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Abstract— In this paper, a robust fault-tolerant controller is
proposed for discrete-time systems with parameter uncertainty.
First, the state and fault are estimated by an observer based
on the L∞ design. The stability of the L∞ observer is proved
and the error system is robust against unknown disturbances.
Then, on the basis of fault and state estimation, L∞ technique is
applied to design the robust fault-tolerant controller to recover
the performance of the system affected by the actuator fault.
Based on the proposed method, the compensated state can
be bounded by the designed L∞ index, which guarantees the
safety of the system. Finally, the proposed robust fault-tolerant
controller is applied to the simulation of a dual-rotor aero-
engine system model, and its effectiveness is verified.

I. INTRODUCTION
Reliability, safety and stability are important indicators to

measure the control performance of aircraft, satellites, chem-
ical systems, etc [1]. The increasing complexity and changes
in the working environment may cause system components
to encounter some failures during the execution of tasks
[2]. Failures may cause control performance degradation
or even loss of control. In order to minimize performance
degradation and guarantee system safety, timely and effective
fault-tolerant control (FTC) is necessary. In recent decades,
FTC has been widely concerned and successfully applied [3],
[4], [5].

In general, the commonly used FTC strategies can be
divided into two categories: passive and active FTC methods
[8]. A robust passive FTC based on adaptive fuzzy control
has been proposed in [6] such that the robot manipulator has
good control performance. In [7], an adaptive fuzzy sliding-
mode controller is designed for robust passive FTC of a
quadrotor to reduce the estimation error of the nonlinear
functions. However, these passive FTC methods need to
counteract the effects of uncertain dynamics and maximum
failure, which requires high system robustness. In essence,
the methods take advantage of the robustness inherent in
the designed controller algorithm to mitigate the impact of
faults and sacrifice the control performance of the system
in the absence of faults. Different from the passive FTC
methods, the active FTC methods can reconfigure the con-
troller in real time to compensate for faults based on the
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fault information provided by the fault estimator. In this
case, accurate fault information is helpful to improve the
robustness of fault-tolerant control system. Therefore, fault
estimation (FE) has received considerable attention [9], [10],
[11], [12]. In the existing FE methods, the augmented FE
observer is commonly studied, which can achieve state and
fault estimation simultaneously. For practical systems, it is
particularly important to consider the estimation robustness
against unknown disturbances and parameter uncertainties.
H∞ technique is widely used in robust observer design [13],
[14], [15]. Note that both H∞ technique and L∞ technique
can be applied to the FE observer design, the H∞ technique
assumes that disturbances and noise are energy-bounded in
the entire time domain, whereas in practical systems distur-
bances and noise are generally peak-bounded. Fortunately,
the L∞ technology only assumes that disturbances and noise
are peak-bounded, which is a more reasonable assumption
for the observer design. In addition, different from the FTC
based on H∞ design, the FTC based on L∞ design can limit
the upper bound of the state after fault compensation, which
is an effective way to guarantee the safety of the system with
uncertainties.

Based on the above analysis, in order to achieve the system
security and reliability, in this paper, a novel robust FTC
method based on L∞ design is proposed for discrete-time
systems with parameter uncertainty. The main contributions
are concluded as follows. First, we propose a robust observer
design method for state and fault simultaneous estimation
based on L∞ technique to attenuate the influences of dis-
turbance, measurement noise and parameter uncertainty on
estimation error. Second, considering the coupling between
the estimation error and the compensated state in FTC
introduced by parameter uncertainty, we propose a robust
FTC design method with L∞ performance such that the
upper bound of the state after fault compensation satisfies the
L∞ index limitation. Third, the L∞ index is used to predict
the upper bound of the compensated state and to verify the
security and reliability of the system with uncertainties.

The rest is organized as follows. Section II is dedicated
to the problem formulation. In section III, state and fault
estimation based on L∞ design is presented. Section IV gives
the fault-tolerant controller based on L∞ design. Simulation
results and discussions are provided in section V. Finally,
conclusions and future works are drawn in section VI.

