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Abstract— Direct optimal control techniques, relying on nu-
merical methods for constrained optimization, are typically
used in trajectory planning tasks in high-dimensional spaces.
However, general-purpose solvers often fail to find a feasible
solution when facing cluttered environments. Sampling- or
graph-based methods, instead, can explore complex configu-
ration spaces but struggle with dynamic constraints. Here, we
propose to combine dynamic programming (DP) and derivative-
based methods to reliably solve trajectory planning problems.
Specifically, we exploit DP to generate a sequence of waypoints
in a low-dimensional space, which are then encoded as point-
wise path constraints for a high-dimensional trajectory, whose
constraint violations are then represented as a penalty within
the Bellman equation to recompute the waypoints. This iterative
approach, alternating path and trajectory optimization, avoids
both the curse of dimensionality for DP and problematic
nonconvexities (such as obstacles) for motion planning. We
demonstrate our strategy using numerical experiments on a
six-degree-of-freedom robotic manipulator moving in a confined
space.

I. INTRODUCTION

The task of trajectory planning in presence of obstacles is
a key challenge in several fields, ranging from automated
driving to robotic manipulation, from domestic chores to
space applications. A trajectory planning problem subject to
obstacle avoidance seeks a final time T , a state trajectory
x : [0, T ] → X ⊆ Rn, and controls u : [0, T ] → U ⊆ Rm,
satisfying dynamic constraints, collision avoidance, boundary
conditions, and hard bounds, which can be formulated as

ẋ(t) = f(x(t), u(t)) ∀ t ∈ [0, T ], (P)
g(x(t)) ≤ 0, x(t) ∈ X, u(t) ∈ U ∀ t ∈ [0, T ],

x(0) = x0, b(x(T )) = 0,

T ∈ [Tmin, Tmax],

where functions f : X × U → X , b : X → Rnb , and
g : X → Rng model dynamics, terminal conditions, and
obstacles, respectively. Objectives and costs are often
included as well, encoding preferences among feasible
trajectories.

General-purpose nonlinear optimization solvers like Ipopt
[1] are popular for tackling (P) but often struggle to find
feasible trajectories due to the nonconvex constraints. While
combined or custom numerical methods improve robustness,
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Fig. 1. Illustration of the proposed iterative scheme for motion planning, al-
ternating between nonlinear programming (NLP) for trajectory optimization
in the original space and dynamic programming (DP) in a lower-dimensional
space.

solvers can get stuck at infeasible points and often require
careful hand-tuning and initialization [2], [3], [4]. Another
strategy to enhance convergence is to exploit the time struc-
ture of the problem, e.g., via differential dynamic program-
ming [5], [6], [7], [8], or sequential convexification [9]. Nev-
ertheless, these approaches are sensitive to the initialization
point and converge, if at all, to local minimizers or stationary
points. In contrast, dynamic programming (DP) is able to
identify global optima also in the presence of nonconvex
constraints, but suffers from the curse of dimensionality [10],
[11]. Despite multiple attempts to lower its computational
footprint [12], with enhanced sampling strategies [13] or dy-
namic grid adaptation [14], [15], among others, DP remains
prohibitive in high-dimensional scenarios. Sampling-based
strategies established themselves as popular alternatives for
dealing with high-dimensional state spaces [16], but appear
inadequate to treat system dynamics. Focusing on quadrotors
flight, the work in [17] is tailored to interleave a low-
dimensional graph search with high-dimensional gradient-
based methods, exploiting their respective strengths. Simi-
larly, a reinforcement learning strategy has been adopted in
[18] to guide trajectory optimization toward better solutions.

