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Abstract— We analyse the closed-loop performance of a
model predictive control (MPC) for tracking formulation with
artificial references. It has been shown that such a scheme
guarantees closed-loop stability and recursive feasibility for any
externally supplied reference, even if it is unreachable or time-
varying. The basic idea is to consider an artificial reference
as an additional decision variable and to formulate generalised
terminal ingredients with respect to it. In addition, its offset is
penalised in the MPC optimisation problem, leading to closed-
loop convergence to the best reachable reference. In this letter,
we provide a transient performance bound on the closed loop
using MPC for tracking. We employ mild assumptions on the
offset cost and scale it with the prediction horizon. In this case,
an increasing horizon in MPC for tracking recovers the infinite
horizon optimal solution.

I. INTRODUCTION

Nonlinear model predictive control (MPC) is a highly
successful control strategy for nonlinear systems subject to
constraints, guaranteeing stability and constraint satisfaction
while optimising a performance objective. It has a wide
span of application, e.g. in robotics, energy, or process
industry. For a general review of MPC, see, e.g. [1], [2].
A common objective in MPC is stabilisation of an external,
possibly changing, reference, which may not correspond to
an equilibrium of the plant and for which offline designed
parts of MPC, e.g. fixed terminal constraints, are not suitable.

Recently, MPC for tracking [3] has been introduced as
a tracking MPC scheme that uses an artificial reference as
an additional decision variable in the MPC’s optimisation
problem and penalises its offset to the current external ref-
erence. In comparison to standard MPC, it retains feasibility
despite changes in the external reference, it possibly allows
for shorter prediction horizons, and it guarantees convergence
to the best reachable equilibrium with respect to the external
reference, which may not be an equilibrium of the plant
or unreachable. MPC for tracking has been extended to,
e.g. nonlinear systems with terminal ingredients [4] and
without [5], as well as to periodic references for linear [6]
and nonlinear systems [7]. Moreover, it has been extended
to and applied in distributed MPC, see, e.g. [8]–[10].
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Regarding performance, it has been shown for linear
systems that MPC for tracking is optimal in a neighbourhood
of the external reference [11], [12] for a suitably chosen
offset cost. Apart from this, the degradation of the closed-
loop performance when using MPC for tracking, a possible
disadvantage, has not been examined. In this paper, we
present a standard MPC for tracking scheme for nonlinear
systems and derive bounds on its transient closed-loop per-
formance, which depend on the choice of the offset cost. In
particular, for a suitably chosen offset cost, we show that
the closed loop recovers an infinite horizon optimal solution
if the horizon tends to infinity. This is, in general, only the
case if the offset cost is scaled with the horizon, which we
demonstrate with a counterexample. We illustrate our results
in a simulation of a continuous stirred-tank reactor.

A. Notation

The natural numbers including 0 are denoted by N0. The
interior of a set A is intA. The set of non-negative reals is
R≥0. The set of integers from a to b, a ≤ b, is Ia:b. Let V
be a normed space and V ′ ⊆ V be a closed subset. Then,
for v ∈ V , |v|V′ = minv′∈V′ ∥v− v′∥2 defines the Euclidean
distance of v to V ′. If V ′ = {v′} for some v′ ∈ V , we write
|v|v′ . The largest eigenvalue of a matrix A = A⊤ is denoted
by µmax(A). If A is also positive (semi-)definite, we write
∥x∥2A = x⊤Ax. We define Bc(x̃) = {x ∈ Rn | ∥x − x̃∥2 ≤
c}. We make use of comparison functions, see, e.g. [13].

II. PROBLEM FORMULATION

Consider a nonlinear, time-invariant discrete-time system
x(t + 1) = f(x(t), u(t)) with state x(t) ∈ X ⊂ Rn, input
u(t) ∈ U ⊂ Rm, where X is bounded and U is compact,
and continuous dynamics f : Rn×Rm → Rn. It is subject to
pointwise state and input constraints (x(t), u(t)) ∈ Z with
compact Z ⊆ X × U .

Given an initial state x ∈ X and an input sequence u =
(u(0), u(1), . . . ) ∈ UK , the solution starting at x is denoted
by xu(k, x), k ∈ I0:K−1. We abbreviate xu(k) = xu(k, x)
when the initial state x is obvious. An input sequence u ∈
UK is called admissible, if (xu(k, x), u(k)) ∈ Z for all
k ∈ I0:K−1 and xu(K,x) ∈ X . The set of admissible input
sequences u of length K ∈ N ∪ {∞} starting at x and such
that xu(K,x) ∈ X (or limK→∞ |xu(K,x)|X = 0 if K = ∞)
with some closed set X is denoted by UK

X (x).
Let Zr ⊆ intZ be closed and define the set of (admissible)

references R = {(x, u) ∈ Zr | x = f(x, u)}. Given r =
(xr, ur), r̂ = (xr̂, ur̂) ∈ R, define |r|r̂ =

√
|xr|2xr̂

+ |ur|2ur̂
.