Notation: The identify matrix with appropriate dimensions
is represented as I . Meanwhile, a matrix with appropriate
dimensions is represented as 0. In a symmetric matrix, ∗ is
used to represent a term that can be include by symmetry.
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Moreover, for a matrix A, A ≺ 0 (A ≻ 0) denotes negative
(positive) definiteness. For a vector x ∈ Rn, ∥x∥ =

√
xTx

represents its European norm. Given a sequence of signals
t(k)(k = 0, · · · ,∞), ∥t(k)∥∞ =

√
max∞

k=0t
T (k)t(k).

II. PROBLEM FORMULATION

Consider the following linear discrete-time system with
parameter uncertainty:{
x(k + 1) = (A+∆A)x(k) +Bu(k) +Dωω(k) + Ff(k)

y(k) = Cx(k) +Dvv(k)

(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny de-
note the state, control input, measurement output vectors,
respectively. ω(k) ∈ Rnω denotes the process disturbances.
v(k) ∈ Rnv denotes the vectors of measurement noise
and f(k) ∈ Rnf denotes the actuator fault. A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , F ∈ Rnx×nf , Dω ∈ Rnx×nω

and Dv ∈ Rny×nv are known matrices with appropriate di-
mensions. Moreover, we consider the structure of parameter
uncertainty, which will be used later in the observer gain and
controller gain design. The modeling errors are represented
as parameter uncertainty ∆A satisfies

∆A = M∆N, (2)

where the matrices M , N are known, ∆ ∈ Rn1×n1 is an
unknown matrix and ∆∆T ⪯ Inx

.
In order to realize the estimation of the fault f(k), the

system obtained by considering f(k) as an auxiliary state is
formed as follows:{
ξ(k + 1) = (Ā+∆Ā)ξ(k) + B̄u(k) + D̄ωω(k) + H̄h(k)

y(k) = C̄ξ(k) +Dvv(k)

(3)

where ξ(k) =
[
xT (k) fT (k)

]T
, h(k) = f(k + 1) − f(k),

Ā =

[
A F
0 Inf

]
, ∆Ā =

[
∆A 0
0 0

]
, B̄ =

[
B
0

]
, D̄ω =

[
Dω

0

]
,

H̄ =

[
0
Inf

]
and C̄ =

[
C 0

]
.

In addition, when dealing with parameter uncertainty, we
need to use the following lemma.

Lemma 1 ( [16]): Let M , N and ∆ be matrices of ap-
propriate dimension, and ∆T∆ ⪯ I , then for any scalar ϵ:

M∆N +NT∆TMT ⪯ 1

ϵ
MMT + ϵNTN. (4)

This paper aims to design a robust state and fault ob-
server with the estimation error dynamics robust against
the unknown disturbance, measurement noise and parameter
uncertainty. Based on the robust estimation, we aim to design
a robust fault-tolerant controller for system (1) such that
the state after fault compensation satisfies the given robust
performance, which guarantees the safety of the considered
system.

III. STATE AND FAULT ESTIMATION BASED L∞
DESIGN

Construct the following observer for the augmented system
(3):{

ξ̂(k + 1) = Āξ̂(k) + B̄u(k) + L(y(k)− ŷ(k))

ŷ(k) = C̄ξ̂(k)
(5)

where ξ̂(k), f̂(k) and ŷ(k) are the estimation of ξ(k), f(k)
and y(k), respectively. L =

[
LT
x LT

f

]T
is the observer gain

matrix.
Define the estimation error as e(k) = ξ(k) − ξ̂(k), from

(3) and (5), the following error system can be obtained:

e(k + 1) =(Ā− LC̄)e(k) + ∆Āξ(k) + D̄ωω(k)

+ H̄h(k)− LDvv(k) (6)

It should be emphasized that ξ(k) = e(k) + ξ̂(k). There-
fore, (6) can be rewritten as follows:

e(k + 1) =(Ac +∆Ā)e(k) + ∆Āξ̂(k) + D̄ωω(k)

