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Abstract— In this work, we address both the state feedback
stabilization problem and the dynamic output feedback sta-
bilization problem for third-order continuous-time switched
linear systems. Based on the controllability normal form de-
composition approach, we prove that any controllable system is
state feedback stabilizable, and the rate of convergence could be
arbitrarily pre-assigned. Furthermore, for observable switched
systems, we propose a reduced-order observer that could
asymptotically estimate the unmeasured states. The dynamic
output feedback stabilization problem is solved by designing a
common switching law that stabilizes both the state and the
observer. The design process is completely constructive.

I. INTRODUCTION

Switched systems are a class of dynamical systems with
wide representability and powerful control ability. When
both the control law and the switching law are design
variables, the interaction between them poses interesting and
challenging issues that are theoretically appealing [6], [9],
[11].

For a switched linear system with freely designed con-
trol input and switching signal, the stabilization problem
is to design, when possible, proper switching/control laws
that make the system exponentially stable. The stabilization
problem has long been a core & classical problem that
attracts much attention in the literature, and huge progress
has been made by means of various approaches, for example,
the Lyapunov method [8], [10], [7], [12], [19], [20], the
optimization approach [1], [22], the structural decomposition
approach [15], [17], [24], the phase portrait method [18],
[21], and the automata-driven switching scheme [5], to list
only a few.

As the investigation extended, it was found that the sta-
bilization problem is very involved. Basically, the problem
is nonconvex in Lyapunov functions [4], time-varying or
nonlinear in control [14, §5.4.2], which makes the stan-
dard tools, for instance, the Lyapunov method, the average
approach, and the system decomposition scheme, are not
readily applied to the design of stabilizing switching/control
laws. As such, the investigation becomes harder even for
lower-dimensional switched linear systems. In the recent
work [13], the problem was solved in a constructive manner
for third-order continuous-time switched linear systems with
two subsystems.

In this work, we focus on the stabilization problem for
third-order continuous-time switched linear systems with ar-
bitrarily many subsystems, and present a constructive design

scheme for solving the problem under the mild conditions of
controllability/observability. The contributions of the work
include: i) we prove that, for any controllable third-order
continuous-time switched linear system, three linear state
feedbacks are sufficient for achieving stability, and construc-
tive design procedures are developed to stabilize the switched
system with any pre-assigned rate of convergence; ii) for
an observable third-order continuous-time switched linear
system, we design a reduced-order observer that, together
with the measured output, could asymptotically estimate the
system state in any given time interval with any pre-assigned
rate of accuracy; and iii) we propose an observer-driven
switching law for the dynamic output feedback system that
could stabilize both the the original system and the observer,
and the switching law is always well-posed.

II. PRELIMINARIES

Let n,m, p be positive integers with m ≥ 2. The switched
linear system in this work is described by

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (1)
y(t) = Cσ(t)x(t), (2)

where x(t) ∈ Rn is the system state, σ(t) ∈ M
△
=

{1, 2, · · · ,m} is the switching signal to be designed, u(t) ∈
Rp is the control input, y(t) is the measured output, and
A1, · · · , Am, B1, · · · , Bm, and C1, · · · , Cm are real con-
stant matrices with compatible dimensions. For convenience,
we denote the system by Σ(Ai, Bi, Ci)M .

A. Definitions

Definition 1: Switched system (1) is said to be (exponen-
tially) stabilizable, if there are positive real numbers α and
β, such that for any x0 ∈ Rn, there exist switching signal
σ : [0,+∞) → M and piecewise continuous control input
u : [0,+∞) → Rp satisfying

∥x(t)∥ ≤ βe−αt∥x0∥, ∀ t ≥ 0.

Here, α is said to be the rate of convergence.
Definition 2: Let k be a positive integer. Switched sys-

tem (1) is said to be k-linear-state-feedback (exponen-
tially) stabilizable, if there are positive real numbers α,
β, and gain matrices Fi,1, · · · , Fi,k, i ∈ M , such that
for any x0 ∈ Rn, there exist switching signal σ :
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[0,+∞) → M and piecewise continuous control input
u(t) ∈ {Fσ(t),1x(t), · · · , Fσ(t),kx(t)} satisfying

∥x(t)∥ ≤ βe−αt∥x0∥, ∀ t ≥ 0.

