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Abstract— This paper is concerned with the formal synthesis
of safety controllers for partially-observable discrete-time con-
trol systems with unknown mathematical models. Given a state
estimator with unknown dynamics but a known upper bound
on the estimation error, we propose a data-driven approach
to compute controllers that render the partially-observable
systems with unknown dynamics safe. Our proposed method
is based on the construction of control barrier certificates,
where we first formulate the barrier-based safety problem as
a robust program (RP). The proposed RP is not tractable
since the unknown model of the estimator appears in one
of its constraints. To tackle this issue, we collect a set of
data from the black-box system and its estimator and replace
the original RP with a scenario program (SP). Due to the
existence of a max-min constraint in the SP, we construct
an analogous scenario program, denoted by SPα, in which
the max-min constraint is replaced with a single inequality
constraint. The control barrier certificates together with their
corresponding controllers can then be computed by solving
SPα via the collected data. By connecting the feasible solutions
of SPα and SP, the safety of the partially-observable system
equipped with the synthesized controller can be guaranteed
with 100% confidence. We show the effectiveness of our results
by synthesizing a safety controller for a partially-observable
Van der Pol oscillator with unknown dynamics.

Index Terms— Partial-information, Data-driven synthesis,
Control barrier certificates, Discrete-time control systems.

I. INTRODUCTION

Safety is of significant importance in many control appli-
cations such as autonomous vehicles, drones, aircraft, robots,
and advanced manufacturing. For this reason, formal syn-
thesis of controllers ensuring safety properties has received
significant attention in the past decade. In this regard, control
barrier certificates have shown great promises as a reliable
method to synthesize safety controllers for complex dynam-
ical systems [1]. These functions are defined over the state
space of the system and have to satisfy a set of inequalities
defined over the function itself and one step transition of the
system. The existence of such a function provides a controller
together with the guarantee on the satisfaction of the safety
specification. Since in many real-life applications, all the
system’s states are not observable, some recent work has
investigated controller synthesis problems via control barrier
certificates for systems with partial-information. Using state
estimators, the results in [2] and [3] provide controllers
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ensuring safety for infinite time horizon by assuming a priori
knowledge of the control barrier certificates and having an
unbounded input set. The results in [4]–[6] provide finite-
time horizon guarantees together with a lower bound on the
probability of safety satisfaction by constructing the barrier
certificate over the estimated states. The common prereq-
uisite of all of the above-mentioned literatures is knowing
the precise mathematical model of the system. However,
obtaining an accurate model for many physical systems
can be very challenging and computationally expensive.
Moreover, the acquired mathematical model might be too
complicated to be of any use. To this end, recent studies
have made significant progress in exploring the application of
data-driven approaches to construct control barrier functions.
In particular, scenario-based approaches have been employed
to tackle the challenges posed by semi-infinite programming
in control analysis and synthesis problems. In this regard,
the results in [7] and [8] utilize optimization-based methods
to deal with data-driven safety verification of deterministic
systems through barrier certificates by leveraging perfor-
mance bounds for scenario programs [9]. The extension
of [8] to stochastic systems is provided in [10]. Using
barrier certificates, the results in [11] and [12] propose a so-
called wait-and-judge approach to provide an out-of-sample
performance guarantee for verifying the safety of stochastic
systems with unknown dynamics. While the aforementioned
results show promise, it is important to note that they are
limited to systems with complete state information. However,
in many practical scenarios, it is not possible to measure
all the states of a system, which introduces additional chal-
lenges. To address this issue, in [13], a specific data-driven
approach is proposed for the safety controller synthesis of
partially-observable polynomial-type systems with unknown
dynamics. Using sets of data collected from the output
trajectories of the unknown system and the trajectories of its
partially-unknown estimator, the control barrier certificates
and their corresponding controllers are constructed in [13].

