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Abstract— We address economic dispatch of power gener-
ators with prohibited operating zones. The problem can be
formulated as an optimization program with a quadratic cost,
non-convex local operating constraints, and a scalar quadratic
coupling constraint accounting for load demand and power
losses. A duality-based resolution approach integrating a bi-
section iterative scheme is proposed to reduce computational
complexity while guaranteeing finite time feasibility of the
primal iterates and a cost improvement throughout iterations.
Extensive simulations show that the approach outperforms
state-of-the-art competitors and consistently computes feasible
primal solutions with a close-to-zero optimality gap at a low
computational cost.

I. INTRODUCTION

Unit Commitment (UC) and Economic Dispatch (ED) are
crucial for power systems operation. UC [1] determines the
generating units that will be possibly activated to produce
the forecasted electricity demand along some reference time
horizon, while ED [2] allocates the demand in each time
slot by defining the actual amount of power that each of the
committed generators has to produce in that time slot. The
ED problem can be solved after the UC problem or jointly,
in an integrated manner.

The ED problem admits several formulations (see [3,
Chapter 7] and [4] for an overview), that can differ for the
objective function (e.g., reduction of fuel costs and emissions
of greenhouse gases), the adoption of multiple objectives, the
characteristics of the generators (e.g., multiple fuel options,
presence of prohibited operating regions), etc. Many of
these formulations involve discrete decision variables, which
make the resulting optimization problem combinatorial, with
a complexity that grows exponentially in the number of
generators.

State-of-the-art methods for ED resort to a wide gamut
of paradigms, ranging from stochastic (possibly hybrid)
heuristic methods [5]–[7], to exact resolution schemes based
on implicit enumeration [8], and linearization of quadratic
and nonlinear terms [9]. Although their performance depends
on the chosen problem formulation, they typically either lack
convergence guarantees or do not scale with the size of the
problem, thus becoming prohibitive in practice.

In this work, we consider an ED problem where we
aim at minimizing the cost to supply the required energy
demand via generators with prohibited operating regions.
Following [6], we formulate the problem as an optimization
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program with continuous and binary decision variables,
quadratic cost, non-convex local constraints, and a scalar
quadratic coupling constraint taking into account power
losses. The intrinsic combinatorial nature of the problem that
is hidden in the non-convex constraints makes it hard to solve
and calls for suitable resolution schemes. Here, we propose
a duality-based approach integrating the bisection iterative
scheme in [10] to tackle computational complexity, while
guaranteeing finite time feasibility of the primal iterates and
a cost that is not increasing throughout iterations.

Resolution strategies for similar ED programs have been
proposed in the literature using linear approximation strate-
gies, direct search and stochastic optimization methods.
In [9], [11] the nonlinear terms in the constraints (and,
possibly, the cost) are linearized or approximated via piece-
wise affine functions to obtain a mixed-integer linear formu-
lation of the problem. Such reformulation, however, typically
include several additional binary variables, that ultimately
increase the combinatorial complexity of the problem. In
[5] and [12], the optimal solution is searched in the (non-
convex) feasibility set of the problem via a Genetic Al-
gorithm (GA), using different selection and recombination
strategies. Parallel streams of work investigated the use of
spatial Particle Swarm Optimization (PSO) and Evolutionary
Programming (EP) methods, see [6], [13], and [14]. A
distributed approach combining flooding-based consensus
and a differential evolution algorithm was proposed in [15].
All these strategies use a stochastic approach to tackle
the non-convexity of the optimization program and are not
too complex to implement. However, they typically lack
finite-time convergence guarantees to a feasible solution
and their performance highly depends on their initialization,
thus requiring multiple runs to find good-quality solutions.
A deterministic two-level Branch-and-Bound method is, in-
stead, proposed in [8] to gain efficiency by exploiting the
problem structure. However, the resulting method is only
partly effective since it shares all the critical aspects of
standard Branch-and-Bound approaches and does not scale
with the size of the problem.

Our approach exploits duality to gain in computational
efficiency. Note that duality is also used in [16] but to solve
a multi-objective ED problem without considering generators
with prohibited operating regions. A weighted sum method
is used to recast the multi-objective cost as a single-objective
cost, using a bisection-based heuristic to determine the value
of the weights in the sum for which the Pareto front is
smooth and uniform. Duality allows to take advantage of
the structure of the resulting problem and formulate it as a
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quadratic program, which is easy to solve.
The remainder of the paper is structured as follows.

