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Abstract— We propose a multicellular implementation of a
biomolecular PD feedback controller to regulate gene expres-
sion in a microbial consortium. The implementation involves
distributing the proportional and derivative control actions
between two different cellular populations that can commu-
nicate with each other and regulate the output of a third
target cellular population. We derive analytical conditions on
biological parameters and control gains to adjust the system’s
static and dynamical properties. We then validate the strat-
egy’s performance and robustness through extensive in silico
experiments.

Index Terms— Biomolecular systems, genetic regulatory sys-
tems, PID control.

I. INTRODUCTION

The aim of Synthetic Biology is to engineer biological
systems with novel functionalities [1]. This is made possible
by designing artificial genetic circuits and embedding them
into living cells, such as bacteria or yeast, changing their
natural behavior to make them, for example, produce some
proteins or other chemicals of interest. Applications range
from health treatments [2] to bioremediation [3] and produc-
tion of drugs or biofuels [4]. However, due to the inherently
nonlinear and stochastic nature of the biochemical processes
involved, reliable and robust regulation of gene expression
must be guaranteed by designing synthetic feedback con-
trol architectures. Although the control theoretic literature
abounds with high performance, robust control solutions,
such as MPC algorithms or discontinuous controllers, the
need for implementing the control action using biochemi-
cal reactions performed inside the cell strongly limits the
possible structure of the controllers that can be realized.
Hence, simpler feasible solutions have been proposed in
the literature (see [5], [6] for an overview); most notably,
the antithetic feedback controller realizing an integral action
that guarantees robust perfect adaptation with respect to
noise and parameters’ uncertainties [7], [8]. Recently, it has
been proposed that Proportional-Integral-Derivative (PID)
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controllers can be implemented via biomolecular reactions
and embedded in a single cell to enhance the stability
and performance of antithetic controllers, by adding both
promptness of regulation response and damping with respect
to oscillations [9], [10]. However, in some applications it is
more important to avoid oscillations than to ensure a precise
regulation, e.g. when engineering the immune response [11].
In these cases a simpler PD control scheme should be pre-
ferred because it can guarantee fast and damped regulation
of the biological process.

The implementation of biochemical controllers in living
cells is also limited by technological and biological con-
straints, e.g. incompatible chemical reactions, metabolic load
or retroactivity [1]. As a consequence, embedding more com-
plex biomolecular controllers consisting of multiple actions
(e.g. a PI, PD or PID) inside a single cell can be challenging.
A promising solution to these problems is to distribute
the control functionalities across different populations in
a microbial consortium. The resulting multicellular control
architecture can both minimize unwanted effects and increase
modularity and re-usability of the designed components [1].

In this Letter, we integrate and expand our previous work
on multicellular PI controllers [12] by presenting a multicel-
lular PD control strategy where two controller populations,
each implementing one of the two control actions, regulate
a biological process inside a third target population, closing
the feedback loop by means of diffusing quorum sensing
molecules produced by the cells. First, we derive a model of
the consortium. Then, we provide some design guidelines for
the choice of the control gains based on analytical results,
linking the control parameters to the static and dynamical
performance of the closed-loop system. The theoretical anal-
ysis is complemented with in silico experiments carried out
via BSim [13]. We wish to emphasize that the analysis and
design of a fully distributed biomolecular derivative action is
a fundamental step together with our previous work in [12]
to achieve a fully distributed PID control strategy, which is
our ultimate goal.

II. MULTICELLULAR PD CONTROL STRATEGY

As stated above, the overarching goal of our design is
to engineer a multicellular consortium where two controller
populations implement the proportional and the derivative
control actions needed to realize a strategy similar to the
classical PD control strategy [14],

uPD(t) := uP (t) + uD(t) = kP e(t) + kD ė(t), (1)
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Fig. 1: Abstract implementation of the proposed multicellular PD controller.
The controller populations compare the reference signal Yd(t) and the
quorum sensing molecule Qx, which is produced proportionally to the
target gene Xc. The process Φ(t) is represented by the couple of genes
X1 and Xc, in which X1 is the actuated by the quorum sensing molecule
Qu. Circles represent internal molecular species, while polygons are the
signaling molecules.

where kP > 0 and kD > 0 are the proportional and derivative
gains, e(t) is the control error defined as the mismatch
between the measured output, say y(t), of the process within
a third target population (see Fig. 1) and the desired reference
value Yd(t), provided either externally to the controller cells
or hard-coded into them as a constitutive promoter. As in
[9], here we assume that the desired output, Yd(t) is either
a succession of step functions or some constant value.