The control goal is to steer the system towards an external
reference re while satisfying the constraints and minimising
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a stage cost ℓ : X×U ×R → R≥0. If the external reference
is not reachable or not an equilibrium of the system, i.e.
re /∈ R, the control goal is to steer the system as close as
admissible towards re. For this purpose, an offset cost T
is introduced, which attains its minimum at re. Then, the
control goal is to steer the system to an admissible reference
that minimises T over R. For simplicity, we assume that this
best reachable reference rd = (xd, ud) = argminr∈R T (r)
is unique and that T is a good indicator of |r|rd .

Assumption 1: There exist αT
lo, α

T
up ∈ K∞ such that for

all r ∈ R (not necessarily for all equilibria, e.g. re)

αT
lo(|r|rd) ≤ T (r) ≤ αT

up(|r|rd). (1)
For example, T (r) = ∥r − re∥2S − T̄ with S ≻ 0 and T̄ =
∥rd − re∥2S satisfies this on bounded constraint sets, since
T (rd) = 0 and T (r) > 0 for all rd ̸= r ∈ R (rd is unique).
For simplicity, we assume via (1) T (rd) = 0 w.l.o.g. (adding
constants does not change the MPC optimisation problem).
In particular, rd (and T̄ ) need not be known. Moreover, we do
not consider output tracking (cf. [4], [5], [7]), but conjecture
that our results are transferable. In this case, Assumption 1
would need to hold with T penalising an artificial output.

We consider the case where the stage cost is designed
with essentially two purposes. First, it is employed to set up
a stabilising MPC scheme. Second, it encodes a performance
objective, e.g. by penalising large inputs, prioritising use of
one input over the other or the deviation in more relevant
states. Hence, we are not only interested in stability of the
desired reference, but also in how it is achieved, measured
by the stage cost. More precisely, we aim to compare the
performance of (optimal) input sequences u, defined by
Jd
K(x, u) =

∑K−1
k=0 ℓ(xu(k, x), u(k), rd).

III. MPC FOR TRACKING

A. MPC for tracking scheme

In this section, we propose changes to the standard MPC
for tracking scheme for nonlinear systems [4] and show that
the best reachable steady state is asymptotically stabilised.

We make the following assumptions on the stage cost, the
first two similar to [5, Assm. 1]. The first states that the stage
cost provides an adequate measure of the state’s distance to
the artificial steady state, and the second and third allow for
a comparison of stage costs with different references.

Assumption 2: There exist cℓ1, c
ℓ
2 > 0 such that for all

(x, u) ∈ Z and r = (xr, ur) ∈ R
cℓ1|x|2xr

≤ ℓ̄(x, r) ≤ cℓ2|x|2xr
(2)

with ℓ̄(x, r) = minu∈U s.t. (x,u)∈Z ℓ(x, u, r).
Assumption 3: There exist cℓ3, c

ℓ
4 > 0 such that for any

r1, r2 ∈ R and (x, u) ∈ Z
ℓ(x, u, r1) ≤ cℓ3ℓ(x, u, r2) + cℓ4|r1|2r2 . (3)

Assumption 4: There exist cℓ5, c
ℓ
6 > 0 such that for any

r1, r2 ∈ R and (x, u) ∈ Z
ℓ(x, u, r1) ≤ ℓ(x, u, r2) + cℓ5|r1|2r2 + cℓ6|r1|r2 . (4)

Remark 1: For example, the common quadratic stage cost
ℓ(x, u, r) = ∥x − xr∥2Q + ∥u − ur∥2R with Q,R ≻ 0
satisfies Assumptions 2–4 on bounded constraint sets. We

refer to [5] for Assumption 3 while Assumption 4 follows
from ℓ(x, u, r1) = ∥x − xr1 + xr2 − xr2∥2Q + ∥u − ur1 +
ur2 −ur2∥2R = ℓ(x, u, r2)+ ∥xr2 −xr1∥2Q+∥ur1 −ur2∥2R+

2(x − xr1)
⊤Q(xr1 − xr2) + 2(u − ur1)

⊤R(ur1 − ur2), the
Cauchy-Schwarz inequality, cℓ5 = max(µmax(Q), µmax(R))
and cℓ6 = 2

√
2cℓ5 max(supx∈X,r∈R |x|xr

, supu∈U,r∈R |u|ur
).

We use suitable terminal ingredients to ensure recursive
feasibility and stability of the closed-loop system.

Assumption 5: There exist cb, cf > 0, a control law kf :
X × R → Rm, a continuous terminal cost V f : X × R →
R≥0 and compact terminal sets X f(r) ⊆ X such that for any
r = (xr, ur) ∈ R and any x ∈ X f(r)

x+ = f(x, kf(x, r)) ∈ X f(r), (5a)

V f(x+, r)− V f(x, r) ≤ −ℓ(x, kf(x, r), r), (5b)
(x, kf(x, r)) ∈ Z, (5c)

Bcb(xr) ⊆ X f(r), (5d)

V f(x, r) ≤ cf ℓ̄(x, r). (5e)
Conditions (5a)–(5e) (combined with (2)) are standard in
MPC for tracking (cf. [4, Assm. 3], [7, Assm. 2], [14, Assm.
2]). The non-degeneracy condition (5d) (cf. [7, Lem. 5], [14,
Assm. 2]) allows us to uniformly conclude that x ∈ X f(r) if
|x|xr ≤ cb. See, e.g. [14] for designing suitable ingredients.