Section II provides the formulation for the ED problem based
on [6], whilst the proposed approach is introduced in Sec-
tion III and tested via numerical simulations in Section IV.
Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Consider an Economic Dispatch Problem (EDP) with m
generator units, each producing a power Pi ≥ 0, which is
zero if the generator i does not participate in the energy
provision at the considered time slot and is positive oth-
erwise. The problem is modeled according to the widely-
adopted mixed-integer quadratic formulation proposed in [6].
Generators are assumed to use a single type of fuel and the
cost Ji for unit i to produce an amount of power Pi is given
by the quadratic cost function

Ji(Pi) = ωi0 + ωi1Pi + ωi2P
2
i , (1)

where ωi0, ωi1 and ωi2 are positive scalar coefficients spe-
cific for generator i, i = 1, . . . ,m.

Generators can have prohibited zones within their domain
of operation, due to physical limitations of individual power
plant components [17]. This is the case, for example, for
the vibrations in a shaft bearing that are amplified at certain
operating regimes [5], which should then be avoided. This
is modeled by associating to each generator i a set of
operating regions {[P i,j , P̄i,j ], j = 1, . . . , Ni} such that
P i,1 = Pmin

i > 0, P̄i,Ni
= Pmax

i > Pmin
i , P i,j < P̄i,j ,

and P̄i,j−1 < P i,j .
The power Pi produced by generator i will then satisfy

(only) one of the following conditions

Pi = 0, (2a)
P i,j ≤ Pi ≤ P̄i,j for some j ∈ {1, . . . , Ni} . (2b)

The operation of a generator may also be subject to ramp
limits with the purpose of avoiding abrupt variations in the
power output between the previous time slot and the current
one. If we denote as Pi,0 the power provided by generator i in
the previous time slot, ramp limits can be enforced requiring

−∆i ≤ Pi − Pi,0 ≤ ∆̄i, (3)

with ∆̄i > 0 and ∆i > 0 denoting the maximum power
increase or decrease, respectively, that generator i can allow.

In order to satisfy a certain power demand Pd ≥ 0, the
power of all generators should be set so as to satisfy the
following (scalar) constraint

m∑
i=1

Pi − Pℓ(P⃗ ) ≥ Pd, (4)

that accounts also for the power losses Pℓ(P⃗ ), with P⃗ =
[P1 · · · Pm]⊤, which can be computed using Kron’s loss
formula [3, Section 7.6] as

Pℓ(P⃗ ) =

m∑
i=1

m∑
j=1

bijPiPj +

m∑
i=1

bi0Pi + b00, (5)

with bij , bi0, b00, i, j = 1, . . . ,m, being suitable coefficients.
Let Pi be the set

Pi = [Pi,0 −∆i, Pi,0 + ∆̄i] ∩
(
{0} ∪Ni

j=1 [P i,j , P̄i,j ]
)

(6)

defining the feasible power output values for generator i and
denote with P̃max

i its maximum admissible power output,
i.e., P̃max

i = maxPi∈Pi
Pi ≤ Pmax

i . Clearly, for (4) to be
admissible, the power demand Pd shall be less than the max-
imum power that can be produced by all generators minus
the corresponding losses, i.e., Pd <

∑m
i=1 P̃

max
i −Pℓ(

⃗̃Pmax),
with ⃗̃Pmax = [P̃max

1 · · · P̃max
m ]⊤.

Then, the EDP for a demand Pd can be formalized as

min
P1,...,Pm

m∑
i=1

Ji(Pi) (7a)

subject to:
m∑
i=1

Pi − Pℓ(P⃗ ) ≥ Pd (7b)

Pi ∈ Pi i = 1, . . . ,m, (7c)

with Ji(Pi), Pℓ(P⃗ ), and Pi respectively defined in (1), (5),
and (6). Problem (7) has a quadratic cost (7a), a quadratic
global constraint (7b) involving the decision variables of all
generators, and m local constraints (7c) each involving the
power of a single generator. Since the local set Pi is the
intersection between an interval and a union of disjoint inter-
vals arising from commission/decommission and prohibited
zones, (7) is a non-convex problem, which is difficult to
solve.