The abstract biological implementation of our proposed
distributed PD control strategy is shown in Fig. 1. Therein,
each controller population computes the control error e(t)
by comparing the reference signal Yd(t) with the measure
of the output y(t) corresponding to the expression level of
Xc within the target population. Such measure is broadcast to
the whole consortium via the quorum sensing molecule Qx

which acts as a proxy for y(t). The control input uPD(t)
computed by the two controller populations is delivered to
the target cells by means of the quorum sensing molecule Qu,
that is produced by the controllers and effectively serves as
the “actuating” signal in this multicellular control scheme.
To avoid cross-talking effects [15], Qx and Qu are assumed
to be orthogonal.

We will show next that the reactions depicted in Fig. 1
implement a distributed biomolecular PD controller.

A. Mathematical Modelling

We derive a model capturing the aggregate dynamics of
the microbial consortium, that is the evolution of the con-
centrations of the biochemical species averaged over all cells
in a population. (Details on the derivation of the aggregate
dynamics from the single cell dynamics are reported in [16].)

As also done in [12], we make the following simplifying
assumptions: (i) all populations in the consortium are equally
balanced, that is, the three populations are composed by
the same number of cells, N ; (ii) the total number of
cells in the consortium is constant. Note that the former
assumption can be achieved by means of external ratiometric
controllers, e.g. [17], while the latter assumption is generally

verified in experimental environments with limited space and
resources, e.g., microfluidics, chemostats, vials. From these
assumptions it follows that the diffusion dynamics of the
quorum sensing molecules through the cells’ membranes
can be supposed to have the same diffusion rate η. (This
assumption will be relaxed later in Section IV). In what
follows, the superscripts e, t, p, d, are used to denote
quantities in the “environment”, in the “target” cells, in
the “proportional”, or in the “derivative” controller cells,
respectively.

1) Target cells: As done in [7], [9], we assume that the
biological process to be controlled inside the target cells
consists of only two genes, X1 and Xc (Fig. 1). The target
gene Xc is directly activated by X1, which in turns is
actuated by the quorum sensing molecule Qu produced by
the controller cells. Using mass-action kinetics, the dynamics
of the genetic network inside the target cells can therefore
be described by the following set of ODEs:

Ẋ1 = βuQ
t
u − γ1X1,

Ẋc = βcX1 − γcXc,
(2)

where βu and βc are activation rates describing the strength
of the transcription factors X1 and Qu, while γ1 and γc are
degradation rates.

The output of the process, corresponding to the expression
level of Xc, is broadcast to the other cells by means of the
diffusing quorum sensing molecule Qx, which is produced
by the target cells. Assuming as in [12] that the production
of Qx is proportional to Xc, the dynamics of the sensing
molecule inside the target cells is described by:

Q̇t
x = βxXc + η(Qe

x −Qt
x)− γtQ

t
x, (3)

where βx is the activation rate of Qx, η is the diffusion
rate of the molecule across the cell membrane, and γt is the
dilution rate into the target cells.

2) Proportional controller cells: The Proportional con-
troller is implemented here as in [9] as a nonlinear func-
tion fP = fP (Qx, Yd), activating the production of Qu.
Specifically, the dynamics of the concentration of Qu in the
Proportional controllers is given by:

Q̇p
u = βPYd

µYd

µYd + θQp
x
+ η(Qe

u −Qp
u)− γpQ

p
u, (4)

where γp is the dilution rate of the quorum sensing molecules
into the Proportional cells, µ and θ are positive control
parameters, and βP is a tunable parameter which plays the
role of a proportional gain. It has been shown in [9] that the
first term in (4) realizes a control action that is a function of
the control error e(t) := µYd − θQx.