In particular, when k = 1, then the system is said to be
piecewise-linear-state feedback stabilizable.

By the homogeneity of the switched system and the
Heine-Borel Theorem, stabilizability of a switched linear
system implies (and hence is equivalent to) k-linear-feedback
stabilizability when k is sufficiently large.

Definition 3: A state observer for switched system (1) is
a dynamical system

ż(t) = f(t, z(t), y(t), σ(t), u(t)), z(0) = z0, (3)

where f is a proper vector function. For a switching signal σ,
the observer is said to be σ-asymptotic if limt→+∞ ∥x(t)−
z(t)∥ = 0 for any x0 and z0.

Definition 4: Switched system (1) is said to be dynamic
output stabilizable, if there exist a state observer and an
observer-driven switching signal that steer the switched sys-
tem and the observer exponentially convergent.

Definition 5: Switched system (1) is said to be (com-
pletely) controllable, if for each x0 ∈ Rn, there exist time
T > 0, switching signal σ, and control input u such that
x(T ) = 0.

Definition 6: For switched system (1), state x0 is said to
be unobservable if it is indistinguishable from the origin, that
is, for any switching signal σ we have

Cσ(t)x(t) = 0, ∀ t ≥ 0.

The switched system is said to be completely (switched)
observable if the unobservable set is {0}.

Switched system (1) is said to be of single-input if∑m
i=1 rankBi = 1. Otherwise is said to be of multi-input.

Similarly, switched system (1-2) is said to be of single-output
if
∑m

i=1 rankCi = 1.
A switching path is a switching signal defined over a finite

time interval. Suppose that θ is a switching path defined over
[0, ς), then the length of θ is |θ| = ς . Given two switching
paths θ1 and θ2, the concatenation of θ1 and θ2, denoted by
θ1 ⊔ θ2, is defined to be

θ1 ⊔ θ2 =

{
θ1(t) if t ∈ [0, |θ1|)
θ2(t) if t ∈ [|θ1|, |θ1|+ |θ2|).

Concatenation of more than two switching paths could be
defined in the same manner. In particular, denote Pθ = θ ⊔
θ ⊔ . . . the infinite concatenation of switching path θ, which
is a periodic switching signal defined over [0,+∞).

Let θ be a switching path, and suppose that the switching
times are 0 < t1 < . . . < tl < |θ|. The state transition matrix
of the switched system along θ is

Φ(|θ|) = eAθ(tl)
(|θ|−tl) · · · eAθ(t1)(t2−t1)eAθ(0)t1 .

B. Controllability Normal Forms

We focus on third-order switched systems, and made the
following assumptions:

Assumption 2.1: Switched system (1-2) is completely
controllable and completely observable.

For controllable multi-input switched linear systems, it has
been proved that controllability implies piecewise-linear sta-
bilizability, and constructive stabilizing design was presented
in [14, §5.4.2].

When the switched linear system is of single input, we
could assume without loss generality that B1 ̸= 0 and Bi =
0, i = 2, . . . ,m. Under the controllability assumption, it
follows from the controllability criterion [14, Remark 4.20]
that, there are indices i1 and i2, both in M , such that

rank[B1, Ai1B1, Ai2B1, Ai2Ai1B1] = 3.

By possible re-numerating the subsystems, we could classify
the single-input switched system into the following cases:

a) rank[B1, A1B1, A
2
1B1] = 3;

b) rank[B1, A1B1, A2B1] = 3;
c) rank[B1, A2B1, A1A2B1] = 3;
d) rank[B1, A2B1, A

2
2B1] = 3;

e) rank[B1, A2B1, A3A2B1] = 3; and
f) rank[B1, A2B1, A3B1] = 3.
For Cases a)-d), it has been proven in [14], [13] that the

system is exponentially stabilizable, and constructive design
procedures were developed.

For Case e), it can be easily verified that there exists a
real number η such that linear system (ηA2 + A3, B1) is
controllable. It follows from Theorem 5.24 in [14] that the
switched system is piecewise-linear feedback stabilizable.