The optimisation problem used in the MPC for tracking
scheme at time t with measured state x = x(t) is

VN (x) = min
r(x)∈R,

u(·|t)∈UN

X f (r(x))
(x)

J tc
N (x, u(·|t), r(x)) + λ(N)T (r(x)) (6)

where the tracking part of the objective function is
J tc
N (x, u, r) =

∑N−1
k=0 ℓ(xu(k, x), u(k), r)+V f(xu(N, x), r),

N ∈ N0 is the prediction horizon and λ : N0 → R≥0 is a
scaling function. We denote the optimal input sequence by
u∗
N (·|t) and the optimal artificial reference by r∗N (x(t)). The

set of all states for which (6) is feasible is denoted by XN .
Compared to usual formulations of MPC for tracking, see

e.g. [4], we include a scaling function λ(N). By rescaling
T for fixed N or setting λ(N) ≡ 1, the usual formulation
is recovered for all N ∈ N0. We will, however, show that
scaling the offset cost with the horizon is essential, when the
latter is varied for performance. For this purpose, we assume
that the scaling function is at least linear and unbounded.

Assumption 6: The scaling function λ in (6) satisfies
λ(N) ≥ N for all N ∈ N0 and λ(0) ≥ 1.

The MPC for tracking scheme is as follows: At each time
step, we measure x(t), solve (6) and apply the first part of
the optimal input trajectory, µN (x(t)) = u∗

N (0|t), leading to
the closed-loop system

x(t+ 1) = f(x(t), µN (x(t))). (7)

B. Exponential stability

The main idea in showing stability of the best reachable
reference is that if the offset cost is non-zero for the current
artificial reference, there exists a better one in the next time
step that reduces the offset cost more than it increases the
tracking cost. Thus, the artificial reference will be at least
incrementally moved towards a minimiser of T , with the
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closed loop following due to the tracking part. The following
assumption, adapted from [5, Assm. 3], provides us with a
reference with a lower offset cost.

Assumption 7: There exist cr1, c
r
2 > 0 such that for any

r = (xr, ur) ∈ R, and any θ ∈ [0, 1], there exists r̂ =
(xr̂, ur̂) ∈ R with

|r̂|r ≤ cr1θ|r|rd , (8)

T (r̂)− T (r) ≤ −cr2θ|r|2rd . (9)
This assumption generalises usual assumptions in MPC for
tracking, cf. [4, Assm. 1 & 2], [7, Assm. 6], which impose
(strong) convexity on the offset cost, convexity of the set of
references and a uniqueness condition. See [5, Assm. 4] for
an extension to a non-convex set of references.

In the next lemma, we show that the tracking part of the
objective function is bounded by the stage cost if the state
is sufficiently close to the reference (cf. [7, Assm. 2]).

Lemma 1: Suppose Assumptions 2 and 5 hold. Consider
the following optimisation problem where r̂ is a fixed pa-
rameter: minu∈UN

X f (r̂)
(x) J

tc
N (x, u, r̂). Then, there exists ε > 0

such that for any r̂ ∈ R and any x̂ ∈ X with ℓ̄(x̂, r̂) ≤ ε, this
optimisation problem is feasible and its solution û satisfies
the following bound with cf from Assumption 5:

J tc
N (x̂, û, r̂) ≤ cf ℓ̄(x̂, r̂). (10)

Proof: Choose ε ≤ cℓ1c
2
b with cℓ1 from Assumption 2

and cb from Assumption 5. Then, from (2), cℓ1|x̂|2xr̂
≤

ℓ̄(x̂, r̂) ≤ ε ≤ cℓ1c
2
b which implies |x̂|xr̂

≤ cb, hence, from
Assumption 5, x̂ ∈ Bcb(xr̂) ⊆ X f(r̂). The following steps
are standard, cf. [1, Prop. 2.35]. Within the terminal set
X f(r̂), the terminal controller kf constitutes a feasible input
sequence in the above optimisation problem. Thus, from (5b),
the terminal cost V f is an upper bound on J tc

N (x̂, û, r̂). The
upper bound (10) then follows from (5e).

Next, we show that the closed-loop stage cost is an upper
bound on the distance of the artificial reference to the best
reachable reference. This has been shown first in [5, Prop.
2] for a scheme without terminal ingredients.

Lemma 2: Let Assumptions 2, 3, 5, 6 and 7 hold. Then,
there exists cℓd > 0 such that for any N ∈ N0 and x ∈ XN ,

ℓ(x, µN (x), r∗N (x)) ≥ cℓd|r∗N (x)|2rd . (11)
Proof: Let x ∈ XN and assume with r∗N = r∗N (x)

ℓ(x, µN (x), r∗N ) < cℓd|r∗N |2rd . (12)

Consider the candidate reference r̂ = (xr̂, ur̂) from Assump-
tion 7. Since R is compact, there exists a constant δ > 0 with
δ = supr∈R |r|rd . Then, from Assumption 3

ℓ̄(x, r̂) ≤ ℓ(x, µN (x), r̂)
(3)
≤ cℓ3ℓ(x, µN (x), r∗N ) + cℓ4|r̂|2r∗N

(12),(8)
< (cℓ3c

ℓ
d + cℓ4(c

r
1)