3) Derivative controller cells: An approximation of the
time derivative of the control error e(t) can be obtained
by embedding in the controller population the biomolecular
circuit represented in Fig. 1 (see Appendix A for further
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details), whose dynamics can be described as follows:

Ȧ = βaM − γaQ
d
x

A

ka +A
− γdA,

Ṁ = βmYd − γmA
M

km +M
,

(5)

where γd is the dilution rate of A due to cell growth
and division, and βa and βm are activation rates, which
in turns are actively degraded by Qx and A, respectively,
through enzymatic reactions modeled here via Michaelis-
Menten functions with constants γa, ka, γm, km. For the
sake of simplicity, we assumed here that the quorum sensing
molecule Qx also directly acts as a degradation enzyme
on A. The derivative control action is then delivered to
the targets by means of the quorum sensing molecule Qu,
produced by the controllers at a rate proportional to A
(and thus proportional to an approximation of ė(t)), whose
concentration inside the controllers is given by:

Q̇d
u = βDA+ η(Qe

u −Qd
u)− γdQ

d
u, (6)

where βD plays the role of a derivative gain, and the other
parameters have an analogous meaning to those in (3).

In addition, the dynamics of Qx and Qu into cells where
they are not produced is described by:

Q̇h
x = η(Qe

x −Qh
x)− γhQ

h
x, h ∈ {p, d}

Q̇t
u = η(Qe

u −Qt
u)− γtQ

t
u.

(7)

Finally, the model is completed by describing the evolution
of the concentrations of the quorum sensing molecules into
the environment:

Q̇e
x = Nη

∑
j∈S

(Qj
x −Qe

x)− γeQ
e
x,

Q̇e
u = Nη

∑
j∈S

(Qj
u −Qe

u)− γeQ
e
u,

(8)

where N is the number of cells in each population (assumed
to be balanced), and S = {p, d, t}.

III. DESIGN OF THE MICROBIAL CONSORTIUM

The goal of the multicellular PD architecture shown in
Fig. 1 and modelled by (2)-(8) is to regulate the concentration
of the quorum sensing molecule Qt

x, that acts as a proxy of
the target output Xc, to the set-point specified via the refer-
ence signal Yd with given static and dynamic performance.
Specifically, we assume the desired maximum amplitude of
the steady state error to be ϵe with a settling time less than ϵt
and an overshoot s% ≤ ϵs. Note that these bounds may vary
depending on the specific application of interest. Hence, in
this work we will not fix these quantities a priori. Instead,
we will investigate how the control gains can be chosen so as
to determine upper bounds on the settling time, the overshoot
and the steady state error.

We will show that, as for the classical PD control, the
addition of the derivative action to the consortium can
provide a prompter and better regulation of the process
output inside the target cells. However, the control gains
βP and βD in (4) and (6) need to be appropriately tuned

to achieve the desired stability and performance. Next, we
provide analytical conditions on the control gains that can
be used to tune the static precision and the characteristics
of the transient response of the closed-loop system, and we
compare them to those of the simpler Proportional controller
presented in [12].

A. Reduced order model

To derive meaningful analytical conditions we make the
following simplifying assumptions, commonly made in the
literature, e.g., [9], [12], [18].

Assumptions The multicellular control system (2)-(8) satis-
fies the following proprieties:

A1 All cell populations grow and divide at the same rate.
A2 The quorum sensing molecules Qu and Qx diffuse

faster than they degrade.
A3 The enzymatic reactions in (5) occur with saturation

of the substrates.
A4 The dynamics of the derivative action (5) is sufficiently

faster than the controlled process in (2).

Remark 1 Assumption A1 implies that all cells have the
same dilution rate, i.e. γ1 = γc = γp = γd = γt = γ,
which is a reasonable assumption if all populations are
realized using the same biological chassis, and therefore,
despite inevitable fluctuations, grow and divide at the same
rate. Assumption A2 implies that η ≫ ΓPD, with ΓPD :=
γp + γd + γt + γe = 3γ + γe, and it is common in the
literature and holds in different models parameterized from in
vivo experiments, see e.g. [18]. Assumption A3 is commonly
made in the literature (see for example [19]) and it implies
that Ka ≪ A and Km ≪ M [20]. Assumption A4 allows to
perform a time scale separation between the dynamics of the
process and the one of the derivative controller, and it can
be satisfied by requiring that the frequency content of Xc(t)
(and thus of Qx(t)) is bounded by some value ωmax, and the
parameters of the derivative motif are chosen accordingly
(see [9] and Appendix A for details).