For Case f), we could transform the system into the con-
trollability normal form (Cf. [14, Sec. 4.5.2]). By applying
Theorem 5.24 in [14], we need only to consider the normal
form given by

A1 =

 0 0 0
0 a 0
0 0 a

 , B1 =

 1
0
0

 ,

A2 =

 0 b1 b2
1 b3 b4
0 0 b5

 , B2 = 0,

A3 =

 0 c1 c2
0 c3 0
1 c4 c5

 , B3 = 0, (4)

where a, b1, . . . , b5, and c1, . . . , c5 are real constants.

III. STATE FEEDBACK STABILIZING DESIGN

Based on the discussion in the previous section, we assume
that the switched system admits normal form (4).

Lemma 1: For any t > 0, γ1 > 0 and γ2, γ3 ∈ R, there
is a row vector F ∈ R3, such that

exp [(A1 +B1F )t] = eat

 γ1 γ2 γ3
0 1 0
0 0 1

 . (5)
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Proof: Let

f1 =
ln γ1
t

+ a, f2 =
γ2 ln γ1
t(γ1 − 1)

, f3 =
γ3 ln γ1
t(γ1 − 1)

.

Define a function

g(t, γ1, γ2, γ3) = [f1, f2, f3].

Let F = g(t, γ1, γ2, γ3). It can be computed that

e(A1+B1F )t = eat

 γ1 γ2 γ3
0 1 0
0 0 1

 .

Proposition 1: Switched system (4) is 3-linear-feedback
(exponentially) stabilizable.

Proof: Fix positive real times h1,1, h1,2, h1,3. We are
to design positive real numbers h2, h3 and feedback gain
matrices F1, F2, F3, such that

e(A1+B1F3)h1,3eA2h2e(A1+B1F2)h1,2eA3h3e(A1+B1F1)h1,1

is norm contractive, thus a periodic switching signal could
steer the system exponentially convergent. For this, let

Fi = g(h1,i, ρi,1, ρi,2, ρi,3),

where ρi,j , i, j = 1, 2, 3, are real numbers to be designed.
For almost any h2 > 0, the (1, 1)-th and (2, 1)-th entries

of matrix eA2h2 are nonzero. Fix such an h2, and denote

eA2h2 =

 v1 v2 v3
v4 v5 v6
0 0 v7

 .

It can be seen that v7 = eb5h2 > 0.
For almost any h3 > 0, the (3, 1)-th entry of matrix eA3h3

is nonzero. Fix such an h3, and denote

eA3h3 =

 ω1 ω2 ω3

0 ω4 0
ω5 ω6 ω7

 .

It can be seen that ω4 = ec3h3 > 0. Note that the determinant

of matrix exp

([
0 c2
1 c5

]
h3

)
is ω3ω5 − ω1ω7 ̸= 0.

Denote T = h1,1 + h1,2 + h1,3 + h2 + h3. Fix δ < 1, and
let δ0 = e−a(h1,1+h1,2+h1,3)δ.

Define

ρ1,1 =
δ0

v7ω5
, ρ1,2 = −ω6

ω5
, ρ1,3 = −ω7

ω5
,

ρ2,1 =
ω5δ0

v4(ω3ω5 − ω1ω7)
,

ρ2,2 = −v5
v4

− δ0(ω2ω5 − ω1ω6)

v4ω4(ω3ω5 − ω1ω7)
,

ρ2,3 = −v6
v4

− ω1δ0
v4(ω3ω5 − ω1ω7)

,

ρ3,1 =
|v4|δ0

|v1v2v4ω4 − v1v5ω4|+ |v1δ0|
,

ρ3,2 = 0,

ρ3,3 =
|v4|(v1v6 − v3v4)δ0

v4v7(|v1v2v4ω4 − v1v5ω4|+ |v1δ0|)
.

It can be verified that

e(A1+B1F3)h1,3eA2h2e(A1+B1F2)h1,2eA3h3e(A1+B1F1)h1,1

=

 0 δ1 δ2
0 0 δ
δ 0 0


with |δ1|+ |δ2| = δ.

As a result, the matrix

e(A1+B1F3)h1,3eA2h2e(A1+B1F2)h1,2eA3h3e(A1+B1F1)h1,1

admits infinity norm δ < 1. This means that system (4) is 3-
linear-feedback (exponentially) stabilizable with convergence
rate − ln δ

T .
Let t1 = h1,1, t2 = t1 + h3, t3 = t2 + h1,2, t4 = t3 + h2,

and T = t4 + h1,3. Define switching path

θ(t) =

 1 when t ∈ [0, t1) ∪ [t2, t3) ∪ [t4, T )
3 when t ∈ [t1, t2)
2 when t ∈ [t3, t4).