2θ2)|r∗N |2rd ≤ (cℓ3c
ℓ
d + cℓ4(c

r
1)

2θ2)δ2 ≤ ε
(13)

where the last inequality follows by choosing cℓd and θ
sufficiently small. Then, from Lemma 1, there exists an input
sequence û such that (û, r̂) is feasible for problem (6) and

J tc
N (x, û, r̂)

(10)
≤ cf ℓ̄(x, r̂)

(13)
< cf(c

ℓ
3c

ℓ
d + cℓ4(c

r
1)

2θ2)|r∗N |2rd . (14)

Note that J tc
N (x, u∗

N , r∗N ) ≥ 0. Finally, we arrive at
J tc
N (x, û, r̂)− J tc

N (x, u∗
N , r∗N ) + λ(N)(T (r̂)− T (r∗N ))

(14),(9)
< (cf(c

ℓ
3c

ℓ
d + cℓ4(c

r
1)

2θ2)− cr2θ)|r∗N |2rd = −c̄ℓd|r∗N |2rd
with c̄ℓd = −(cfc

ℓ
3c

ℓ
d + (cfc

ℓ
4(c

r
1)

2θ − cr2)θ), where we used
that λ(N) ≥ 1. By first fixing θ < cr2(cfc

ℓ
4(c

r
1)

2)−1 and then
choosing cℓd < (cfc

ℓ
4(c

r
1)

2θ− cr2)θ(cfc
ℓ
3)

−1, we have c̄ℓd > 0.
Hence, the cost of the candidate (û, r̂) is smaller than that
of the optimal (u∗

N , r∗N ), which is a contradiction.
In the following, we show stability of the closed loop (7),

using the value function VN as a Lyapunov candidate.
Theorem 1: Let Assumptions 2, 3, 5, 6 and 7 hold, and

let N ∈ N0. Assume that (6) is feasible at time t = 0, i.e.
x(0) ∈ XN . Then, (6) is feasible for all t ∈ N0 and xd is
exponentially stable for the closed loop (7) with region of
attraction XN . That is, there exist cexp > 0 and γexp ∈ (0, 1)
such that for all x ∈ XN and t ∈ N0

|xµN
(t, x)|xd

≤ cexp|x|xd
γt
exp. (15)

Proof: First, we show recursive feasibility. Let (6)
be feasible at t ∈ N0. Then, at t + 1, standard ar-
guments using Assumption 5 (cf., e.g. [2, Lem. 5.10])
yield a feasible candidate (ũ(·|t + 1), r̃(t + 1)) with r̃(t +
1) = r∗N (x(t)) and ũ(·|t + 1) = (u∗

N (1|t), . . . , u∗
N (N −

1|t), kf(xu∗
N (·|t)(N), r∗N (x(t)))). Feasibility of (6) for any

t ∈ N0 follows by induction.
Second, we show an upper bound of the value function.

Let x ∈ X such that cℓ2|x|2xd
≤ ε. Then, from (2),

ℓ̄(x, rd) ≤ ε and hence, from Lemma 1, x ∈ XN and
VN (x) ≤ J tc

N (x, u∗
N (·|t), rd) ≤ cf ℓ̄(x, rd) ≤ cfc

ℓ
2|x|2xd

,
where the second inequality follows from (10) and the third
from (2). This local upper bound and compact constraints
imply that for all N ∈ N0 there exists aup > 0 such that

VN (x) ≤ aup|x|2xd
(16)

for all x ∈ XN , cf. [1, Prop. 2.16].
Third, we show a lower bound of the value function.

Define alo = 0.25min{cℓ1, cℓd}, then for all x ∈ XN

VN (x) ≥ ℓ(x, u∗
N (0|t), r∗N (x))

(2),(11)
≥ cℓ1

2
|x|2xr∗

N
(x) +

cℓd
2
|xr∗N (x)|2xd

≥ alo|x|2xd
. (17)

Fourth, we show a decrease in the value function. Consider
again (ũ(·|t+ 1), r̃(t+ 1)) from above. Then,
VN (x(t+ 1))− VN (x(t))

≤ J tc
N (x(t+ 1), ũ(·|t+ 1), r̃(t+ 1)) + λ(N)T (r̃(t+ 1))

− J tc
N (x(t), u∗

N (·|t), r∗N (x(t)))− λ(N)T (r∗N (x(t)))

=

N−2∑
k=0

ℓ(xu∗
N (·|t)(k + 1, x(t)), u∗

N (k + 1|t), r∗N (x(t)))

+ ℓ(xu∗
N (·|t)(N, x(t)), kf(xu∗

N (·|t)(N, x(t)), r∗N (x(t))))

+ V f
(
xũ(·|t+1)(N, x(t+ 1)), r∗N (x(t))

)
−

N−1∑
k=0

ℓ(xu∗
N (·|t)(k, x(t)), u

∗
N (k|t), r∗N (x(t)))

− V f(xu∗
N (·|t)(N, x(t)), r∗N (x(t)))

(5b)
≤ −ℓ(x(t), u∗

N (0|t), r∗N (x(t)))
(17)
≤ −alo|x(t)|2xd

(18)
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where the first equality follows from the definition of
(ũ(·|t + 1), r̃(t + 1)). Exponential stability then follows
from (16), (17) and (18) using standard arguments (cf. [1,
Thm. B.19]).