Motivated by the above results and their limitations, in this
paper we provide a data-driven procedure for the formal syn-
thesis of safety controllers for partially-observable discrete-
time control systems with unknown mathematical models.
In comparison to the study presented in [13], this paper in-
troduces two significant contributions. Firstly, while [13] fo-
cuses on partially-observable polynomial-type systems with
unknown dynamics, where the unknown parameters are the
polynomial coefficients, our work encompasses a broader
class of partially-observable systems with unknown models.
Secondly, in [13], the results rely on estimators with partially
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unknown dynamics, requiring knowledge of the estimator
gain. In contrast, our approach tackles the scenario where
both the system model and the estimator are unknown.
The only requirement in our work is the knowledge of
the Lipschitz constant of the estimator. In this work, given
an estimator with unknown dynamics and a known upper
bound on the estimation accuracy, we provide an approach
to synthesize safety controllers based on a notion of control
barrier certificates. To deal with unknown models, the control
barrier certificate is constructed via a set of data collected
from the system and its estimator. In our proposed settings,
the data-driven synthesis of control barrier certificates is
first cast as a robust program (RP). Since the unknown
model of the estimator appears in one of the constraints
of the proposed RP, we resort to a scenario-based approach
and propose a scenario program (SP) corresponding to the
original RP. The proposed SP contains a max-min constraint.
We replace this max-min constraint with a single inequality
constraint by constructing an analogous scenario program,
denoted by SPα. Then, by leveraging the collected data,
the control barrier certificate along with its controller are
obtained by solving the SPα. As a result, by connecting the
feasible solutions of the SP and the SPα, we ensure the
safety of the unknown partially-observable control system
with 100% guarantee.

The rest of the paper is structured as follows. Section II
contains the system definition and mathematical notations.
Control barrier certificates are formally defined in Section III.
In Section IV, we present our data-driven approach to
construct control barrier certificates. The case study and
conclusion are given in Sections V and VI, respectively.

II. PARTIALLY-OBSERVABLE DISCRETE-TIME CONTROL
SYSTEMS

A. Notations

The sets of positive integers, non-negative integers, real
numbers, non-negative real numbers, and positive real num-
bers are denoted by N,N0,R,R+

0 , and R+, respectively. We
donate the indicator function by 1A (x) : X → {0, 1},
where 1A (x) is 1 if and only if x ∈ A ⊆ X , and 0
otherwise. We use Rn to denote an n-dimensional Euclidean
space. The notation ∥x∥ is used to indicate the Euclidean
norm of any x ∈ Rn. For a set X , we denote its ϵ-
inflated version by Xϵ, with ϵ ∈ R+, and define it as
Xϵ := {x̂ ∈ X | ∃x ∈ X, ∥x̂ − x∥ ≤ ϵ}. Given N vectors
xi ∈ Rni , ni ∈ N, and i ∈ {1, . . . , N}, we use [x1; . . . ;xn]
and [x1, . . . , xn] to denote the corresponding column and
row vectors, respectively, with dimension

∑
i ni.

B. Partially-Observable Discrete-Time Control Systems

We consider partially-observable discrete-time control sys-
tems as formalized in the following definition.

Definition 2.1: A partially-observable discrete-time con-
trol system (PO-dt-CS) in this paper is characterized by the
tuple S := (X,U, f, Y, h), where X ⊆ Rn and Y ⊆ Rp

are the bounded state and output sets, respectively. The
set U := {u1, u2, . . . , uM} is the finite input set, with

uj ∈ Rm, j ∈ {1, . . . ,M},M ∈ N. The map f : X × U →
X is the transition function, which characterizes the state
evolution of the system, and h : X → Y is the output
function that maps a state x ∈ X to its output y ∈ Y . A PO-
dt-CS S can also be represented by the following difference
equations

S :

{
x(t+ 1) = f(x(t), u(t))

y(t) = h(x(t)) + σ(t), t ∈ N0,
(2.1)

where σ(t) ∈ Rp represents the measurement noise and
is assumed to be bounded with an unknown bound (i.e.,
∥σ(t)∥ ≤ σ̄, where σ̄ is not known). We employ the notation
xx0υ(t) to denote the state of S at time t, initialized from
x0 and under input sequence υ : N0 → U .