(6)

Accordingly, define control law

u(t) =

 F1x(t) when mod (t, T ) ∈ [0, t1)
F2x(t) when mod (t, T ) ∈ [t2, t3)
F3x(t) when mod (t, T ) ∈ [t4, T ),

(7)

where mod (t, T ) is the reminder of t divided by T .
By integrating Proposition 1 and [13, Thm. 1], we have

the following result.
Theorem 1: Any controllable third-order continuous-time

switched linear system is 3-linear-feedback (exponentially)
stabilizable, and the rate of convergence could be arbitrarily
pre-assigned.

Proof: Without loss of generality, we assume that∑
(Ai, Bi)M0

is controllable, where the cardinality of M0,
denoted by m0, is two or three.

First, when there exist non-negative real
numbers η1, · · · , ηm0

such that linear system
(
∑m0

i=1 ηiAi, [B1, · · · , Bm0 ]) is controllable, by applying
the average approach (Cf. [14, P.185]), we could design
m0 feedback gain matrices and a (high-frequency) periodic
switching law such that the switched system is exponentially
stable with any pre-assigned rate of convergence.

Then, for form (3) in [13] when m0 = 2, it has been es-
tablished that two feedback gain matrices could be designed
such that the switched system is exponentially stable with
any pre-assigned rate of convergence.

Finally, for normal form (4) with m0 = 3, the state
transition matrix along switching path Pθ and control law
u in (7) is exactly

e(A1+B1F3)h1,3eA2h2e(A1+B1F2)h1,2eA3h3e(A1+B1F1)h1,1 ,

which is norm contractive. This means that the switched
system is exponentially stable with any pre-assigned rate of
convergence.

Remark 1: Theorem 1 extends [13, Thm. 3.1], which
addressed the special class of third-order switched systems
each with two subsystems. The extension is far from trivial
from both the design scheme and technical development
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perspectives. Indeed, for the general case, the classification
of the normal forms is much more involved, and the design
of gain matrices is by means of directly assigning the spectra
of the state transition matrix, which allows us to thoroughly
assign the convergence rate of the designed system.

Remark 2: Note that the design approach relies heavily
on the classification of the controllability normal forms.
Indeed, here we classify the controllable systems into 6
categories according to the rank conditions, each category
admits one controllability normal form. For fourth or higher-
order switched systems, the number of the controllability
normal forms grows fast as the system dimension and the
number of subsystem grow, which prohibits the current
approach from extending to fourth or higher-order switched
systems.

Remark 3: When the switched system is not completely
controllable, we could decompose the system into the con-
trollable submode and uncontrollable submode. We could
prove that, the switched system is stabilizable if and only
if the uncontrollable submode is stabilizable as a switched
autonomous system. The design of the control law and
switching law is similar to [13, §III.B], and is omitted here
due to space limit.

IV. DYNAMIC OUTPUT FEEDBACK STABILIZATION

A. Observer Design

When the system state is not totally available, state ob-
servers/estimators could be designed to asymptotically esti-
mate the state. In Ref. [16], an observer design method was
proposed for a class of hybrid systems with both switching
and impulse. The observer itself is also a hybrid system,
which could asymptotically converge to the actual state under
persistent switching. Other observer design schemes could be
found in [2], [3], [23].

For switched linear systems, it has been established that
observability is dual with reachability, and observer design
is dual with state feedback stabilizing design [14]. By
the duality property, the design of an asymptotic observer
could be addressed for third-order continuous-time switched
linear systems. The resultant observer is also a third-order
continuous-time switched linear system with Luenburger-like
subsystems, and the observer exponentially approaches the
state of the original switched system along a proper periodic
switching signal. The design of such a full-order observer is
totally parallel to the stabilizing design as investigated in the
previous section, and we will not repeat the details. Instead,
we focus on a specific yet practically important case that the
output is independent of the switching law, that is, y = Cx
where C ̸= 0.