+ H̄h(k)− LDvv(k) (7)

where Ac = Ā− LC̄.
It can be clearly seen that due to the existence of parameter

uncertainty, the state estimation ξ̂(k) have influence on the
error system (7). Moreover, since ∆A is unknown matrix, the
effects of ξ̂(k) can be regarded as unknown disturbances, and
the error system can be expressed as follows:

e(k + 1) = Ade(k) +Bdd(k) (8)

where Ad = Ac + ∆Ā, Bd = Dx + ∆D, Dx =[
D̄ω −LDv H̄ 0

]
, ∆D =

[
0 0 0 ∆Ā

]
and

d(k) =
[
ωT (k) vT (k) hT (k) ξ̂T (k)

]T
. Next, we will

design the gain matrix L of state and fault observer to make
the error system (8) robust to unknown disturbances d(k)
(including the effects of state estimates on the system through
parameter uncertainty). Unfortunately, the H∞ method often
needs to assume that the disturbances and noise are energy-
bounded in the full time domain. Instead, the peak-bounded
case is considered in this paper. Fortunately, the proposed
L∞ technique can effectively deal with the peak-bounded
disturbances and noise. We aim to design the observer
parameter such that the error system satisfies the L∞ index
as follows:

∥e(k)∥ <
√
κ2
1α

kJ (0) + κ2
1∥d(k)∥2∞ (9)

where κ1 > 0, 0 < α < 1, J (0) = eT (0)Θe(0),
Θ ∈ R(nx+nf )×(nx+nf ) is a positive definite matrix, and
∥d(k)∥∞ = maxk≥0∥d(k)∥ is the L∞ norm of d(k). To
this end, we propose the following theorem:

Theorem 1: Given scalar κ1 > 0, if there exists a positive-
definite matrix Θ ∈ R(nx+nf )×(nx+nf ), an invertible matrix
G ∈ R(nx+nf )×(nx+nf ), a matrix W ∈ R(nx+nf )×ny and a
scalar ϵ > 0 such that the following inequalities are satisfied:[

Ψ ∗
MT −ϵIn1+n2

]
≺ 0, (10)

ϱInx+nf
−Θ ≺ 0, (11)
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where Ψ = Σ+ ϵNTN , ϱ = 1
κ2
1

,

Σ =

Σ11 ∗ ∗
Σ21 Σ22 ∗
Σ31 Σ32 Σ33

, Σ11 = −αΘ, Σ21 =
[
0; 0; 0; 0; 0

]
,

Σ22 =


Z11 ∗ ∗ ∗ ∗
0 Z22 ∗ ∗ ∗
0 0 Z33 ∗ ∗
0 0 0 Z44 ∗
0 0 0 0 Z55

, Z11 = −(1−α)Inω
,

Z22 = −(1 − α)Inv
, Z33 = −(1 − α)Inf

, Z44 = −(1 −
α)Inx+nf

, Z55 = −(1 − α)Inu
, Σ31 = GĀ − WC̄,

Σ32 =
[
GD̄ω −WDv GH̄ 0 0

]
, Σ33 = Θ − G −

GT , M =
[
0; 0; 0; 0; 0; 0;GM̄1

]
, M̄1 =

[
M1

0

]
, N =[

N1 0 0 0 N1 0 0
]
,

and let L = G−1W , then the error system satisfies the L∞
index (9).

Proof: According to the Schur complement lemma, (10)
is equivalent to

Σ+
1

ϵ
MMT + ϵNTN ≺ 0. (12)

And, according to Lemma 1, (12) yields

Σ+M∆N +NT∆TMT ≺ 0. (13)

Since L = G−1W , we have W = GL. Substituting it into
Σ yields

Σ =

−αΘ ∗ ∗
0 −(1− α)Int

∗
GAc GDx Θ−G−GT

 , (14)

where nt = nw + nv + nf + nx + nu.
Taking M , N and ∆ into M∆N , we get

M∆N =

 0 0 0
0 0 0

G∆Ā G∆D 0

 (15)

Substituting (14) and (15) into (13) yields−αΘ ∗ ∗
0 −(1− α)Int

∗
GAd GBd Θ−G−GT

 ≺ 0. (16)