Remark 2: As stated in [4, Assm. 4], [7, Prop. 4], if
the system is locally uniformly finite time controllable,
Assumption 5 can be replaced in Theorem 1 by a terminal
equality constraint, i.e. X f(r) = {xr} and V f(x, r) ≡ 0.

IV. TRANSIENT PERFORMANCE ESTIMATE

In this section, we will derive an estimate of the closed-
loop performance. Appreciate that from (18) we obtain

ℓ(xµN
(k), µN (xµN

(k)), r∗N (xµN
(k)))

≤ VN (xµN
(k))− VN (xµN

(k + 1)), (19)

for any k ∈ N0. From this, we will derive a performance
bound on the closed loop by using Assumption 4, and by
finding a suitable upper bound on the value function VN .

We will do so by comparing the solution of the MPC for
tracking optimisation problem (6) with the standard MPC
optimisation problem’s solution with respect to the best
reachable reference. The latter is given by

WN (x(t)) = min
ustd(·|t)∈UN

X f (rd)
(x(t))

J tc
N (x(t), ustd(·|t), rd). (20)

We denote the set of states where (20) is feasible by X std
N .

Similar to before, the standard MPC scheme is as follows:
At each time step, we measure x(t), solve (20) and apply
the first part of the optimal input, νN (x(t)) = u∗

std(0|t).
Note that setting up (20) requires knowledge of the best

reachable reference, which is not the case in (6). Compared
to standard MPC (20), MPC for tracking (6) contains n+m
additional decision variables and the class of the two optimi-
sation problems is the same, e.g. if (20) is a convex quadratic
program, then (6) can be set up to be one as well [3].

Proposition 1: Let Assumptions 2 and 5 hold. Then, xd

is exponentially stable for the closed loop using the standard
MPC scheme for all x ∈ X std

N , i.e. there exist γstd ∈ (0, 1)
and cstd > 0 such that for all t ∈ N0 we have |xνN

(t, x)|xd
≤

cstd|x|xd
γt
std. Furthermore, for all N ∈ N0 there exists

αW ∈ K∞ such that WN (x) ≤ αW (|x|xd
) for all x ∈ X std

N .
We omit the proof, which is standard (see e.g. [1], [2]).

The following lemma states that the value function of a
standard MPC optimisation problem (20) is an upper bound
of the value function of MPC for tracking (6), if the horizon
is chosen sufficiently long. As part of the proof, we show
that the terminal set of the best reachable reference can be
reached in uniform finite time from any other terminal set.

Lemma 3: Let Assumptions 1–5 and 7 hold. Then, for all
Ñ ∈ N0 with XÑ ̸= ∅, there exists N̄ ∈ N0 such that for all
x ∈ XÑ and N ≥ N̄ , the problem (20) has a solution and

VN (x) ≤ WN (x) ≤ WN̄ (x). (21)
Proof: We start by showing that X f(rd) is uni-

formly reachable from any x ∈ ∪r∈RX f(r). Let r ∈
R and x ∈ X f(r). Consider ur

f (k) = kf(xur
f
(k, x), r).

From Assumptions 2 and 5, we get for all k ∈ N0,

cℓ1|x|2xr

(2),(5b)
≤ V f(x, r)

(5e),(2)
≤ cfc

ℓ
2|x|2xr

and V f(xur
f
(k +

1), r) − V f(xur
f
(k), r)

(5b),(2)
≤ −cℓ1|xur

f
(k)|2xr

. Therefore,

|xur
f
(k, x)|2xr

≤ c̃f |x|2xr
γk
f ≤ c̃fδxγ

k
f with c̃f =

cfc
ℓ
2

cℓ1
, γf =

1 − c̃−1
f < 1 and δx = supx∈X |x|2xr

. Hence, there exists
a finite τ , independent of r, such that |xur

f
(τ, x)|xr

≤ cb
2 .

In one case, |xr|xd
≤ |r|rd ≤ cb

2 . Then, |xur
f
(τ, x)|xd

≤
|xur

f
(τ, x)|xr

+ |xr|xd
≤ cb which implies ur

f ∈ UN
X f (rd)

(x)

for any N ≥ τ . In the other case, δr ≥ |r|rd > cb
2 , where

δr = supr,r̂∈R |r|r̂. Pick θ and r̂ from Assumption 7. Then,
from (8), |xur

f
(τ, x)|xr̂

≤ |xur
f
(τ, x)|xr + |r|r̂ ≤ cb if θ ≤

cb
2δrcr1

. Hence, for all k ≥ τ , xur
f
(k, x) ∈ X f(r̂). From (9),

T (r̂) ≤ T (r)−cr2θ|r|2rd < T (r)−cr2θ
c2b
4 . With Assumption 1,

by repeatedly applying ur̂
f for each new reference r̂, we

converge into X f(r′) with |r′|rd ≤ cb
2 after τ(1 + cτ ) steps

with cτ ≥ 4
αT

up(δr)−αT
lo

−1
(
cb
2 )

cr2θc
2
b

. Then, τ steps of ur′

f bring us
into X f(rd), where the input can be feasibly extended to an
arbitrary length by Assumption 5. In summary, for any r ∈ R
and x ∈ X f(r), UN

X f (rd)
(x) ̸= ∅ for all N ≥ τ(2 + cτ ).

