∥22

)]
Z̃

(12)

where λ > 0 is the learning rate; set Bi is a batch of B sce-
narios; and [·]Z̃ is the projection onto Z̃ . Since Z̃ consists of
simple box constraints, projection essentially means clipping

6555



the values to the box. Lastly ∇z̃i(·) represents the gradient
with respect to z̃ evaluated at z̃ = z̃i, and is calculated
efficiently thanks to gradient back-propagation.

Extensions: Model (1) can be replaced by more accurate
ones upon linearization. Alternatively, the grid model can be
substituted by a DNN already trained to solve the power
flow task. Our design approach could also be used to
design other (non)-incremental Volt/VAR rules. To move
beyond piecewise-affine shapes, ReLUs could be replaced
by other activation functions. As asserted by the universal
approximation theorem, a DNN could in theory approximate
any smooth nonlinear mapping. In general, the proposed ap-
proach could be of relevance to design nonlinear controllers
beyond voltage regulation or electric grids.

IV. ORD IN MULTIPHASE FEEDERS

In multiphase feeders, X is non-symmetric and has pos-
itive and negative entries. Hence, the rule analysis and
design of Section III has to be revisited. For example,
equilibrium setpoints cannot be found as the minimizers of
an optimization as with (3). Moreover, increasing q does
not necessarily mean all voltages increase. In multiphase
feeders, the non-incremental rules of IEEE Std. 1547 remain
globally exponentially stable as long as ∥ dg(α)X∥2 <
1 [13]. This is the same condition as in the single-phase
setup. How about the stability and equilibrium of incremental
rules in multiphase feeders? Recall that for single-phase
rules, incremental rules were obtained as the PGD iterations
solving (3). Lacking an equivalent inner optimization for
multiphase feeders precludes a similar approach. Despite the
rules of (7) not corresponding to PGD iterates anymore, they
can still be shown to be stable for multiphase feeders.

Proposition 2: Let UΛU⊤ be the eigen-decomposition
of matrix XX⊤. The incremental rules of (7) are globally
exponentially stable for multiphase feeders if their step size
is selected as µ < λmin

(
Λ−1/2U⊤ (X+X⊤)UΛ−1/2

)
.

The claim follows readily by adopting the proof of Propo-
sition 1: If µ is selected as above, then ∥I−µX∥2 < 1 follows
from [4, Prop. 6]. Invoking a contraction argument, [4] also
establishes the uniqueness of the equilibrium. As in single-
phase, incremental rules in multiphase feeders allow us to
enlarge feasible set Z . Heed that different from the single-
phase setting, incremental and non-incremental rules do not
converge to the same equilibrium on multiphase feeders.

ORD for multiphase feeders can be posed as a deep
learning task too, with some modifications. Firstly, R and
X need to be altered. Secondly, the RNNs for multiphase
feeders have 12N parameters, since each layer consists
of 3N building modules corresponding to bus/phase pairs.
Lastly, the step size has to be selected per Prop. 2. Adopting
the proof of Prop. 1, we next find the minimum RNN depth
in multiphase feeders.

Proposition 3: Let the RNN of Fig. 4 implement the
incremental rules of (7) on multiphase feeders with µ se-
lected per Proposition 2. The RNN depth T ensuring voltage
approximation error ∥Φ (ṽ; z) − vz̃(ṽ)∥2 ≤ ϵ1 for all ṽ is

T ≥
log

ϵ1
2∥X∥2∥q̂∥2

log ∥I−µX∥2
.

Fig. 5. The IEEE 37-bus feeder converted to single-phase. Node numbering
follows the format node number {panel ID}. DERs marked green
provide Volt/VAR control; the rest operate at unit power factor.