By pre-multiplying and post-multiplying (16) with[
Inx+nf

0 AT
d

0 Int
BT

d

]
and its transpose, respectively, we can

get [
−αΘ ∗

BT
d ΘAd −(1− α)Int

+BT
d ΘBd

]
≺ 0. (17)

Furthermore, by pre-multiplying and post-multiplying (17)
with

[
eT (k) dT (k)

]
and its transpose, respectively, we have

− αeT (k)Θe(k) + eT (k)AT
d ΘBdd(k) + dT (k)BT

d ΘAde(k)
(18)

+ dT (k)BT
d ΘBdd(k)− (1− α)dT (k)d(k) ≤ 0.

Consiser the Lyapunov function as follows:

J (k) = eT (k)Θe(k), (19)

then according to (19), (18) can be rewritten as follows:

J (k + 1) ≤ αJ (k) + (1− α)dT (k)d(k), (20)

it follows that

J (k) ≤ αkJ (0) + (1− α)

k−1∑
i=0

αidTk−1−idk−1−i

≤ αkJ (0) + (1− α)

k−1∑
i=0

αi∥d(k)∥2∞

< αkJ (0) + ∥d(k)∥2∞. (21)

By pre-multiplying and post-multiplying (11) with eT (k)
and e(k), respectively, we can get

eT (k)e(k) ≤ κ2
1e

T (k)Θe(k). (22)

Eventually, combining (21) and (22), we have

∥e(k)∥2 < κ2
1α

kJ (0) + κ2
1∥d(k)∥2∞, (23)

which implies the L∞ index (9).
To optimize the estimation accuracy, the maximum ϱ can

be obtained by solving the following optimization problem:

max ϱ

s.t (10), (11). (24)

and κ2
1 = 1

ϱ can be minimized, the feasible solution of the
observer gain can be obtained by L = G−1W .

In the sequel, the objective is to design a fault-tolerant
controller for the considered system (1).

IV. FAULT-TOLERANT CONTROL BASED ON L∞
DESIGN

According to (5), the observed result of the state can be
expressed as follows:

x̂(k + 1) = Ax̂(k) + F f̂(k) +Bu(k) + Lx(y(k)− ŷ(k)).
(25)

In order to reduce the impact of actuator fault on the
considered system, the fault-tolerant control law based on
fault compensation is designed as follows:

u(k) = −Kxx̂(k)−Kf f̂(k), (26)

where Kx and Kf are the gain matrices to be designed.
Submitting the fault-tolerant control law (26) into (25), we

can get

x̂(k + 1) =(A−BKx)x̂(k) + (F −BKf )f̂(k)

+ Lx(y(k)− ŷ(k)). (27)

Furthermore, the effects of the actuator fault can be
compensated if

F −BKf = 0. (28)

Then, (27) can be rewritten as follows:

x̂(k + 1) = (A−KxB)x̂(k) + Lx(y(k)− ŷ(k)). (29)
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According to x(k) = x̂(k) +
[
I 0

]
e(k), combining (8)

and (29), the state can be rewritten as follows:

x(k + 1) =(Ax1 +∆A)x(k) +Be1e(k) +D1d̃(k) (30)

where Ax1 = A − BKx, Be1 = BKxS1 +
BKfS2, S1 =

[
I 0

]
, S2 =

[
0 I

]
, d̃(k) =[

ωT (k) vT (k) hT (k) fT (k)
]T

and D1 =[
Dω 0 0 F −BKf

]
.

Note that u(k) (26) is designed to reduce the impact of
actuator faults, which leads to the coupling between x(k)
and e(k). Then, ∆Āξ̂(k) in the error system (7) cannot be
regarded as unknown disturbances, the error system can be
rewritten as follows:

e(k + 1) =(Ax2 +∆Ax2)x(k) +Be2e(k) +D2d̃(k) (31)

where Ax2 = 0, ∆Ax2 =

[
∆A
0

]
, Be2 = Ā − LC̄ and

D2 =
[
D̄ω −LDv H̄ 0

]
.