Finally, since x ∈ XÑ , there exists r̃ ∈ R and ũ ∈
UÑ

X f (r̃)(x) such that xũ(Ñ , x) ∈ X f(r̃). Hence, as shown
above, there exists uτ ∈ UNτ

X f (rd)
(xũ(Ñ , x)) with Nτ =

τ(2 + cτ ). Thus, uN = (ũ, uτ ) ∈ UN
X f (rd)

(x), for any
N ≥ N̄ = Ñ +Nτ , is a feasible candidate in (20). This in
turn implies that there exists (u∗

std, rd) for all N ≥ N̄ and
x ∈ XÑ , and it is a feasible solution in (6) with T (rd) = 0.
Hence, VN (x) ≤ J tc

N (x, u∗
std, rd) + λ(N)T (rd) = WN (x)

which is the first inequality of the claim. The second is a
standard result with N ≥ N̄ , see e.g. [2, Lem. 5.12].

This makes it possible to use well established results on
performance of MPC [2, Thm. 8.22].

Proposition 2: Let Assumptions 2 and 5 hold. Then, for
all N ∈ N0 there exist δ1, δ2 ∈ L such that for all x ∈ XN

WN (x) ≤ inf
u∈UK

Bκ(xd)
(x)

Jd
K(x, u) + δ1(N) + δ2(K) (22)

with κ = cstd|x|xd
γK
std and cstd, γstd from Proposition 1.

Proof: All assumptions in [2, Thm. 8.22] are satisfied,
and the claim follows from its proof.

We are now able to state our first main result:
Theorem 2: Let Assumptions 1–7 hold. Then, for any

Ñ ∈ N0, there exist δ1, δ2 ∈ L, N̄ ∈ N, such that for all
x ∈ XÑ , N ≥ N̄ and K ∈ N0, with xµN

(k) = xµN
(k, x),

Jd
K(x, µN ) =

K−1∑
k=0

ℓ(xµN
(k), µN (xµN

(k)), rd)

≤ inf
u∈UK

Bκ(xd)
(x)

Jd
K(x, u) + δ1(N) + δ2(K)− VN (xµN

(K))

+

K−1∑
k=0

cℓ5|r∗N (xµN
(k))|2rd + cℓ6|r∗N (xµN

(k))|rd (23)

with κ = cstd|x|xd
γK
std and cstd, γstd from Proposition 1.

Proof: For any K ∈ N0, from Assumption 4 and
summing up both sides of (19), we get for any N ≥ Ñ

Jd
K(x, µN ) =

∑K−1
k=0 ℓ(xµN

(k), µN (xµN
(k)), rd)

(4)
≤∑K−1

k=0 ℓ(xµN
(k), µN (xµN

(k)), r∗N (xµN
(k))) +
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∑K−1
k=0 cℓ5|r∗N (xµN

(k))|2rd + cℓ6|r∗N (xµN
(k))|rd

(19)
≤

VN (x) − VN (xµN
(K)) +

∑K−1
k=0 cℓ5|r∗N (xµN

(k))|2rd +
cℓ6|r∗N (xµN

(k))|rd . With Lemma 3 and Proposition 2, the
claim follows.

Compared to the transient performance bound (22) for
standard MPC (see [2, Chapter 8.4] for a discussion of (22),
δ1 and δ2), (23) contains an additional error term, which
depends on the structure of the stage cost (cℓ5, cℓ6) and on the
shape of the set of equilibria (|r∗N |rd ). Appreciate that (23)
is an upper bound and thus does not imply that, for a fixed
horizon, a larger offset cost necessarily improves the closed-
loop performance, although the bound could become smaller.

V. ASYMPTOTIC PERFORMANCE ESTIMATE

Next, we examine whether the error terms in (23) stay
bounded if K → ∞ (the number of compared closed-loop
time steps), and vanish if N → ∞ (the prediction horizon).
The former follows from exponential stability.

Lemma 4: Suppose Assumptions 2, 3, 5, 6 and 7 hold.
Then, for all N ∈ N0, there exists ρN ≥ 0 such that for all
x ∈ XN , with r∗N (k) = r∗N (xµN

(k, x)),
∞∑
k=0

cℓ5|r∗N (k)|2rd + cℓ6|r∗N (k)|rd ≤ ρN < ∞. (24)

Proof: Let N ∈ N0 and x ∈ XN . Then, for all k ∈ N0,
abbreviating r∗N (k) = r∗N (xµN

(k, x)) and x(k) = xµN
(k, x)

we have cℓd|r∗N (k)|2rd
(11)
≤ ℓ(x(k), µN (x(k)), r∗N (k)) ≤

VN (x(k))
(16)
≤ aup|x(k)|2xd

(15)
≤ aupc

2
exp|x|2xd

γ2k
exp. Therefore,

cℓ5|r∗N (k)|2rd ≤ cℓ5c̃expγ
2k
exp with c̃exp = (cℓd)

−1aupc
2
exp|x|2xd

.