Approach: In this paper, the idea of reconciling two
problem representations and solvers is generalized to address
a wide range of applications. In particular, we propose
an iterative approach to solve problem (P) by combining
dynamic programming and derivative-based methods, par-
ticularly, direct optimal control and nonlinear programming
(NLP) techniques. Taking advantage of both perspectives and
strategies, the task is split into two parts: one accounting
for obstacle avoidance, faced by DP, and another one in-
corporating the results into the possibly high-dimensional
dynamics constraints, solved by gradient-based methods. To
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enable interactions between these two layers, we design the
low-dimensional problem to generate waypoints to be tracked
during trajectory generation, whose output is gathered into
an adaptive penalty approximation for the successive DP
iteration, as illustrated in Figure 1. Bearing this scheme in
mind, a reasonable formulation of the problem solved by DP
should account for the intricacies arising from the mapping
of higher dimensions, as well as a valid representation of the
original collision constraints. Clearly, the actual formulation
varies depending on the specific application. Nevertheless, in
general we require a mapping Ω: X →W from the original
space X to a low-dimensional space W , where low and high
are relative to the dimensional restrictions imposed by DP.
Then, because of this dimensional gap, the inverse transfor-
mation Ω−1 is often ill-posed. This is the case in robotic
applications, where the mappings Ω and Ω−1 are associated
to forward and inverse kinematics, respectively, and establish
a link between joint and task spaces. Another example is the
planning of vehicle manoeuvers, where the high- and low-
dimensional representations may refer to a detailed model
and a simple point-mass approximation thereof.

Outline: Patterning Figure 1, the DP block for path plan-
ning is discussed in Section II, the NLP block for trajectory
optimization is described in Section III, and their interactions
are detailed in Section IV. Numerical tests and results can
be found in Section V.

Notation: We denote the set of natural, real, and nonneg-
ative real numbers by N, R, and R+, respectively. The set
of n dimensional vectors over R is denoted by Rn. We use
0 and 1 to denote a vector or matrix of zeros and ones,
respectively, of the appropriate dimensions.

II. DYNAMIC PROGRAMMING AND PENALTY
REFORMULATION

In order to deal with the nonconvexity introduced by, e.g.,
collision constraints, we intend to use dynamic programming
(DP) to find a numerical solution. Moreover, to better cope
with the curse of dimensionality, we seek such a feasible
trajectory using a low-dimensional representation of (P)
induced by some user-defined mapping Ω. Then, collision
avoidance constraints are handled via a penalty approach,
with subsequent discretization of time, states, and controls.
Convergence, feasibility, and optimality guarantees of the DP
block follow directly from [11], [12].

A. Penalty Reformulation

Denoting τ0 := 0 the initial time, we let the controls
v : [τ0, τf ] → Rnv be measurable functions and the states
absolutely continuous functions ω : [τ0, τf ]→ Rnω , and con-
sider

minimize
(ω,v,τf )

M(ω(τf )) (DP-P)

subject to ω′(τ) = f̄(ω, v), a.e. τ ∈ [τ0, τf ]

ω(τ0) = Ω(x0),

ω(τ) ∈ Λ, v(τ) ∈ V τ ∈ [τ0, τf ]

where the low-dimensional dynamics f̄ : Rnω ×Rnv → Rnω

can be defined, e.g., by f̄(ω, v) := v. The sets of admissible
controls and states are respectively denoted by V and W.
The objective function M : Rnω → R is defined by

M(ω) := min
x∈X
{‖b(x)‖ |Ω(x) = ω} (1)

for embedding the targeted terminal conditions of (P). This
definition is well-posed, in the sense that M attains a finite
value somewhere, if the final condition in (P) is indeed
kinematically reachable. The nonconvex collision constraints
are encompassed by the set

Λ := {ω ∈W | ∃x ∈ X : Ω(x) = ω, g(x) ≤ 0} (2)

and must be satisfied for all τ ∈ [τ0, τf ]. Now, to re-
solve these nonconvex constraints, a penalty reformulation
is adopted. Hence, let P : W→ R+ with

P(ω) := min
x∈X
{‖Ω(x)− ω‖+ ‖max{0, g(x)}‖} (3)

denote the penalty function for ω ∈ Λ, where the max is ap-
plied componentwise. Note that P is real-valued everywhere
if inequality constraints g(x) ≤ 0 and bounds x ∈ X in (P)
are consistent.