In this case, define a new augmented variable ε̃(k) =[
xT (k) eT (k)

]T
, ε̃(k) can be formulated by combining

(30) and (31) as follows:

ε̃(k + 1) = Ãtε̃(k) + D̃td̃(k), (32)

where Ãt = At + ∆At, At =

[
Ax1 Be1

Ax2 Be2

]
, ∆At =[

∆A 0
∆Ax2 0

]
and D̃t =

[
D1

D2

]
. Note that x(k) = C̃ε̃(k),

where C̃ =
[
I 0

]
.

Consequently, we can get the fault-tolerant control system
of the considered system as follows:{

ε̃(k + 1) = Ãtε̃(k) + D̃td̃(k)

x(k) = C̃ε̃(k)
(33)

We aim to design the control gain matrix Kx such that
x(k) is robust to d̃(k). Specifically, the following L∞ index
is satisfied:

∥x(k)∥ < λ

√
α̃kV (0) + ∥d̃(k)∥2∞ (34)

where λ > 0, 0 < α̃ < 1, V (0) = ε̃T (0)P ε̃(0), P ∈
R(nx+nx+nf )×(nx+nx+nf ) is a positive definite matrix and
∥d̃(k)∥∞ = maxk≥0∥d̃(k)∥ is the L∞ norm of d̃(k).

In order to design the fault-tolerant controller gain matrix
Kx such that the system (33) satisfies the L∞ index (34),
the following theorem is proposed.

Theorem 2: Given a scalar λ > 0, 0 < α̃ < 1, if there
exist positive-definite matrices P1 ∈ Rnx×nx , P2 ∈ Rnx×nx

and P3 ∈ Rnf×nf , a matrix Y1 ∈ Rnx×nx and a scalar ϵ̃ > 0
such that [

ϕ̃+ M̃M̃T ∗
Ñ −ϵ̃I

]
≺ 0, (35)

τC̃T C̃ − P ≺ 0, (36)

where

P =

P1 ∗ ∗
0 P2 ∗
0 0 P3

, ϕ̃ =

Π11 ∗ ∗
Π21 Π22 ∗
Π31 Π32 Π33

,

Π11 =

ϕ̃11 ∗ ∗
0 ϕ̃22 ∗
0 0 ϕ̃33

, Π21 =


0 0 0
0 0 0
0 0 0
0 0 0

, Π22 =


ϕ̃44 ∗ ∗ ∗
0 ϕ̃55 ∗∗
0 0 ϕ̃66 ∗
0 0 0 ϕ̃77

, Π31 =

ϕ̃81 ϕ̃82 ϕ̃83

0 ϕ̃92 ϕ̃93

0 ϕ̃102 ϕ̃103

,

Π32 =

ϕ̃84 0 0 ϕ̃87

ϕ̃94 ϕ̃95 0 0

0 ϕ̃105 ϕ̃106 0

, Π33 =−P1 ∗ ∗
0 −P2 ∗
0 0 −P3

, ϕ̃11 = −α̃P1, ϕ̃22 = −α̃P2,

ϕ̃33 = −α̃P3, ϕ̃44 = −(1 − α̃)Inω
, ϕ̃55 = −(1 − α̃)Inv

,
ϕ̃66 = ϕ̃77 = −(1 − α̃)Inf

, ϕ̃81 = P1A − Y1, ϕ̃82 = Y1,
ϕ̃83 = P1BKf , ϕ̃84 = P1Dω , ϕ̃87 = P1(F − BKf ),
ϕ̃92 = P2A − P2LxC, ϕ̃93 = P2F , ϕ̃94 = P2Dω ,
ϕ̃95 = −P2LxDv , ϕ̃102 = −P3LfDv , ϕ̃103 = P3,
ϕ̃105 = −P3LfDv , ϕ̃106 = P3, τ = 1

λ2 .

M̃ =


0

P1M1

P2M1

0

, Ñ =
[
N1 0 0 0

]
, and let

Kx = (P1B)−1Y1, then the fault-tolerant control system
satisfies the L∞ index (34).