Since γexp ∈ (0, 1),
∑∞

k=0 c
ℓ
5c̃expγ

2k
exp =

cℓ5c̃exp
1−γ2

exp
. Addition-

ally, cℓ6|r∗N (k)|rd ≤ cℓ6
√
c̃expγ

k
exp and

∑∞
k=0 c

ℓ
6

√
c̃expγ

k
exp =

cℓ6
√

c̃exp

1−γexp
. The claim follows from the comparison test, XN ⊆

X for all N ∈ N0 and boundedness of X .
The following shows that scaling the offset cost with the

horizon, i.e. keeping it in relation to the N terms of the
stage cost, is pivotal for the error terms in (23) to vanish if
the horizon grows to infinity. These depend on the optimal
open-loop artificial reference in each time step.

Example 1: This example shows that the artificial refer-
ence does not, in general, converge in open-loop to the best
reachable one for arbitrarily large horizons, if λ(N) is chosen
constant, e.g. λ(N) ≡ 1. Consider the task of steering the
scalar system x(t + 1) = x(t) + u(t), x(0) = x0, to the
steady state xd = 0 given any initial condition x0 ∈ R. State
and input constraints are set to (x(t), u(t)) ∈ [−2x0, 2x0]×
[−1, 1]. The stage cost is chosen as ℓ(x, u, r) = (x−xr)

2+
(u− ur)

2 and the offset cost as T (xr) = (xr − xd)
2 = x2

r .
Note that ur = 0. Then, the MPC for tracking optimisation
problem with (for simplicity) a terminal equality constraint
and λ(N) ≡ 1 is minu,r

∑N−1
k=0 (xu(k)− xr)

2 + u(k)2 + x2
r

subject to u ∈ UN
{xr}(x0) and r ∈ R. The cost of staying at

the initial state, i.e. with u(k) = 0, xu(k) = x0 for all k,
and xr = x0, is x2

0. Next, consider any steady state between
x0

2 and xd = 0, i.e. xh = ϑx0

2 with ϑ ∈ [0, 1]. Clearly, there
exists uh ∈ UN

{xh} for any N sufficiently large. The cost of

(uh, xh) then satisfies
∑N−1

k=0 (xuh
(k)−xh)

2+uh(k)
2+x2

h >

(x0−xh)
2+x2

h ≥ x2
0−2x0xh+2x2

h = x2
0−ϑx2

0+
ϑ2

4 x2
0 ≥ x2

0

for all ϑ ∈ [0, 1]. Therefore, choosing xr = x0 is always
better than xr = xh for arbitrary horizons.

In comparison, a scaled offset cost leads to uniform
convergence on each fixed set of feasible states.

Lemma 5: Let Assumptions 1–7 hold and M ∈ N0. Then,
limN→∞ |r∗N (x)|rd = 0 uniformly on XM .

Proof: Suppose there exists κ > 0 such that for
all N ∈ N0 there exists x ∈ XM with |r∗N (x)|rd ≥ κ.
Assumption 1 implies T (r∗N (x)) ≥ αT

lo(κ). From Lemma 3,
there exists N̄ ∈ N such that VN (x) ≤ WN̄ (x) for all
x ∈ XM and N ≥ N̄ . Hence, since J tc

N is non-negative,
λ(N)T (r∗N (x)) ≤ VN (x) ≤ WN̄ (x). Also, XM ⊆ X , and
since X is bounded, there exists δM = supx∈XM

|x|xd
. With

αW from Proposition 1 and T (r∗N (x)) ≥ αT
lo(κ) for all N ∈

N0, for any N ≥ N̄ , we have λ(N) ≤ αW (δM )
T (r∗N (x)) ≤

αW (δM )

αT
lo(κ)

.

But Assumption 6 implies λ(N) → ∞ as N → ∞.
We have shown uniform convergence of the artificial

reference on each fixed set of feasible states, but the closed-
loop solution might behave differently for different horizons
and leave this set. Since the offset cost is scaled superlinearly
(Assumption 6), we can interpret it as part of the stage
cost independently of the horizon. The lower bounds from
Assumptions 1 and 2 imply strict dissipativity with zero
storage. This implies a turnpike property (shown in the next
lemma), which yields another feasibility set that is invariant
for the closed loop for any horizon (see Lemma 7 below).

Lemma 6: Suppose Assumptions 1–6 hold. Then, for all
Γ > 0, there exists σΓ ∈ L such that for all N,P ∈ N, x ∈
X , u ∈ UN

X(x) and r ∈ R with J tc
N (x, u, r) + λ(N)T (r) ≤

Γ, the set Q = {k ∈ I0:N−1 | |xu(k, x)|xd
≥ σΓ(P )} has at

most P elements.
Proof: Assumptions 1 and 2 imply that ℓ(x, u, r) +

T (r) ≥ cℓ1|x|2xr
+ αT

lo(|xr|xd
). Thus, there exists ρ ∈ K∞

such that ℓ(x, u, r) + T (r) ≥ ρ(|x|xd
) for any x, u, r.