In this letter, we leverage Lagrangian duality along with
the scalar nature of the coupling constraint and propose a
computationally efficient bisection-based algorithm to pro-
vide a feasible (possibly suboptimal) solution to (7).

III. PROPOSED APPROACH

Upon a close inspection of (7), it is clear that penalizing
the violation of constraint (7b) instead of enforcing it as
a constraint would turn the problem from a quadratically
constrained non-convex program into a program that is
still non-convex but with a quadratic cost function only.
Moreover, in such a case, the Pi’s would be independently
constrained by the sets Pi and would be coupled through the
(quadratic) cost function only. This is the typical situation
in which Lagrangian duality can help in dealing with the
complicating constraint (7b). Let us therefore lift (7b) to the
cost function through a (single) Lagrange multiplier λ ≥ 0,
define the Lagrangian function

L(P⃗ , λ) =

m∑
i=1

Ji(Pi) + λ
(
Pd + Pℓ(P⃗ )−

m∑
i=1

Pi

)
, (8)

construct the dual function1

φ(λ) = min
{Pi∈Pi}m

i=1

L(P⃗ , λ), (9)

1Note that function φ(·) is well defined since the sets Pi, i = 1, . . . ,m
are closed and bounded, and functions Ji(·) and Pℓ(·) are continuous.



Algorithm 1 Bisect EDP
1: λ← 0
2: λ̄← λstart in (12)
3: P⃗ ← argmin{Pi∈Pi}mi=1

L(P⃗ , λ̄)

4: if
∑m

i=1 Pi − Pℓ(P⃗ ) = Pd then
5: return P⃗
6: end if
7: P⃗best ← P⃗
8: repeat
9: λ̂← 1

2

(
λ̄+ λ

)
10: P⃗ ← argmin{Pi∈Pi}mi=1

L(P⃗ , λ̂)

11: if
∑m

i=1 Pi − Pℓ(P⃗ ) = Pd then
12: return P⃗
13: else if

∑m
i=1 Pi − Pℓ(P⃗ ) > Pd then

14: P⃗ best ← P⃗
15: λ̄← λ̂
16: else if

∑m
i=1 Pi − Pℓ(P⃗ ) < Pd then

17: λ← λ̂
18: end if
19: until some stopping criterion is met
20: return P⃗best

and pose the dual problem

max
λ≥0

φ(λ). (10)

The dual problem in (10) is convex, despite (7) is non-
convex, and its optimal cost φ⋆ provides a lower bound
to the optimal cost J⋆ of (7), see e.g., [18, Section 5.1.3].
Moreover, the scalar nature of constraint (7b) makes the dual
function φ(λ) one-dimensional and, thus, easy to maximize,
as the optimal value λ⋆ can be found by looking for a zero
of the sub-differential map of the dual function. One could
thus compute an optimal dual solution λ⋆, and, then, recover
a primal solution by minimizing the Lagrangian at λ = λ⋆:

[P1(λ
⋆) · · · Pm(λ⋆)]⊤ = argmin

{Pi∈Pi}m
i=1

L(P⃗ , λ⋆). (11)

Such a solution, however, is not guaranteed to satisfy the
aggregate power demand since the dualized constraint (7b)
is not directly enforced in (11).

The approach proposed in this letter overcomes such
limitation, resorting to the dual bisection method introduced
in [10] for general non-convex problems with a single com-
plicating constraint. The procedure is guaranteed to either
converge to an optimal primal solution in a finite number of
iterations or generate a sequence of feasible primal solutions
with non-increasing cost. We will first describe the proposed
scheme (reported in Algorithm 1) and its properties, which
will then be theoretically discussed in the next subsection.

The bisection procedure starts with an interval [λ, λ̄] =
[0, λstart] (cf. Steps 1 and 2), where

λstart =

∑m
i=1

(
Ji(P̃

max
i )−minPi∈Pi

Ji(Pi)
)

∑m
i=1 P̃

max
i − Pℓ(

⃗̃Pmax)− Pd

(12)

is selected to ensure that λ⋆ ∈ [0, λstart], as later discussed in
Section III-A. Note that λstart is not difficult to compute as

the numerator is the difference between the production costs
associated to the maximum admissible power generation
and the costs associated to the minimum power generation
irrespectively of demand satisfaction summed across all
generators, while the denominator is the difference between
the maximum admissible power generation (minus losses)
and the actual power demand. Then, a first feasible power
allocation P⃗ is computed by minimizing the Lagrangian
in (8) with a penalization coefficient for constraint (7b) equal
to λ = λ̄ = λstart (cf. Step 3). If such allocation matches the
demand Pd exactly (cf. Step 4), then it is also optimal and is
readily returned in Step 5, otherwise is saved as the current
best allocation P⃗best in Step 7 and the algorithm proceeds to
the bisection loop (cf. Steps 8-19).