Proof: According to the Schur complement lemma, (35)
is equivalent to

ϕ̃+
1

ϵ̃
M̃M̃T + ϵ̃ÑT Ñ ≺ 0. (37)

According to Lemma 1, (37) implies

ϕ̃+ M̃∆Ñ + ÑT∆T M̃T ≺ 0. (38)

Submitting At, Dt and P into ϕ̃, we can get

ϕ̃ =

−α̃P ∗ ∗
0 −(1− α̃)Ind

∗
PAt PD̃t −P

 (39)

where Ind
= nω + nv + nf + nh.

Taking M̃ , Ñ and ∆ into M̃∆Ñ , we get

M̃∆Ñ =

 0 0 0
0 0 0

P∆At 0 0

 (40)

Substituting (39) and (40) into (38) yields−α̃P ∗ ∗
0 −(1− α̃)Ind

∗
PÃt PD̃t −P

 ≺ 0. (41)

By pre-multiplying and post-multiplying (41) with[
I2nx+nf

0 ÃT
t

0 Ind
D̃T

t

]
and its transpose, respectively, we

can get[
−α̃P + ÃT

t PÃt ∗
D̃T

t PÃt −(1− α̃)Ind
+ D̃T

t PD̃t

]
≺ 0. (42)
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Furthermore, by pre-multiplying and post-multiplying (42)
with

[
ε̃T (k) d̃T (k)

]
and its transpose, respectively, we can

get

ε̃T (k)ÃT
t PÃtε̃(k)− α̃ε̃T (k)P ε̃(k) + ε̃T (k)ÃT

t PD̃td̃(k)

+ d̃T (k)D̃T
t PÃtε̃(k) + d̃T (k)D̃T

t PD̃td̃(k) (43)

− (1− α̃)d̃T (k)d̃(k) ≤ 0.

Define the Lyapunov function as follows:

V (k) = ε̃T (k)P ε̃(k), (44)

then according to (44), (43) can be rewritten as follows:

V (k + 1) ≤ α̃V (k) + (1− α̃)d̃T (k)d̃(k), (45)

it follows that

V (k) ≤ α̃kV (0) +

k−1∑
i=0

α̃id̃Tk−1−id̃k−1−i

≤ α̃kV (0) +

k−1∑
i=0

α̃i∥d̃(k)∥2∞

< α̃kV (0) + ∥d̃(k)∥2∞. (46)

By pre-multiplying and post-multiplying (36) with ε̃T (k)
and ε̃(k), respectively, we can get

xT (k)x(k) ≤ λ2ε̃T (k)P ε̃(k). (47)

Eventually, combining (46) and (47), we have

∥x(k)∥2 < λ2(α̃kV (0) + ∥d̃(k)∥2∞), (48)

which implies the L∞ index (34).
The maximum τ can be obtained by solving the following

optimization problem:

max τ

s.t (35), (36). (49)

and λ2 = 1
τ can be minimized, the feasible solution of the

controller gain can be obtained by Kx = (P1B)−1Y1.

V. SIMULATION RESULTS AND DISCUSSIONS

The effectiveness of the proposed fault tolerant control
method is verified by an aero-engine model [17], which can
be expressed as follows:

[
Ṅ2 − Ṅo

2

π̇T − π̇o
T

]
= Ap

[
Ṅ2 − Ṅo

2

π̇T − π̇o
T

]
+Bp

[
WFM −WFMo

A8−A8o

]
[
N2 −No

2

πT − πo
T

]
= Cp

[
N2 −No

2

πT − πo
T

]
(50)

where WFM is the main fuel flow rate, A8 is the nozzle
throat area, N2 is the speed of compressor and πT is the
turbine exit pressure ratio. Moreover, WFMo, A8o, No

2 and
πo
T are values at the nominal state operating point. Ap, Bp

and Cp represent the matrices of linearized model between
the idle and intermediate state at H = 0km, Ma = 0.