The following discretization scheme is adopted to solve
the continuous-time problem (DP-P). Let the number of time
intervals M ∈ N and the time stepsize bounds hmin, hmax

be given, such that 0 ≤ hmin ≤ hmax ≤ Tmax. Then, let
h := (h0, . . . , hM−1) denote the entire sequence of time
stepsizes and H := {h ∈ RM+ |

∑M−1
i=0 hi ∈ [Tmin, Tmax]}

be the associated admissible set. Hence, with h ∈ H we let
the time grid be represented by Gτ := {τi | i = 0, . . . ,M}
with τi+1 := τ0 +

∑i
j=0 hj for i = 0, . . . ,M − 1. Next, we

consider a piecewise constant approximation vh : [τ0, τf ]→
Rnv of the control v and a piecewise affine approximation
ωh : [τ0, τf ] → Rnω of the state ω defined by an explicit
Euler scheme with a variable stepsize, which yields

ωh(τi+1) = ωh(τi) + hif̄(ωh(τi), vh(τi)). (4)

Ensuing from the discretization scheme and by aggregating
the dynamics and control constraints, the feasible set of the
discrete-time problem is defined by

Ξh :=
{

(ωh, vh, h) | h ∈ H, (5)
ωh(τ0) = Ω(x0), and ∀i = 0, . . . ,M − 1 :

(4) holds and vh(τi) ∈ V
}
.

Then, we denote the contribution in the i-th time step by
Pi(ωh) := P(ωh(τi)), for i = 0, . . . ,M . Hence, using
(3) we can formulate the discrete penalized optimal control
problem

minimize
(ωh,vh,h)∈Ξh

M(ωh(τM )) + ρ

M∑
i=0

Pi(ωh), (6)

with penalty parameter ρ > 0. Then, a discrete-time feasible
and optimal trajectory can be obtained by solving (6) with ρ
sufficiently large, yet bounded, relative to the discretization
stepsizes, as shown in [12, Chapter 4].
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B. Dynamic Programming

Dynamic Programming is based on Bellmann’s principle
of optimality [10], where the value function ϑ(τ, z) reflects
the optimal cost of (DP-P) for a trajectory starting at an
arbitrary initial time τ ∈ [τ0, τf ) and initial state z ∈W. A
global solution of the discrete problem (6) can be computed
using approximate dynamic programming [11]. Therefore,
we build a discretization in the state and control variables,
that is, we consider the respective state and control grids
Gω and Gv as lattices over W and V. Refining time, state,
and control discretizations, the corresponding DP solutions
converge to those of the continuous problem (DP-P), as
attested [12, Chapter 4]. Then, we let τ` ∈ Gτ denote an
initial time, z` = ωh(τ`) the corresponding state, and, for
one time step, we let

ΞG(τ`, z`) :=
{

(ωh, vh, h) | h ∈ H, (7)
ωh(τ`) = z`, vh(τ`) ∈ Gv,
ωh(τ`+1) = ωh(τ`) + h`f̄(ωh(τ`), vh(τ`))

}
define the discrete feasible set, in analogy with (5). Then,
the approximate value function is recursively defined by

ϑh(τM , ωM ) :=M(ωM ), (8)

ϑh(τ`, z`) := min
(ωh,vh,h)∈ΞG(τ`,z`)

{
ρP`(ωh)

+ ϑh(τ`+1, ωh(τ`+1)
}

for all ` = M−1, . . . , 0. Since the evolution of the dynamical
system does not necessarily coincide with a point on the state
grid Gω , the propagated value function is approximated using
an arbitrary interpolation scheme; see [11], [12]. Given any
point ω in the state space, then the value function is approx-
imated by combining its value at the neighboring grid points
denoted by Πj [ω], j = 1, . . . , 2nω , with weighting function
γ : Gτ ×W→ R+ such that

∑2nω

j=1 γ(ω,Πj(ω)) = 1 for all
ω ∈ W. For convenience, we write γj(·) := γ(·,Πj(·)).
Hence, considering an arbitrary initial time τ` and state
z` ∈ W, the approximate value function ϑ̃ is recursively
defined by

ϑ̃(τM , ωM ) :=M(ωM ) (9)

ϑ̃(τ`, z`) := min
(ωh,`,vh,`,h)∈ΞG(τ`,z`)

{
ρP`(ωh)

+

2nω∑
j=1

γj(ωh,`+1)ϑ̃(Πj [ωh,`+1])
}
.

Here, instead of evaluating the penalty defined in (3), one
may consider surrogate values obtained by a consistent proxy
of P; as discussed in Section IV-B below. The optimal
trajectory of the approximated value function is then given
by {ωj}Mj=0, which is subsequently proceeded as an input to
the high-dimensional trajectory generation.