At the beginning of each bisection iteration the midpoint
λ̂ of the interval [λ, λ̄] is computed (cf. Step 9) and a new
allocation P⃗ is obtained by minimizing the Lagrangian in (8)
with a penalization coefficient for constraint (7b) equal to
λ = λ̂ (cf. Step 10). If such allocation matches the demand
Pd exactly (cf. Step 11), then it is also optimal and is readily
returned in Step 12. If, instead, P⃗ strictly satisfies the demand
(cf. Step 13), then it is feasible for (7) and its cost is no-
worse than that of the current P⃗best, since λ̂ < λ̄ and, hence,
constraint (7b) has been penalized less in favor of a better
cost. Therefore, P⃗ is selected as the new best allocation and
saved into P⃗best in Step 14. At the same time, since we are
producing strictly more than the demand Pd, it may be that
we are still over-penalizing constraint (7b), and, hence, λ̂ is
selected as the new upper extreme of the bisection interval
in Step 15. If, instead, P⃗ is not enough to satisfy the demand
(cf. Step 16), then it is infeasible for (7) and it is discarded.
Accordingly, since we are producing strictly less than the
demand Pd, we are under-penalizing constraint (7b), and,
hence, λ̂ is selected as the new lower extreme of the bisection
interval in Step 17. The loop continues until some stopping
criterion is met, like when a maximum number of iterations
is reached or when the length of the interval [λ, λ̄] falls below
a certain threshold. Whenever the loop stops, the algorithm
returns the best allocation found P⃗best (cf. Step 20).

A. Theoretical Discussion
In this section we show that problem (7) fits the framework

proposed in [10] and, hence, the DualBi algorithm proposed
in [10] can be applied and it actually reduces to Algorithm 1
when applied to problem (7). Any claim made in the previous
section will thus be justified by the corresponding claim
in [10]. Let us start by noting that problem (7) has the
structure

min
x∈X

f(x) (13a)

subject to: v(x) ≤ 0 (13b)

of [10, P] simply defining the x, f(x), v(x), and X
quantities in [10] as

x = P⃗ = [P1 · · · Pm]⊤, (14a)

f(x) =

m∑
i=1

Ji(Pi), (14b)



v(x) = Pd + Pℓ(P⃗ )−
m∑
i=1

Pi, (14c)

X = P1 × · · · × Pm. (14d)

The Lagrangian in (8) can be equivalently expressed as
L(x, λ) = f(x) + λv(x) and the dual function as φ(λ) =
minx∈X L(x, λ).

As we discussed in the previous section, v(x) ≤ 0
(i.e., (7b)) is indeed a complicating constraint and is also a
support constraint, as the demand Pd will not be satisfied by
setting the generators at their minimum admissible power.
Since the sets Pi, i = 1, . . . ,m are all compact, X is
compact too. Moreover, since Ji(Pi) is quadratic in Pi for
all i = 1, . . . ,m and Pℓ(P⃗ ) is quadratic in P1, . . . , Pm, both
f(x) and v(x) are scalar continuous functions of x ∈ X .

Since we assumed Pd <
∑m

i=1 P̃
max
i − Pℓ(

⃗̃Pmax), this is
equivalent to know that there exists an x̃ = ⃗̃Pmax such that
v(x̃) < 0, meaning that

φ(λ) = min
x∈X

L(x, λ) = min
x∈X

f(x) + λv(x) ≤ f(x̃) + λv(x̃).