The above continuous model is discretized using the Euler
one-step method with sampling time Ts = 0.025s. And
considering the effects of model uncertainties and actuator
fault, we can obtain a discrete-time system in the form of
(1) with the following parameters:

A =

[
0.9450 −0.0441
−0.0170 0.8815

]
, B =

[
0.0315 0.0206
0.0077 0.0526

]
,

C =

[
1.0000 0

0 1.0000

]
, Dω =

[
0.0500 0

0 0.0500

]
,

F =

[
0.0315 0.0206
0.0077 0.0526

]
, Dv =

[
0.0500 0

0 0.0500

]
,

M =

[
0.2000 0

0 0.2000

]
, N =

[
0.2000 0

0 0.2000

]
,

∆ =

[
0.04δk1 0

0 0.04δk2

]
, ω(k) =

[
0.1δk3 0
0 0.1δk4

]
,

v(k) =

[
0.02δk5 0

0 0.02δk6

]
,

where δk1 , δk2 , δk3 , δk4 , δk5 and δk6 are random signals between
0 and 1.

The values of the observer parameters and the fault-
tolerant controller parameters are set as α = 0.6, ϵ = 0.9,
α̃ = 0.5, ϵ̃ = 0.66. By solving the optimization problem
(24) and (49), we can obtain κ1 = 0.4371, λ = 0.0543. The
corresponding observer and the controller gain matrices are
obtained as follows:

L =


1.3580 0.0135
0.0387 1.3568
14.8408 −5.0922
−1.2837 10.1091

 ,Kx =

[
15.8956 −6.9707
−2.7954 8.2884

]
,

Kf =

[
1.0000 0

0 1.0000

]
.

We give three fault forms, which are fault 1: f(k) =
[0.5sin(0.1k − 3); 0.5sin(0.1k − 3)], 30 ≤ k ≤ 125; fault 2:
f(k) = [0.5sin(0.08k−0.8); 0.5sin(0.08k−0.8)], 10 ≤ k ≤
128; fault 3: f(k) = [0.0125k − 0.25; 0.0125k − 0.25, 20 ≤
k ≤ 100. Among them, fault 1 is used to simulate Figs. 1-3 to
verify the FTC performance, while fault 1, fault 2 and fault 3
are applied in Fig. 3 to verify the safety of the system under
L∞ index respectively. The estimation results of the two state
components and the two fault components via the proposed
observer are given in Fig. 1 and Fig. 2. They show that
the proposed observer can obtain very accurate estimation
of state and relatively accurate estimation of fault. There is
a lag between true fault and estimated fault mainly caused
by the variation of the fault signal between two adjacent
instants, the estimation accuracy of state is higher than that of
fault. The state dynamics with using fault-tolerant controller
(26) are shown in Fig. 3. Different from the method in
[13], the influence of parameter uncertainty on the system is
considered in the observer design and fault-tolerant controller
design based on L∞ technology. It can be seen that the effect
of actuator fault has been attenuated and we get better system
performance than the method in [13]. In order to test possible
scenarios of uncertainties, we have made 500 independent
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simulations with different disturbances and noise under three
fault forms in Fig. 4. It can be seen that the Euclidian norm
of the system state can be kept under the L∞ index by
the proposed fault-tolerant control method, ensuring that the
system operates within secure limits. However, the Euclidian
norm of the state by the method in [13] exceeds the preset
L∞ index.
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Fig. 1. State x(k) and its estimation.
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Fig. 2. Fault f(k) and its estimation.
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Fig. 3. The state x(k) with and without fault-tolerant control.

VI. CONCLUSIONS AND FUTURE WORKS

A robust FTC approach has been proposed for discrete-
time systems with parameter uncertainty, which has been
mathematically proved and demonstrated by simulation re-
sults of a dual-rotor aero-engine system model. State and
fault estimations for robust fault-tolerant controller design
are obtained by the robust observer with L∞ performance.
The proposed robust FTC method can not only realize the
performance recovery under actuator fault, but also realizes
the state limitation to ensure the system works in a safe and
reliable range. In the future, more complex systems will be
considered.

fault 3

fault 2

Fig. 4. The norm of state x(k) with fault-tolerant control and its
L∞ index.
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