From this point on, the proof follows along the lines of [2,
Prop. 8.15]. We fix Γ > 0 and choose σΓ(P ) = ρ−1( Γ

P ).
Suppose there exist N,P, x, u, r such that J tc

N (x, u, r) +
λ(N)T (r) ≤ Γ but Q has at least P +1 elements. However,
since λ(N) ≥ N and V f ≥ 0, we get a contradiction: Γ ≥
J tc
N (x, u, r) + λ(N)T (r) ≥

∑N−1
k=0 ℓ(xu(k, x), u(k), r) +

NT (r) ≥
∑N−1

k=0 ρ(|xu(k, x)|xd
) ≥

∑
k∈Q ρ(σΓ(P )) ≥

(P + 1) Γ
P > Γ.

Finally, we are able to show that the error terms in the
established performance bound (23) vanish if N,K → ∞.

Lemma 7: Let Assumptions 1–7 hold and Ñ ∈ N. Then,
for all x ∈ XÑ , i ∈ {1, 2}, with r∗N (k) = r∗N (xµN

(k, x)),

lim
N→∞

∞∑
k=0

|r∗N (k)|ird=
∞∑
k=0

(
lim

N→∞
|r∗N (k)|ird

)
= 0. (25)

Proof: First, we show that there exists P ≥ Ñ and
N̄ such that for all x ∈ XÑ , N ≥ N̄ and k ∈ N0, we
have xµN

(k, x) ∈ XP . Let x ∈ XÑ . From Lemma 3, there
exists N̄ ∈ N such that VN (x) ≤ WN̄ (x) ≤ αW (δÑ ) for all
N ≥ N̄ , where δÑ = supx∈X

Ñ
|x|xd

. We now use Lemma 6
with Γ = αW (δÑ ) and choose P such that σΓ(P ) ≤ cb
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with cb from Assumption 5. Thus, the set {k ∈ I0:N−1 |
|xu∗

N
(k, x)|xd

≥ cb} has at most P elements for all x ∈ XÑ
and N ≥ N̄ , and, in particular, xu∗

N
(1, x) = xµN

(1, x) ∈
XP . In addition, from (19), for all N ≥ N̄ , VN (xµN

(k, x)) ≤
VN (x) ≤ αW (δÑ ) for all k ∈ N0. Hence, Lemma 6 applies
for all xµN

(k, x), k ∈ I0:N , with the same Γ and P as before.
Thus, for all N ≥ N̄ and k ∈ N0, we have xµN

(k, x) ∈
XP . Finally, since from Lemma 5, limN→∞ |r∗N (x)|rd = 0
uniformly on XP , and since xµN

(k, x) ∈ XP for k ∈ I0:K ,
together with Lemma 4, the claim follows.
By combining these results, we are able to state our second
main result showing that MPC for tracking with a scaled
offset cost recovers the optimal infinite horizon cost.

Theorem 3: Suppose Assumptions 1–7 hold. Then, for
any x ∈ XÑ with Ñ ∈ N,

lim
N→∞
K→∞

Jd
K(x, µN ) ≤ inf

u∈U∞
{xd}(x)

Jd
∞(x, u).

Proof: The claim follows from letting K → ∞ and
N → ∞ in (23) and applying Lemma 7.

VI. EXAMPLE: CONTINUOUS STIRRED-TANK REACTOR

We consider the example of a continuous stirred-tank reac-
tor from [7], [15]. The nonlinear system is discretised with an
Euler discretisation using a sampling time of 0.1 s. The goal
is to steer the plant from x0 = [0.9492, 0.43] to the desired
reference xe = xd = [0.2632, 0.6519]. The constraints are
Z = ([0, 1] × [0, 1]) × [0, 2], and we allow equilibria with
Zr = ([0.0529, 0.9492] × [0.43, 0.86]) × [0.1366, 0.7687].
We compute terminal ingredients as proposed in [14] by
gridding Zr with 200 points. We choose a quadratic stage
cost with Q = I2 and R = 0.01, and T (r) = 0.01|xr,1|2xd,1

+

1000|xr,2|2xd,2
+ |ur|2ud

. The simulation is implemented in
Python using [16]–[18]. In Figure 1, we plot the closed-
loop solution for different horizons. It can be observed that
a larger horizon allows a more optimal trajectory further
from the steady state manifold, since the MPC for tracking
has more steps to reach its neighbourhood, and the infinite
horizon solution is approximated. For comparison, we also
simulate the closed loop when using standard MPC (20) with
N = 515 and MPC for tracking with λ(N) ≡ 1. Note
that a standard MPC with N ≤ 500 is infeasible since it
cannot satisfy xu∗

std
(N, x) ∈ X f(rd). In this example, MPC

for tracking can use much shorter prediction horizons, i.e.
N = 1, which determine the computational burden of MPC.
In addition, it already shows good performance for N = 100.
This indicates that there is no major disadvantage in terms
of performance when using MPC for tracking instead of a
standard MPC formulation.
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Predictive Control Framework Using Reference Generic Terminal
Ingredients,” IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3576–
3583, 2020.

[15] D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-
based robust nonlinear model predictive control,” Int. J. Robust Non-
linear Control, vol. 21, no. 11, pp. 1341–1353, 2011.

[16] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36,
2019.

[17] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17,
no. 83, pp. 1–5, 2016.
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