This implies that lim supλ→+∞ φ(λ) = −∞ and, since
φ(·) is concave, that the level sets of φ(λ) are compact,
which, together with continuity, ensures that an optimal dual
solution λ⋆ exists and, hence, [10, Assumption 1] is satisfied.
Moreover, according to [10, Theorem 2], setting

λstart =
φ(0)− f(x̃)

v(x̃)
=

minx∈X L(x, 0)− f(x̃)

v(x̃)

(14)
≡ (12),

results in DualBi skipping [10, Steps 4–10 in Algorithm 1]
and executing only [10, Steps 1–3 and Steps 11–30 in
Algorithm 1], which are equivalent to the proposed Algo-
rithm 1 given the identifications in (14). Therefore, by [10,
Theorem 1], Algorithm 1 either returns an optimal solution
to (7) after a finite number of iterations or refines its power
allocation P⃗best by progressively reducing its overall cost.

B. Implementation

Running Algorithm 1 requires solving problem (9) at
different values of the dual variable λ. Despite being simpler
than (7), it still requires minimizing a quadratic cost function
over a non-convex set. Luckily each Pi is independently
constrained to belong to a union of intervals, which can be
easily reformulated as mixed-integer linear constraints.

For each generator i, let σi,j ∈ {0, 1}, j = 1, . . . , Ni

be additional binary decision variables encoding whether Pi

belongs to the j-th allowed power interval (σi,j = 1) or not
(σi,j = 0).

Then, the mutually exclusive conditions in (2) can be
equivalently reformulated as

Ni∑
j=1

σi,jP i,j ≤ Pi ≤
Ni∑
j=1

σi,jP̄i,j (15a)

Ni∑
j=1

σi,j ≤ 1, (15b)

where (15b) constrain Pi to belong to at most one interval,

while (15a) specifies the interval extremes based on the
values of σi,1, . . . , σi,Ni

(cf. (2b)). When σi,1 = · · · =
σi,Ni = 0, which is allowed by (15b), constraint (15a)
enforces Pi = 0 (cf. (2a)).

This shows that each local set Pi can be reformulated as

Pi = {Pi ∈ R : ∃σi,1, . . . , σi,Ni
∈ {0, 1} : (3) ∧ (15)},

which is a mixed-integer set described by linear inequalities,
easily handled by off-the-shelf solvers. Moreover, this also
shows that problem (7) can be posed as a Mixed-Integer
Quadratically Constrained Quadratic Program (MIQCQP),
whereas the problem solved at each iteration of Algorithm 1
is (9), which can be posed as a significantly simpler Mixed-
Integer Quadratic Program (MIQP).

C. Computational complexity
The MIQCQP (7) has a combinatorial complexity that

scales exponentially in the number m of generators and
depends on the number K of disjoint convex sets in P1 ×
· · · × Pm, which is given by K =

∏m
i=1 nPi , with nPi ≤

Ni + 1 number of disjoint intervals in Pi in (6). To solve
(7), one could, in principle, proceed via enumeration by
fixing a power interval in Pi for each generator i, solving
the resulting (convex) Quadratically Constrained Quadratic
Program (QCQP), and then choosing the best among the
obtained K solutions. By lifting the quadratic constraint to
the cost, the approach in this paper requires solving the
MIQP (9), instead of the MIQCQP (7), at each iteration
of Algorithm 1. Admittedly, (9) has the same combinatorial
nature of (7). However, its solution by enumeration would
involve K (much simpler) quadratic programs with box
constraints instead of K QCQPs and, as m grows, this
balances the fact that it needs to be solved repeatedly (see
the results reported in Section IV).

IV. NUMERICAL SIMULATIONS

We now assess the efficacy of the proposed approach on
two benchmark EDPs described in [6, Section V.A], and then
test its scalability on randomly generated problem instances
of different dimensions. All tests are performed on a laptop
equipped with an Intel Core i7-9750HF CPU @2.60GHz and
16GB of RAM. Algorithm 1 is implemented in MATLAB
R2020b and uses CPLEX v12.10 to solve the MIQP obtained
at each iteration by lifting the complicating constraint. In
each test, we let Algorithm 1 run until the length of the
interval [λ, λ̄] falls below 10−8.

We measure the quality of a solution P⃗ of (7) based on
its normalized excess of production

E(P⃗ ) =

∑m
i=1 Pi − Pℓ(P⃗ )− Pd

Pd

and its relative optimality gap

∆J(P⃗ ) =
J(P⃗ )− J⋆

J⋆
, (16)

where J(P⃗ ) =
∑m

i=1 J(Pi) and J⋆ is the optimal cost,
determined by solving problem (7) via Gurobi, setting its
optimality and feasibility tolerances to 10−8.