III. TRAJECTORY GENERATION

Once a low-dimensional trajectory {τj , ωj}Mj=0 is gener-
ated by solving (DP-P), we face the task of generating a

suitable high-dimensional trajectory. In view of (P), we seek
a final time T and controls u that optimally steer the system’s
state x through those low-dimensional waypoints. Thus, the
trajectory generation problem may be formulated as

minimize
(x,u,T )

J(x, u, T ) (NLP-P)

subject to ẋ(t) = f(x(t), u(t)) ∀ t ∈ [0, T ]

x(0) = x0

pj(x(Tτj/τM )) = 0 ∀ j ∈ {0, . . . ,M}
x(t) ∈ X, u(t) ∈ U ∀ t ∈ [0, T ]

T ∈ [Tmin, Tmax],

where dynamics, initial condition, and constraints on state,
control, and final time are inherited from (P). The cost
functional J can be user-defined; with the aim of generating
smoother or more efficient trajectories, J may collect track-
ing, control, and time costs. State constraints g(x(t)) ≤ 0
and termination conditions b(x(T )) = 0 of (P) are replaced
with equality path constraints at M +1 time points, encoded
by pj , j = 0, . . . ,M , in (NLP-P). Here, functions pj are
adopted to lift and exploit the waypoints {ωj}Mj=0, and their
formulation depends on the specific problem and relation-
ships between low and high dimensional representations. A
prominent example is pj(x) := Ω(x)−ωj , which requires x
to traverse the low-dimensional state ωj .

Several approaches exist for tackling optimal control prob-
lems such as (NLP-P), leading to direct (multiple) shooting
and collocation techniques or exploiting Pontryagin’s maxi-
mum principle; for an overview see [19], [20].

Following the discretize-then-optimize approach, we in-
troduce a time grid {ti}Ni=0 partitioning the time interval
[0, T ] into N � M time intervals, and we consider state
and control approximations there, denoted by {xi}Ni=0 and
{ui}Ni=0, such that xi ≈ x(ti) for each i = 0, . . . , N . Notice
that the time points {Tτj/τM}Mj=0 are included as a subset
of {ti}Ni=0, and we indicate by I(j) the index i ∈ N such
that ti = Tτj/τM . Therefore, state and control bounds can
be enforced at each point on the time grid and, in particular,
path constraints can be readily included as pj(xI(j)) = 0,
j = 0, . . . ,M . Discrete-time dynamics are obtained by using
finite differences or arbitrary integration schemes, and appear
as equality constraints [19]. Overall, the transcripted problem
is a finite-dimensional, constrained nonlinear program (NLP)
that can be built and solved using off-the-shelf tools [1],
[19]. Note that, if needed or for improved efficiency, one
can construct an initial guess for {xi, ui}Ni=0 based on the
DP trajectory {ωj}Mj=0 via lifting and interpolation.

A notable case for (NLP-P) is that of linear dynamics
f and constraints pj , and polyhedral sets X and U . Paired
with a convex quadratic cost J , the associated fixed final
time problem is that of a linear-quadratic regulator. Then,
full discretization yields a convex quadratic program (QP),
with a plethora of numerical solvers available; see [21], [22]
and references therein.
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IV. INTERFACES: SPACE MAPPING AND PENALTY

Let us recall the iterative scheme sketched in Figure 1.
Therein, the DP block receives a penalty function approx-
imation P̃ , based on information gathered from the high-
dimensional trajectory generated by NLP, in order to gen-
erate a collision-free solution to (P), eventually. Conversely,
lifting the low-dimensional DP solution yields suitable path
constraints for the high-dimensional trajectory generation by
NLP. Building upon the idea of splitting the problem into
simpler parts, the overall procedure, delineated in Algo-
rithm 1, requires a careful orchestration of the different inputs
and outputs of DP and NLP blocks, invoked respectively at
Steps 4 and 7. Thus, the interfaces between these blocks are
critical components of the iterative process.