Let us examine the third-order switched linear system
with a single output, y = Cx, where C is a non-zero
row vector. Under Assumption 2.1, we have indices i1 and

i2, both in M , such that either rank

 C
CAi1

CAi2

 = 3 or

rank

 C
CAi1

CAi1Ai2

 = 3. By possible re-numerating the

subsystems, and with a proper coordinate change x̄ = Tx,
the single-output switched system could be transformed into

˙̄x(t) = Āσ(t)x̄(t) + B̄σ(t)u(t), (8)
y(t) = C̄x̄(t) (9)

where C̄ = [1 0 0]. Furthermore, we have either C̄
C̄Ā1

C̄Ā2

 = I3

or  C̄
C̄Ā1

C̄Ā1Ā2

 = I3. (10)

Rewrite matrices Āi, B̄i and C̄, i ∈ M into block forms

Āi =

[
Āi,1 Āi,2

Āi,3 Āi,4

]
, B̄i =

[
B̄i,1

B̄i,2

]
, C̄ = [C̄1 C̄2],

where Āi,1, B̄i,1 and C̄1, i ∈ M are scalers, and other blocks
are of compatible dimensions.

Construct the observer that is the second-order switched
linear system given by

˙̄z(t) = (Āσ(t),4 − Lσ(t)Āσ(t),2)z̄(t)− (Lσ(t)Āσ(t),1 + Lσ(t)

Āσ(t),2Lσ(t) − Āσ(t),3)y(t) + (Lσ(t)B̄σ(t),1 + B̄σ(t),2)u,

where z̄(0) = z̄0 = 0, L1 ∈ R1×2 is to be designed, and
Li = 0, i ̸= 1.

Denote the observer error as

ē(t) =

[
x̄2

x̄3

]
− z̄(t).

Lemma 2: Suppose that switched system (1-2) is com-
pletely observable. There exist a switching path θ with any
pre-assigned length, such that ē(t) exponentially approach
zero with any pre-assigned rate of convergence.

Proof: It can be verified that

˙̄e(t) = (Āσ(t),4 − Lσ(t)Āσ(t),2)ē(t).

Thus the error dynamics is a switched autonomous system.
By virtual of the complete observability of switched system
(1-2), we could express the subsystem matrices as

Ā1 =

 0 1 0
γ1 γ2 0
γ3 γ4 γ5

 , Ā2 =

 η1 η2 η3
0 0 1
η4 η5 η6

 ,

where γ1, . . . , γ5 and η1, . . . , η6 are real numbers.
Denote L1 = [l1 l2]. For any positive real number h1, it

is straightforward that

e(Ā1,4−L1Ā1,2)h1 =

[
e(γ2−l1)h1 0

(γ4 − l2)
e(γ2−l1)h1−eγ5h1

γ2−l1−γ5
eγ5h1

]
.

Further, for almost any positive real number h2, the (1, 2)
entry of eĀ2,4h2 is non-zero. Fix such an h2. Design l2 =
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γ4 − eγ5h1γ8

γ7
, where γ7 and γ8 denote the (1, 2) and (2, 2)

entries of eĀ2,4h2 , respectively. Routine calculation shows
that the entries of matrix

e(Ā1,4−L1Ā1,2)h1eĀ2,4h2e(Ā1,4−L1Ā1,2)h1 (11)

is either zero or sufficiently approaching zero when (l1 −
γ2)h1 is sufficiently large. Design l1 such that the norm of
the matrix in (11) is smaller than or equal to e−(2h1+h2)ν ,
where ν is any pre-assigned rate of convergence. Define
switching path

θ =

 1 if t ∈ [0, h1)
2 if t ∈ [h1, h1 + h2)
1 if t ∈ [h1 + h2, 2h1 + h2).

It is clear that the ē(t) exponentially approach zero under
the periodic switching law Pθ.

Remark 4: It follows from the proof that the reduced-
order observer could exponentially track the state along a
periodic switching law with any pre-assigned rate of tracking
accuracy. The base switching path is with two switches, and
its length could be chosen to be arbitrarily short. In contrast,
to design a full-order observer we need up to five switches
in a base switching path.

Remark 5: The design procedure could be extended to
more general situation that the output relies on the switching
law. In fact, detailed classification shows that, the only
exception is when the system is equivalent to the case with
C1 = [1 0 0], Ci = [0 0 0], i = 2, . . . ,m, and both
the (1, 2) and (1, 3) entries of A1 are zeros. Whether the
system in this case admits a reduced-order observer or not
is an interesting issue to be addressed.