A. Benchmark examples

The first benchmark problem considers an IEEE case-
study introduced in [6] with m = 6 generators that must
satisfy a demand of 1263 MW. The parameters of the
system and loss coefficients are reported in [6, Table I-II
and Appendix] and are omitted for the sake of conciseness.
Table I compares the best feasible solution P⃗ best obtained
by Algorithm 1 with the solutions computed by the Genetic
Algorithm in [5], the Particle Swarm Optimization method
in [6], the bi-level Branch-and-Bound approach in [8], and
the decentralized scheme in [15]. Note that the solution
obtained via the scheme in [8] has a negative relative opti-
mality gap and a negative normalized excess of production.
This means that it is super-optimal but unfeasible. Indeed,
it results in a power loss of 12.47 MW (as opposed to the
12.44 reported in [8]) and in a power production that does
not satisfy the total power demand. The solution is marked
with an ∗ in the table and is excluded from the discussion
in the sequel. Results show that Algorithm 1 outperforms
its competitors. The normalized excess of production E(P⃗ )
is of the order of 10−9, which implies that the allocation
practically satisfies (7) with equality. In addition, the relative
optimality gap of the solution P⃗ best is at least five orders of
magnitude below the one achieved by the other methods and
is smaller than the optimality tolerance chosen for the Gurobi
solver, meaning that the obtained solution is also optimal.

The second benchmark test is another IEEE case study first
addressed in [6] comprising a larger number of generator
units (15 instead of 6) to satisfy a power demand equal
to 2630 MW. Only 4 of the generators present prohibited
operating zones (see [6, Table V-VI and Appendix] for the
parameters). Also in this case Algorithm 1 finds an optimal
solution given that its relative optimality gap is equal to
2.42 · 10−10, with an excess of production of 1.08 · 10−6.

B. Artificially generated EDPs

We now assess the effectiveness of the proposed procedure
on randomly generated yet realistic instances of (7) (see the
protocol in the Appendix).

Figure 1 shows the evolution of the relative optimality gap
of the solution P⃗best computed by Algorithm 1 throughout
the iterations for an instance of the EDP (7) with m = 50
generators. As expected, the performance attained by P⃗best
improves throughout the iterations, as tends monotonically
to 0 as the number of iterations grows.

If we run Algorithm 1 on 100 instances of problem (7)
with m = 50 generators and different parameter sets, then,
it successfully computes a feasible solution for each test
and in 76% of the cases the relative optimality gap ∆J is
below the optimality tolerance of 10−8 chosen for the solver,
meaning that the obtained solution is also optimal for (7).
In the remaining tests, the average relative optimality gap is
3.73 · 10−3 and, thus, the obtained solution is still close to
the optimum.

We now consider instances of problem (7) with an in-
creasing number m of generators. The first two columns
of Table II report the normalized excess of production and
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Fig. 1. EDP with m = 50 generators: relative optimality gap of the
solution computed by Algorithm 1 as a function of the iteration number.

the relative optimality gap attained by the solution P⃗ best

computed by Algorithm 1 for different values of m. The
relative optimality gap never exceeds 0.031% of the optimal
cost and the extra-production is always below 0.029% of the
power demand.

The third and fourth columns of Table II compare the
execution time of Gurobi and Algorithm 1, respectively.
As the number of generators m increases, both algorithms
exhibit a rise in the computational time, reflecting an increase
of the problem complexity. However, the proposed approach
scales better with the size of the problem and is able to
find feasible solutions for instances with up to m = 2000
generators in less than 3 hours using the available computing
resources.

Conversely, for instances with m ≥ 1000 Gurobi is not
able to compute an optimal solution within 5 hours. For all
those instances, the relative optimality gap ∆J achieved by
Algorithm 1 is computed using in (16) the optimal dual cost
φ⋆ in place of J⋆, which increases the index value since φ⋆

is a lower bound of J⋆.

V. CONCLUSION

We addressed economic dispatch problems accounting for
power losses and prohibited operating zones. We proposed a
duality-based approach that recovers computational tractabil-
ity by dualizing the aggregate power demand constraint and
computes a feasible solution via a dual bisection iterative
algorithm. Simulations on benchmark examples showcase
the superiority of the approach with respect to state-of-the-
art competitors, which provide solutions that either yield a
higher production cost or do not meet the aggregate power
demand. Tests on randomly generated EDP instances with
increasing size show that the proposed approach is scalable
and able to compute near-optimal solutions.