Under the previous assumptions, the dynamics of the
multicellular system can be approximated by the following
reduced order model (see [16] for details):

Ẋ1 = −γ1X1 +
1
3γβu

(
βPYd

3γµYd

3γµYd+θβxXc
+ βDA

)
,

Ẋc = βcX1 − γXc,
(9)

with A defined as in (17). Note that the transfer function of
the linearization of system (9) can be mapped to the one of
a classic PD controller, see [9] for further details.

B. Static and transient performance

Setting Ẋ1 = 0 and Ẋc = 0 in (9), the equilibria can be
obtained as

X̄±
1 =

1

6

(
βDα− δ ±

√
(βDα+ δ)2 + βP

36βu

γ2 δ

)
Yd,

X̄±
c = βc

γ X̄±
1 ,

(10)

3740



where α := βmβu

γ2γm
and δ := 9γ2µ

βcβxθ
. Since the state variables

X1, Xc describe the concentration of chemical species,
we restricted the admissible solutions to be positive. And
thus, since X̄−

1 is negative for any positive values of the
system parameters, the only admissible equilibrium point is
(X̄+

1 , X̄+
c ), which, by applying the Routh-Hurwitz criterion,

can be proved to be locally asymptotically stable for any
value of the parameters (see [16] for details on the stability
analysis). Next, from the expression of the control error
at steady-state (the derivation is omitted here for the sake
of brevity), we find that if the control gains are positive
(βP , βD ≥ 0) and such that:

βD +
βP

2

γm
βm

− 9γ4γmµ

βcβuβxβmθ
= 0, (11)

the steady-state error can theoretically be made null provided
that all parameters are perfectly known. In practice, this is
unrealistic in biological implementations of the controller
and therefore the error can only be made small enough by
appropriately tuning the gains around the values suggested
in (11).

We assess the (local) transient performance by studying
the eigenvalues of the linearization of system (9) when (11)
is fulfilled about (X̄+

1 , X̄+
c ), where, substituting (11) into

(10), X̄+
c = ΓPD

βx

µYd

θ . Simple algebraic manipulations yield:

λPD1,2
= −ρ±

√
ρ2 −

(
γ2 + βP βcβuβxθ

36γ2µ

)
, (12)

where ρ := γ + βDβcβuβxγa

18βaγ2γm
.

The eigenvalues are therefore both real and negative if:

βD ≥ 18 βaγ
3γm

βcβuβxγa

(√
1 + βP βcβuβxθ

36γ4µ − 1

)
, (13)

and correspondingly the transient response is characterized
by the absence of oscillations, otherwise they are complex
conjugates with negative real part.

C. Comparison with the Proportional controller

To highlight the advantages of adding a derivative control
action to the multicellular control scheme, we compare the
static and transient performances of the PD controller with
those of the P controller alone we previously studied in [12].

Regarding the steady-state, also in the case when only a
proportional biomolecular controller is present, the error can
be made theoretically null (and therefore closer to zero in
practice) provided that all the system parameters are perfectly
known and the proportional gain is selected about the value
[12]:

β∗
P =

8γ4µ

βcβuβxθ
. (14)

Following similar steps as those taken to obtain (12), we
find that in the absence of the derivative action when βP is
set as in (14), the transient response is governed by the pair
of complex conjugate eigenvalues:

λP1,2
= −γ ± j

√
βP βcβuβxθ

16γ2µ . (15)

Thus, when the derivative action is added to the consor-
tium, if the gains are tuned so that λPD1,2 are real, i.e.
condition (13) holds, by comparing (12) with (15) we find
that the PD strategy can indeed guarantee faster convergence
(that is, |ℜ{λP1,2

}| < maxi |ℜ{λPDi
}|) by further requiring

that:
βD < βP

βaγmθ
4γγaµ

. (16)

Also, if λPD1,2
are complex conjugate, it is easy to verify

that ℜ{λPD} < ℜ{λP } and ℑ{λPD} < ℑ{λP } for any
choice of the control gains, therefore, the PD controller
always guarantees faster response and more damped oscilla-
tions than the Proportional controller alone.