B. Observer-driven Switching Design

Fix υ0 < 1.
Suppose that we have design a full-order or reduced-order

observer with base switching path θ2. Denote

υ1 = ∥Φ̄(|θ2|)∥, υ2 = ∥Φ(|θ2|)∥,

where Φ and Φ̄ are the state transition matrices of the original
switched system and the error system, respectively.

Fix υ3 such that υ2υ3 ≤ υ0. According to the design
procedure presented in §III, we could design a multi-linear
state feedback control law such that the norm of the state
transition matrix is less than or equal to υ3 along a base
switching path θ1.

Denote

υ4 = ∥Φ̄(|θ1|)∥.

Note that υ1 could be arbitrarily assigned, so we design the
observer gain properly such that υ1υ4 ≤ υ0.

Define a new base switching path θ = θ1⊔θ2. Accordingly,
we could design the observer-driven control law u(t), where
state is substituted by the observer. It is clear that

ẋ(t) = (Aσ(t) +Bσ(t)Ft)x(t)−Bσ(t)Fte(t), (12)

where σ = Pθ, e is the error between the state and the
observer, and Ft is the multi-linear feedback gain matrices
designed in §III.

From the above analysis, both the error system and the
nominal system

ẋ(t) = (Aσ(t) +Bσ(t)Ft)x(t)

are norm contractive along the switching signal θ. Under the
periodic switching signal Pθ, both systems are exponentially
convergent. Due to the boundedness of Fj for any j, system
(12) is also exponentially convergent. So we have the fol-
lowing conclusion.

Theorem 2: Under Assumption 2.1, switched system (1-2)
is dynamic output feedback stabilizable.

C. Example

As a numerical example, we examine the controllable
system (4) with

a = 0.5,

b1 = −1, b2 = −2, b3 = 2, b4 = 2, b5 = 1,

c1 = −3, c2 = 1.5, c3 = 1, c4 = −2, c5 = 2.

Let h1,1 = h1,2 = h1,3 = h2 = h3 = 0.2 and δ = 0.1.
Applying the design procedure presented in Proposition 1,
we have

F1 = [−4.1892 19.3240 − 12.8772],

F2 = [−3.4160 − 7.9846 − 8.0486],

F3 = [−3.8026 0 0.1181].

Figure 1 shows the dynamics with initial state x0 =
[1,−1,−1]T . While the state trajectory is with large over-
shoot, it is clear that the system is exponentially convergent.
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Fig. 1. System dynamics with state feedback

Next, suppose that the whole state information is not
available, and the measured output is y = x1. By applying
the reduced-order observer design procedure, we have the

gain matrix L2 =

[
93.2484
−71.6242

]
with base switching path

θ(t) =

 2 if t ∈ [0, h̄)
3 if t ∈ [h̄, 2h̄)
2 if t ∈ [2h̄, 3h̄),

where h̄ = 0.1. A trajectory of the observer is depicted in
Figure 2 along the error trajectory. It can be seen that the
error trajectory is exponentially convergent.
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Fig. 2. System dynamics with state observer

Finally, we examine the overall system dynamics with
observer-driven feedback control/switching laws. Due to the
high-gain nature of the control law, we need to prevent the
state transition matrix from quick growth when the state
is substituted by the observer. For this, we take smaller
h1,1 = h1,2 = h1,3 = h2 = h3 = 0.05, and keep
other parameters unchanged. Figure 3 depicts the state and
the observer trajectories, both of which are exponentially
convergent. It is clear that, the transient performance is worse
than that of the state feedback case, which is caused partly
by the error between the observer and the state and partly
by increased dimension of the extended system.
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Fig. 3. System dynamics with observer-driven feedback

V. CONCLUSION

In this work, the problem of stabilization has been
addressed for third-order continuous-time switched linear
control systems. We proved that, any controllable system
is stabilizable by means of (at most) three linear state
feedbacks and a periodic switching law, and rate of con-
vergence could be assigned in a constructive manner. When
the switched system is observable, we proposed a reduced-
order observer, which is also a switched system with two
switches and one non-zero observer gain in a base period. To
solve the dynamic output feedback stabilization problem, we
developed observer-driven control/switching laws that steer
the extended system exponentially convergent. A numerical
example was presented to show the effectiveness of the
proposed design scheme.
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