TABLE I
INCREMENTAL VS. NON-INCREMENTAL VOLT/VAR CONTROL RULES ON

THE SINGLE-PHASE IEEE 37-BUS FEEDER

Time q = 0 Non-incremental Incremental
Obj. (p.u.) Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm 3.01 · 10−3 37.98 3.68 · 10−4 39.39 3.66 · 10−4

2 pm 3.13 · 10−3 42.93 4.26 · 10−4 37.91 4.25 · 10−4

3 pm 4.24 · 10−3 45.02 8.59 · 10−4 34.97 8.50 · 10−4

4 pm 2.12 · 10−3 48.30 1.47 · 10−4 38.52 1.48 · 10−4

5 pm 8.53 · 10−4 47.37 9.70 · 10−5 374.01 6.90 · 10−5

V. NUMERICAL TESTS

We benchmark RNN-based incremental rules against non-
incremental rules from [13] on single- and multiphase feed-
ers. Real-world data were sourced from the Smart* project
on April 2, 2011 [21], as explained in [13]. The RNNs were
trained using Pytorch. We first compare (non)-incremental
rules, both designed via RNN training for the single-phase
IEEE 37-bus feeder of Figure 5. Homes with IDs 20–
369 were averaged 10 at a time and successively added
as active loads to buses 2–26 as shown in Fig. 5. Active
generation from solar panels was also added, as per the
mapping in Fig. 5. Buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25}
were assumed to host DERs with Volt/VAR control.

Incremental rules were simulated in their accelerated ren-
dition. Both sets of rules were trained over S = 80 scenarios
and 200 epochs with a learning rate of 0.001, using the
Adam optimizer, and setting µ = 1 for incremental rules. To
ensure repeatability, the results were repeated across several
time periods between 1–6 PM, and are compiled in Table I.
Incremental rules obtained marginally lower objectives than
non-incremental rules across all periods, with a somewhat
significant difference for the 5 PM period. This behavior is
explained because incremental rules allow for a larger set Z .

RNN-based incremental control rules were also contrasted
with their non-incremental ones on the multiphase IEEE 13-
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Fig. 6. Multiphase IEEE 13-bus distribution feeder.

TABLE II
INCREMENTAL VS. NON-INCREMENTAL VOLT/VAR CONTROL RULES ON

THE MULTIPHASE IEEE 13-BUS FEEDER

Time q = 0 Non-incremental Incremental
Obj. (p.u.) Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm 2.51 · 10−3 64.65 1.15 · 10−3 199.24 4.11 · 10−4

2 pm 1.48 · 10−3 66.60 6.89 · 10−4 209.92 3.03 · 10−4

3 pm 6.89 · 10−4 74.68 4.94 · 10−4 263.37 2.16 · 10−4

4 pm 8.03 · 10−4 68.32 5.26 · 10−4 126.81 2.47 · 10−4

5 pm 5.51 · 10−4 62.58 4.11 · 10−4 129.71 1.95 · 10−4

bus feeder, using the testing setup from [13]. Active loads
were sampled 10 at a time from homes with IDs 20-379
and added to all three phases for the buses 1-12. Figure 6
also shows the solar panel assignments shown in Fig 6
for solar generation. Lastly, nine DERs with inverters were
added across phases and bus indices as shown in Fig. 6.
Learning rates for non-incremental and incremental RNNs
were set as 0.1 and 0.001, respectively, with the design
parameters z := [v̄; δ;σ;α] initialized to feasible values
(0.95, 0.01, 0.3, 1.5). Table II compares the performance of
the two rule types over multiple periods for S = 80.
While incremental rules took longer time to train, they were
successful in lowering cost F (z) by more than 50%, thus
yielding improved voltage profiles.

VI. CONCLUSIONS

A RNN-based ORD approach has been put forth for
single- and multi-phase feeders. The key idea is to construct
a RNN that emulates end-to-end the associated Volt/VAR
dynamics. The RNN takes grid conditions as the input,
the rule parameters as weights, and outputs the associated
equilibrium voltages. Leveraging the convergence rates of the
related optimization algorithms, we have provided bounds on
the RNN depths to approximate equilibrium voltages within
the desired accuracy. We have also established the stability of
incremental control rules for multiphase feeders. Numerical
tests have demonstrated that the designed control rules attain
improved voltage profiles compared to their non-incremental
alternatives. The improvement was found to be starker for
mutiphase feeders, wherein rules do not reach the same equi-
librium. Our findings motivate further research to possibly

characterize the equilibria of control rules for multiphase
feeders; the convergence of accelerated incremental rules for
multiphase feeders; and to deal with chance-constrained or
ORD problems targeting phase imbalances.
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