IV. IN SILICO EXPERIMENTS

We validated the proposed PD multicellular architecture
via in silico experiments carried out in Matlab and BSim
[13] using the model described by equations (2)-(8).

First, we validated the theoretical predictions using Mat-
lab. Specifically, as reported in Fig. 2, we computed for dif-
ferent values of the gains βP and βD the relative percentage
steady-state error defined as ē% =

∣∣∣ Q̄t
x−Qd

Qd

∣∣∣× 100%, where

Q̄t
x is the steady-state value of Qt

x(t) and Qd = µYd

θ , the
overshoot s%, and the 5% settling time Ts5% . We found
that, as expected from the analysis, the PD strategy can
guarantee bounded steady-state error for gains chosen close
to the theoretical estimates reported in (11) (βD < 0.17,
βP = 0.09−0.54βD). For the sake of completeness we also
report in Fig. 3 the steady-state error, overshoot and settling
time when only the Proportional control action is present
(βD = 0). Also we notice that, as predicted by (12) and
(15), the proportional action used on its own always causes
overshoots in the closed-loop response whereas there is a
wide range of control parameters (see Fig. 2.b) where the
PD action ensures no overshoot. Also, when condition (16)
holds (βD < 4.89βP ), the PD architecture provides faster
dynamic regulation than the Proportional one (see Fig. 2.c).

We further validated our theoretical results by carrying
out agent-based simulations in BSim accounting for cell
growth, cell-to-cell variability, diffusion and the geometry
of cells and of the hosting chamber. In all the simulations,
we set the initial concentration for all chemical species to
zero. This emulates an experimental protocol where each
cellular population is grown separately from the others prior
to the beginning of the experiment. We assumed the cells
are growing in a scaled-down version of the microfluidic
chamber used in [17], [21]. Specifically, the chamber has
dimensions 17µm×15µm×1 µm and can host around 100
cells, which is a good compromise between computational
time and statistical relevance. Unless otherwise stated, the
growth and mechanical parameters of cells and the nominal
values of the parameters in the genetic circuits were chosen
as described in Appendix B.

We chose values of the control gains βP and βD that
were shown in Matlab (see Fig. 2) to guarantee e∞ < 20%
when Yd = 60nM and to also satisfy condition (16). We ran
10 agent-based simulations, each time randomly selecting

3741



a.

b.

c.

Fig. 2: In silico experiments in Matlab: percentage error e% (a), percentage
overshoot s% (b) and settling time Ts5% (c) when the targets are controlled
by the PD controller. The control gains βP and βD were varied in the
intervals [0, 0.09] and [0, 0.36] with step size equal to 0.0009min−1 and
0.0036min−1, respectively. The reference signal was set to Yd = 60nM
in all simulations. The white isoclines bound the regions in the parameters’
space (βP , βD) with the same upper bound on the percentage error. The 0%
isocline in panel (a) is the analytical estimate given by (11) while the green
dashed line in panel (b) represents the condition to have real eigenvalues
given by equation (13).

the control gains with uniform distribution and evaluating
the performance. Figure 4 shows that both the P and PD
architectures have good regulation capabilities. Moreover, it
confirms that on average the addition of a derivative action
consistently reduces the overshoot (9.76% for the PD, and
18.29% for the P controller). Instead, the reduction of the
settling time was just about 10% (about 355 min for the PD,
and 392 min for the Proportional). As for the steady-state
error (4.55% for the PD, and 2.71% for the Proportional),
the difference between the two strategies was negligible.

0
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300
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T s5
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s %

a.

b.

c.

Fig. 3: Proportional performance validation in Matlab: percentage error e%
(a), percentage overshoot s% (b) and settling time Ts5% (c) when the targets
are controlled by a proportional controller. The control gain was varied in
the interval [0, 0.09] with step size equal to 0.0009min−1. The reference
signal was set to Yd = 60nM in all simulations.
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t [min]

0

100

200
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Q
xt  [n

M
]

P
PD

Fig. 4: Control performance validation in BSim: mean (continuous line) and
standard deviation (shaded area) of the average concentration of Qt

x in the
targets. The statistics were computed over 10 simulations. The blue lines
are obtained using a Proportional controller and the purple ones using a
PD controller. Control gains were drawn with uniform distribution from the
region of the parameter space (βP , βD) in Figure 2 in which ē% < 20%.
For the PD architecture we also imposed condition (16). The reference
signal Qd = µYd/θ is depicted as a dashed line. At t = 0min, 18 cells,
equally divided between the populations, were positioned at the center of
the chamber along a horizontal stripe.