In this paper, we assume that maps f and h are unknown,
and we employ the terms black-box or unknown models
to refer to this type of systems. Additionally, we raise the
following assumption on the existence of an estimator that
estimates the states of PO-dt-CS S in (2.1) with an upper
bound on the estimation error.

Assumption 1: Consider a PO-dt-CS S = (X,U, f, Y, h).
States of S in (2.1) can be estimated by an estimator Ŝ
which is characterized by the tuple Ŝ := (X̂, U, f̂ , Y ) and
represented as:

Ŝ : x̂(t+ 1) = f̂(x̂(t), u(t), y(t)), t ∈ N0, (2.2)

where x̂(t) ∈ X̂ is the state of the estimator at time t
and X ⊆ X̂ is the estimator’s state set. Moreover, in this
paper, we consider estimators that provide a guaranteed
upper bound on the estimation error as follows.

∥x(t)− x̂(t)∥ ≤ ϵ, ∀t ∈ N0, (2.3)

where ϵ ∈ R+ is known.

Remark 2.2: Note that the presence of measurement noise
σ(t) in (2.1) can have a detrimental effect on the accuracy of
the estimator, reflected in ϵ in (2.3). The measurement noise
introduces uncertainty and perturbations in the observed data,
potentially leading to more deviations between the estimated
states and the true states of the system.

For the unknown PO-dt-CS S in (2.1), one can resort to
existing results in the literature including neural-network-
based estimators to construct estimators as in (2.2) with an
unknown function f̂ (cf. [14]–[18]). In the remainder of
the paper, we refer to estimators as in (2.2) with unknown
functions f̂ as unknown estimators. In our setting, we com-
pute the estimation accuracy ϵ in (2.3) empirically using
data. The results in [19]–[21] offer valuable insights into the
practical computation of estimation errors using solely input-
output data, eliminating the need for prior knowledge of the
system or the dynamics of the estimator. For a quantitative
and rigorous computation of the estimation error for neural
network based estimators, we kindly refer the interested
readers to the results in [22]. Now, we formally define the
main synthesis problem to be addressed in this paper.

Problem 2.3: Consider an unknown PO-dt-CS S in (2.1)
together with an unknown estimator Ŝ in (2.2). Let Xa, Xb ⊆
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X be some given initial and unsafe sets for S, respectively.
Synthesize a safety controller using which the trajectories of
S starting from Xa never reach the unsafe set Xb.

To solve Problem 2.3, we utilize a notion of control barrier
certificates, introduced in the next section

III. CONTROL BARRIER CERTIFICATES

In this section, we define a notion of control barrier
certificates (CBCs), adapted from [23].

Definition 3.1: Consider a PO-dt-CS S = (X,U, f, Y, h)
as in (2.1), its estimator Ŝ as in (2.2), with estimation
accuracy ϵ as in (2.3), as specified in Assumption 1. Let
Xa, Xb ⊆ X ⊆ X̂ be bounded initial and unsafe sets of
S, respectively. A function B : X̂ → R is called a control
barrier certificate for Ŝ if there exist constants βa, βb ∈ R
such that βa < βb, and

∀x̂ ∈ Xa,B(x̂) ≤ βa, (3.1)
∀x̂ ∈ Xϵ

b ,B(x̂) ≥ βb, (3.2)

∀x̂ ∈ X̂, ∀y ∈ Y,min
u∈U

B
(
f̂(x̂, u, y)

)
≤ B(x̂), (3.3)

with Xϵ
b being the ϵ-inflated version of Xb.

Remark 3.2: Note that the above definition implicitly as-
sociates a set-valued controller

η : X̂ × Y → 2U , (3.4)

to the CBC B by selecting control inputs as η(x̂, y) := {u ∈
U | B(f̂(x̂, u, y)) ≤ B(x̂)} for any x̂ ∈ X̂ and y ∈ Y .

Remark 3.3: Note that in order to enforce condi-
tions (3.1)-(3.3), Xa and Xϵ

b should not intersect. This
condition is implicitly enforced by imposing βa < βb. By
enforcing this inequality, we guarantee that Xa is a safe
region.