Algorithm 1: Iterative scheme with DP and NLP

1 Construct state and control grids Gω , Gv
2 Initialize penalty P̃0 using (3) over state grid points
3 for k ← 1, 2, . . . do
4 {ωkj , vkj , hk}Mj=0 ← (6) with penalty grid P̃k
5 try {xkj }Mj=0 ← {ωkj }Mj=0 by (10), build {pkj }Mj=0

6 catch Θk ← {ωkj }Mj=0 and go to Step 10
7 {tki , xki , uki }Ni=0 ← (NLP-P) with {pkj }Mj=0

8 if ∀i ∈ {1, . . . , N} g(xki ) ≤ 0 then return
9 Θk ← {Ω(xki )}Ni=0

10 P̂ (·; Θk), P̃k+1 ← Θk, P̃k by (11) and (12)

Finally, we shall note that trajectories returned by Algo-
rithm 1 are guaranteed to be, up to the time discretization
for (NLP-P), kinematically feasible and collision-free, by
Steps 5 and 8, respectively. Conversely, if the original
problem (P) is indeed feasible, the discretizations for DP are
sufficiently fine, and the penalty parameter ρ large enough,
then Algorithm 1 converges to an approximate solution for
(P) and terminates, based on [12, Chapter 4].

A. From DP to NLP: Space mapping and path constraints

Given a low-dimensional state ωj ∈W, we are interested
in devising a high-dimensional counterpart xj ∈ X , possibly
not unique, such that Ω(xj) = ωj . Then, path constraints
in (NLP-P) can be encoded by functions pj based on xj ,
for j = 0, . . . ,M . Executed at Step 5 of Algorithm 1, this
procedure aims at lifting the waypoints from DP to path
constraints for NLP. Recalling the goal of finding a feasible
trajectory, we embed the relevant constraints of (P) into the
regularized inverse problem

minimize
(x,σ)

%1‖x− xj−1‖2 + %2〈1, σ〉 (10)

subject to Ω(x) = ωj , g(x) ≤ σ ≤ 0, x ∈ X.

Although the ill-posedness of inverse problems cannot in
general be avoided, numerical experience suggests that reg-
ularization terms mitigate the issue of multiple solutions,
and induce more stable sequences {xj}Mj=0. Given some
%1, %2 > 0, high-dimensional candidates x ∈ X are selected

based on their proximity to the previous point xj−1 (if j > 0,
or to x0 if j = 0) and their margin to violating constraints
g(x) ≤ 0, monitored by the auxiliary variable σ. In practice,
one can recursively compute {xj}Mj=1 starting from the initial
state x0 ∈ X .

Retrieving a high-dimensional waypoint xj ∈ X , cor-
responding to ωj ∈ W, one can then define a path con-
straint function pj , based on the identity pj(xj) = 0 and
application-specific knowledge. Then, included in (NLP-P),
this constraint forces the generated trajectory to traverse, in
some sense, the low-dimensional waypoint ωj . Instead, if no
feasible solution to (10) is found, because of kinematic infea-
sibility or unavoidable collision, the waypoint ωj is deemed
infeasible. In this case, covered by Step 6 in Algorithm 1, a
penalty adaptation is required.

B. From NLP to DP: Penalty adaptation and approximation

As the penalty function P in (3) involves the mapping
Ω and constraints g, its behaviour can be highly nonlinear,
and hence its value can greatly vary within a single cell of
the DP discretization. Therefore, we intend to make the DP
execution rely on a penalty function P̃ that is not merely the
pointwise evaluation of P over the grid Gω , but also accounts
for penalty values observed inside nearby cells. In particular,
we exploit the generated high-dimensional trajectories to bet-
ter capture the penalty landscape and consequently improve
the path planned employing DP.

Given a collection of points Θ := {ωj}j∈J ⊆W corre-
sponding to time points {τj}j∈J , J ⊂ N, we can construct
a penalty function approximation over the grid, denoted
P̂ : Gω → R+, as the weighted average

P̂ (ωi; Θ) :=

∑
j∈Ji

α(ωj , ωi)P(ωj)∑
j∈Ji

α(ωj , ωi)
. (11)

Here, for the given grid point ωi ∈ Gω , the set Ji ⊂ N
collects all indices j ∈ J such that τj ∈ (τi−1, τi+1), and the
weighting function α : W × Gω → R+ assigns importance
to samples based on their position relative to the point of
interest ωi. If Ji is empty, then no information is available to
estimate the penalty; we set its value to zero. Notice that the
definition of set Ji imposes a time restriction on the samples,
in order to maintain the separability of penalty terms with
respect to time, i.e., the Markov property.