APPENDIX

GENERATION OF AN EDP WITH m UNITS

The minimum and maximum power Pmin
i , Pmax

i of each
generator are multiples of 5 MW selected at random in the
interval [10, 300] MW and [1.1Pmin

i , 1.6Pmin
i ], respectively.

We set the number of generators characterized by prohibited
power zones to ⌈0.2m⌉. For each of these generators, the
number of operating zones, their length and position within
the allowed power production range are selected at random so
that the different zones do not intersect and keep the problem



Unit GA [5] PSO [6] Bi-B&B [8] DE [15] Algorithm 1

P1 474.81 447.50 447.40 448.27 447.08
P2 178.64 173.32 173.24 172.96 173.19
P3 262.21 263.47 263.38 263.44 263.93
P4 134.28 139.06 138.98 139.30 139.06
P5 151.90 165.48 165.39 165.28 165.58
P6 74.18 87.13 87.05 86.80 86.63

∆J(·) 1.02 · 10−3 4.18 · 10−4 −2.59 · 10−5∗
3.99 · 10−4 1.47 · 10−9

E(·) 3.71 · 10−4 3.77 · 10−4 −2.38 · 10−5∗ 3.60 · 10−4 1.48 · 10−9

TABLE I
IEEE BENCHMARK 1: COMPARISON OF THE SOLUTION OBTAINED VIA ALGORITHM 1 WITH THOSE OBTAINED BY ALTERNATIVE RESOLUTION

METHODS IN THE LITERATURE. THE SOLUTION MARKED WITH ∗ VIOLATES THE AGGREGATE DEMAND CONSTRAINT AND IS SUPER-OPTIMAL.

m ∆J(P⃗
best) E(P⃗ best) tG [s] tA1 [s]

50 5.0 · 10−10 4.0 · 10−10 0.8 2.65
100 −5.2 · 10−6 2.6 · 10−10 2.6 4.93
150 7.1 · 10−6 6.0 · 10−10 38.0 7.30
250 −5.5 · 10−5 3.3 · 10−7 1689.2 18.03
500 3.1 · 10−4 2.9 · 10−4 2020.4 85.87
1000 8.4 · 10−5 8.3 · 10−5 > 18000 789.07
1500 2.3 · 10−5 2.8 · 10−5 > 18000 3781.7
2000 8.8 · 10−5 8.7 · 10−5 > 18000 8900.7

TABLE II
PERFORMANCE OF ALGORITHM 1 AS A FUNCTION OF m: RELATIVE

OPTIMALITY GAP, NORMALIZED EXCESS OF PRODUCTION, TIME

REQUIRED TO COMPUTE THE OPTIMAL SOLUTION, EXECUTION TIME.

feasible. The upper and lower ramp limits ∆i and ∆̄i are
multiple of 5 MW randomly extracted from [0, Pmax

i −Pmin
i ].

The power Pi,0 produced in the previous time slot is selected
uniformly within one of the feasible intervals [P i,j0 , P̄i,j0 ]
for some j0 extracted uniformly from {1, . . . , Ni}. To ensure
that the m × m matrix containing the loss coefficients
bij is positive definite and, thus, defines an actual power
loss, we set it equal to the sample covariance matrix of
nvec realizations of an m-dimensional multivariate normal
random variable vector with unitary mean and variance equal
to 10−4. The number of observations nvec is set to 100
and is doubled until the smallest (positive) eigenvalue of
the resulting covariance matrix is larger than 10−5. The
coefficients bi0 and b00 are extracted uniformly from the
intervals [10−8, 10−5] and [10−4, 10−2], respectively. The
cost coefficients are selected at random within the following
intervals ωi0 ∈ [0, 550], ωi1 ∈ [5, 15] and ωi2 ∈ [0, 4 · 10−3].
The total power demand Pd is set equal to a percentage ρ of
the maximum output power that the aggregate can produce,
with ρ extracted uniformly from the interval [20%, 80%].
Unfeasible instances are discarded and replaced by feasible
ones. This protocol allows to create parameter sets com-
parable to the IEEE benchmark examples in [6] and, thus,
reasonable for a real application.
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