The following theorem shows how CBCs can be leveraged
to make the unknown PO-dt-CS S in (2.1) safe in the sense
that its trajectories starting from Xa never reach Xb.

Theorem 3.4: Let S be a PO-dt-CS as in (2.1), Ŝ be its
corresponding estimator as in (2.2), with estimation accuracy
ϵ as in (2.2). Suppose B is a CBC for Ŝ as in Definition 3.1
with the corresponding controller η : X̂ × Y → 2U . Then,
one gets xx0υ(t) ̸∈ Xb, ∀x0 ∈ Xa and ∀t ∈ N0, where
υ(t) ∈ η(x̂(t), y(t)), ∀t ∈ N0.

Proof: Condition (3.3) indicates that for any x̂ ∈ X̂
and y ∈ Y , there exists u ∈ U such that B(f̂(x̂, u, y)) ≤
B(x̂). From this and (3.1), one can recursively infer that
B(x̂(t)) ≤ B(x̂(0)) ≤ βa,∀x̂(0) ∈ Xa, and ∀t ∈ N0. Since
βa < βb, one gets B(x̂(t)) < βb,∀t ∈ N0. From (3.2),
one obtains x̂x̂0υ(t) ̸∈ Xϵ

b ,∀x̂0 ∈ Xa and ∀t ∈ N0, where
υ(t) ∈ η(x̂(t), y(t)). Now, by utilizing the fact that x̂(t)
estimates x(t) with estimation error ϵ as in (2.3), one can
conclude xx0υ(t) ̸∈ Xb, ∀x0 ∈ Xa and ∀t ∈ N0, which
completes the proof.

In order to synthesize controllers via CBCs, we fix the
structure of control barrier certificates as

B(q, x̂) =

rb∑
ℓ=1

qℓbℓ(x̂), (3.5)

with some user-defined nonlinear basis functions bℓ, ℓ ∈
{1, . . . , rb}, and unknown coefficients q = [q1; . . . ; qrb ] ∈
Rrb . For instance, in the case of polynomial-type barrier
certificates, basis functions bℓ are monomials over x̂. Note
that knowledge of the map f̂ is required in condition (3.3).
Since f̂ is unknown in our setting, we provide in the next
section a data-driven approach to construct CBCs as in
Definition 3.1.

IV. DATA-DRIVEN SYNTHESIS OF CBCS

In this section, given an estimator as in Assumption 1,
we propose a method to construct CBCs for the unknown
PO-dt-CS S in (2.1) using data collected from the black-
box system and its estimator. To do so, we first raise the
following assumption.

Assumption 2: Consider the unknown system S in (2.1)
and its unknown estimator Ŝ in (2.2). We assume one can
collect data sets:

Dx̂ =
{
x̂i | i ∈ {1, . . . , N}

}
,Dy =

{
yk | k ∈ {1, . . . , P}

}
,

D =
{
(x̂i, yk, uj , f̂(x̂i, yk, uj)) | i ∈ {1, . . . , N},

k ∈ {1, . . . , P}, j ∈ {1, . . . ,M}
}
. (4.1)

To do so, cover sets are constructed over X̂ and Y such that
one has X̂=∪N

i=1X̂i and Y =∪P
k=1Yk, with X̂i ⊆ X̂ , ∀i ∈

{1, . . . , N}, and Yk ⊆ Y , ∀k ∈ {1, . . . , P}. Representative
points x̂i ∈ X̂i and yk ∈ Yk are selected for each X̂i and
Yk such that

∀x̂∈X̂, ∃x̂i, s.t. ∥x̂− x̂i∥≤dx̂, i∈{1, . . . , N}, (4.2)
∀y∈Y, ∃yk, s.t. ∥y − yk∥≤dy, k∈{1, . . . , P}, (4.3)

for some dx̂, dy ∈ R+.
Note that in order to obtain f̂(x̂i, yk, uj) in (4.1), the

estimator is initialized from x̂i, inputs yk and uj are applied,
and the next step of the estimator is observed. Now, we have
all the ingredients to construct a CBC as in Definition 3.1
using data. To do so, we first consider a candidate for CBC
B(q, x̂) as in (3.5). We then cast conditions (3.1)-(3.3) as
the following robust program (RP):