Finally, we tested the robustness of the P and PD strategies
as the cell-to-cell variability increases in the cell populations.
We modeled this effect by drawing, at cell division, each
parameter of the daughter cells, say ρ, from a normal distri-
bution centered at its nominal value ρ̂ with standard deviation
σ = CV · ρ̂, where CV is the coefficient of variation. We
compared the robustness of the two architectures, as the CV
increases, by evaluating the settling time, the overshoot, and
the average relative percentage steady-state error, defined as
e% = 1

n

∑n
k=1

∣∣∣ Q̂t
x−Qd

Qd

∣∣∣ × 100%, where Q̂t
x is the value of

Qt
x(t), averaged over the last 200 min, of the k-th experi-

ment, Qd = µYd

θ , and n is the total number of experiments
we conducted for each value of CV . Fig. 5 shows that
the P and the PD strategies both possess good robustness
(the steady-state error never exceeds 20%). We observe that
while the Proportional controller guarantees a lower residual
error under perturbations (Fig. 5.a), the PD control strategy
reduces the overshoot even in the presence of high cell-to-
cell variability (Fig. 5.c); no significant difference between
the two being detected in terms of settling time (Fig. 5.b).
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Fig. 5: Sensitivity to parameter variations: mean and standard deviation of
the percentage of error at steady-state (a), settling time (b) and overshoot
(c) as the cell-to-cell variability increases. Blue bars are obtained using
only a Proportional controller and purple bars when a PD controller was
employed. For each value of CV ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} we
performed n = 50 simulations drawing independently cells’ parameters
from a normal distribution centered at their nominal value ρ̂ with standard
deviation σ = CV · ρ̂. The reference signal was set to Yd = 60nM, while
the gains were chosen as βP = 0.0414min−1 and βD = 0.0933min−1.
All simulations were performed for a total time of 800min.

V. CONCLUSIONS

We discussed the implementation of a distributed
biomolecular PD controller. Analytical conditions were de-
rived for control gains to achieve the desired performance. It
was shown that the derivative action helps reduce overshoots
and settling time. Numerical and in silico experiments were
conducted to confirm the effectiveness of the proposed strat-
egy, despite cell-to-cell variability and other realistic effects.
Future work involves exploiting the results presented here
with our previous results in [12] to achieve a fully distributed
biomolecular PID controller.

APPENDIX

A. Time scale separation on the derivative dynamics

Under Assumption A4 there exists some ωmax upper
bounding the frequency contents of Qx(t), therefore, if the
parameters of the derivative motif are chosen so as to satisfy
the condition βaγm ≫ |ω2

max + γ0ωmax|, then A in (5)
contains an approximation of the derivative of the control
error e(t) given by (see [9] for further details):

A ≈ − 1

3γ

γaβx

βaγm
Ẋc +

βm

γm
Yd =

γa
βaγmθ

ė(t) +
βm

γm
Yd. (17)

This is because, under Assumption A2 we can substitute the
expression of Qx at steady-state in the control error (details
on the time scale separation needed can be found in [16]).
Then, assuming a constant reference signal Yd and taking
the time derivative of e(t), yields:

ė(t) = −θ
βx

3γ
Ẋc. (18)

Combining the quorum sensing steady-state expressions re-
ported in [16] and (17) with (2) we then obtain the reduced
model (9).

B. Nominal biochemical parameters

The growth and mechanical parameters used in the BSim
simulations were selected as in [18], while the nominal
biochemical parameters were chosen as: βu = 0.06min−1,
βx = 0.03min−1, γ = 0.023min−1, η = 2min−1 (taken
from [18]); βc = 0.1min−1, µ = 1min−1, θ = 0.3min−1,
βa = 1.5min−1, βm = 0.4167min−1, γa = γm =
1.5min−1 (taken from [9]); γe = 0.0023min−1.
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