Now, at the k-th iteration of Algorithm 1, DP adopts a
penalty P̃k, which we dynamically adapt based on the latest
available approximation obtained via P̂ . Let P̃k : Gω → R+,
k ∈ N, denote the approximated penalty over the state grid
Gω . Then, given a collection of points Θk ⊆ W generated
at the k-th iteration, we define recursively

P̃k+1 := P̃k + P̂ (·; Θk), (12)

where the initialization P̃0 can be obtained, e.g., by eval-
uating P on the grid. Once an approximation P̃k of P is
available on the grid, interpolation procedures can generate
values for arbitrary points ω ∈ W. Acting as a surrogate of
P , this can be adopted in (9) to avoid its explicit evaluation.
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Finally, we shall comment on the constraint and penalty
evaluation at Steps 8 and 10 of Algorithm 1. As some given
high-dimensional state xi ∈ X and time ti ∈ [0, T ] are read-
ily mapped into some ωi := Ω(xi) ∈W and τi := τM ti/T ,
for the feasibility of ωi ∈ Λ it remains only to check whether
xi satisfies g(xi) ≤ 0 or not. Suppose this holds, then ωi is
feasible and necessarily P(ωi) = 0. Conversely, ωi could be
feasible even if g(xi) ≤ 0 is violated. However, this requires
the explicit minimization of (3) to evaluate P(ωi).

V. NUMERICAL TESTS

We implement the algorithms and a testing environment
in MATLAB (R2022a), on a system with Intel i7-11700K (8
cores, 3.60 GHz) and 32GB RAM. The proposed algorithmic
framework is evaluated by means of a robotic manipulator
application and compared to CHOMP [2]. To this end, let
us define the task model in terms of (P). We have the
high-dimensional state x := (q, q̇) aggregating the joint
positions and velocities, as well as the joint accelerations
as control u. Consequently, the robot arm dynamics are
modeled as f((q, q̇), u) := (q̇, u) and we choose a min-
imal effort objective J(x, u, T ) :=

∫ T
0
‖u(t)‖2dt for the

trajectory optimization. The boundary condition is set to
b(x) = max{‖Ω(x)−ωref‖−ωtol, 0}, with target position ωref.
Additionally, the state constraint g(x) ≤ 0 is characterized
by the signed distance

g(x) := ε− min
c∈C∪R(q) c6=r∈R(q)

dist(c, r) (13)

between the set of robot collision objects at a certain config-
uration R(q) and the set of environment obstacles C, with a
constant safety bound ε ≥ 0. Herein, dist(c, r) ∈ R denotes
the signed distance between two convex polyhedrons c and
r [23] and is evaluated by means of an extension for the
negative part of the separating axis theorem [24] in conjunc-
tion with the Gilbert-Johnson-Keerthi (GJK) algorithm [25].
Note that this formulation not only accounts for obstacle-
robot interactions, but also for self-collisions. Moreover, our
approach does not rely on the specific collision geometry
adopted here, which strikes a balance between accurate ob-
stacle description and fast distance computation. Alternative
representations include mesh [3] and ball approximations [2],
among others. With respect to (DP-P), the lower-dimensional
state vector ω := (x, y, z) is defined by the Cartesian
coordinates of the robot’s tool center point (TCP), with
controls v := ω̇ the respective linear Cartesian velocities and
time step h. Consequently, the mapping Ω is characterised
by the direct kinematics of the robot, returning the TCP
Cartesian coordinates given the robot’s joint configuration.
Considering the penalty approximation, we select α(·, ωi) in
(11) as the triangular function with stencil [τi−1, τi+1].

A. Solver setting

The penalty (3) and inverse problem (10) are evaluated
using fmincon with its default interior-point al-
gorithm. Considering the trajectory generation phase, an
optimal final time is computed employing fminbnd, con-
currently with an optimal trajectory for a fixed time problem

via full discretization [26]. We employ finite differences and
trapezoidal rule for discretizing dynamics and running cost.
Then, linear dynamics and quadratic cost lead to a convex
QP, which is solved using quadprog.

For the comparison with CHOMP [2] we use the im-
plementation in the MoveIt Motion Planning Framework
shipped with ROS (Robot Operating System) Noetic Nin-
jemys. We use this planner with default settings and with
enabled failure recovery, which allows multiple retries on
failure with dynamically adjusted parameters.

B. Numerical experiments

We considered a pick-and-place scenario for a
6 DoF Kinova MICOTM robotic arm with static
rectangular obstacles, as in Figure 2. Measuring
time in seconds, joint angles in degrees, and
TCP coordinates in meters, we set the TCP target
ωref = (0.59, 0.0, 0.45) with ωtol = 0.06. Bounds on states
and controls are set to qmin = (−180, 50, 35,−360,−360)
and qmax = (−180, 310, 325, 360, 360), as well as
(q̇imin, q̇

i
max, u

i
min, u

i
max)6

i=1 = (−20, 20,−180, 180).
Discretization and boundary parameters for DP are set to

h ∈ [0, 1], [Tmin, Tmax] := [0, 300], Mω = (19, 19, 19),
Mv = (3, 3, 3, 3), M = 20, ωmin = (−0.7,−0.7, 0),
ωmax = (0.7, 0.7, 1) and (vjmin, v

j
max)3

j=1 = (−0.11, 0.11),
with scaling parameter ρ = 104 in (6) and safety distance
ε = 0.01 in (13). In (10) we set %1 = 1, %2 = 10, and
we choose N = 500 for the time discretization of (NLP-P).
Finally, we set a limit on the number of iterations, that is,
Algorithm 1 terminates as soon as k > 20.

Fig. 2. Resulting trajectories of the first (orange dotted), second (purple
dashed) and third (green solid) iteration, with colliding positions (red
markers), obstacles (gray), target region (blue sphere), and optimal initial
and final configurations of the robotic arm with collision geometry (boxes).

Figure 2 illustrates the resulting trajectories produced by
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the proposed algorithmic framework using the initial configu-
ration q0 = (29, 209, 98, 12,−19, 0). It can be observed, that
after each trajectory proposal in a collision, the penalty adap-
tation leads to an amendment of the waypoints, consequently
resulting in a different trajectory. The algorithm terminates
in 3 iterations and, as intended, avoids the infeasible regions
previously detected. Let us mention that the resulting state
trajectories are smooth and the TCP traverses the waypoints
generated by DP, placed at non-uniform timepoints.

In order to validate our approach for multiple initial con-
figurations, we sample the space W ⊂ R3 with an uniform
grid containing 10 points in each dimension. For each fea-
sible point, according to (10), we execute Algorithm 1 with
the resulting joint configuration and zero velocity as initial
condition. Upon success, we invoke CHOMP to plan a path
between the same initial and final joint-space coordinates.

Out of 526 runs, Algorithm 1 found a solution in 512 cases
(97%), requiring on average between 2 and 3 iterations. The
14 failures do not show any apparent pattern in task-space,
and we consider them to be caused by the rough penalty
approximation resulting from coarse discretization. Consid-
ering the CHOMP planner, it was able to compute a valid
trajectory in 108 of these instances (21%) using the default
parameter settings, whereas 302 cases (59%) were solved
by enabling the failure recovery strategy. For each instance,
CHOMP’s runtime was in the order of seconds, whereas our
proof-of-concept implementation of Algorithm 1 required a
few minutes. However, there exist various techniques, such
as adaptive discretization and parallel computing, to improve
the performance of our tool, which is currently designed
for functionality and flexibility. Overall, this illustrates the
capabilities of our combined approach for planning collision-
free trajectories.

VI. CONCLUSIONS

We proposed an algorithmic framework that fruitfully
integrates dynamic programming (DP) and nonlinear pro-
gramming (NLP) methods for planning trajectories in clut-
tered environments. Exploiting a lower-dimensional system’s
representation, the nonconvexity due to obstacles is handled
by DP, while the system dynamics are accounted for by
direct optimal control techhniques, overcoming the curse of
dimensionality for DP. Numerical tests on robotic manipula-
tion tasks showed that the proposed combination of methods
perform successfully.

Future research may focus on adaptively refining the state
space discretization, possibly based on the penalty updates,
and considering a common objective to the low- and high-
dimensional subproblems, overcoming the difficult coupling
due to potentially different time scales.
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