RP:



min
Θ

λ

s.t. max
{
g1(x̂,Θ), g2(x̂,Θ), g3(Θ),

min
u∈U

g4(x̂, u, y,Θ)
}
≤λ,

∀x̂ ∈ X̂, ∀y ∈ Y,

with Θ :=
[
λ;βa;βb; q

]
∈R× R× R× Rrb ,

(4.4)

where

g1(x̂,Θ) := B(q, x̂)1Xa(x̂)− βa, (4.5a)
g2(x̂,Θ) := −B(q, x̂)1Xϵ

b
(x̂) + βb, (4.5b)

g3(Θ) := βa − βb, (4.5c)

g4(x̂, u, y,Θ) := B(q, f̂(x̂, u, y))−B(q, x̂), (4.5d)

where 1Xa(x̂) and 1Xϵ
b
(x̂) are indicator functions acting on

initial and inflated unsafe sets, respectively. Observe that the
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RP in (4.4) is non-convex due to the minimization over
u. We denote an optimal value of RP by λ⋆

R. If λ⋆
R ≤

0, then the satisfaction of conditions (4.5a)-(4.5d) implies
the satisfaction of conditions (3.1)-(3.3) in Definition 3.1.
Finding an optimal solution for the proposed RP (4.4) is
hard in general for two reasons. First, there exist infinitely
many constraints in the proposed RP since x̂ and y belong to
continuous sets, i.e., x̂ ∈ X̂ and y ∈ Y . The second difficulty
is that one needs to know the exact dynamic of the estimator,
i.e., f̂ appearing in g4. To tackle these two difficulties, we
use the data sets in Assumption 2 and construct the following
scenario program (SP) corresponding to the original RP
in (4.4):

SP:



min
Θ

λ

s.t. max
{
g1(x̂i,Θ), g2(x̂i,Θ), g3(Θ),

min
u∈U

g4(x̂i, u, yk,Θ)
}
≤ λ,

∀x̂i ∈ Dx̂,∀yk ∈ Dy,

Θ =
[
η;βa;βb; q

]
∈ R× R× R× Rrb ,

(4.6)

in which functions g1, g2, g3, and g4 are as in (4.5a)-(4.5d),
respectively. We denote an optimal value of the proposed SP
by λ⋆

S . Note that there exists a max-min constraint in (4.6).
Solving the SP with this max-min constraint is equivalent
to solving a collection of optimization problems, where the
size of the collection grows exponentially with respect to
N×P . To overcome this challenge, we use the results in [24]
and replace the max-min constraint in (4.6) with a single
inequality constraint via the following proposition.

Proposition 4.1: The max-min constraint in (4.6), i.e.,

max
x̂i∈Dx̂,yk∈Dy

min
uj∈U

g4(x̂i, uj , yk,Θ) ≤ 0,

is satisfied if and only if there exists αi,k =
[αi,k

1 , . . . , αi,k
M ],∀i ∈ {1, . . . , N} and ∀k ∈ {1, . . . , P}, such

that

∀x̂i∈Dx̂,∀yk∈Dy,

M∑
j=1

αi,k
j g4(x̂i, uj , yk,Θ) ≤ 0, (4.7)

with
∑M

j=1 α
i,k
j = 1, αi,k

j ∈R≥0, where i ∈ {1, . . . , N}, j ∈
{1, . . . ,M}, and k∈{1, . . . , P}.

Proposition 4.1 enables us to construct the following
scenario program, denoted by SPα, associated with the SP
in (4.6):

SPα:



min
Θ̃

λ

s.t. max
{
g1(x̂i,Θ), g2(x̂i,Θ), g3(Θ),

gα4 (x̂i, u1, . . . , uM , yk, Θ̃)
}
≤ λ,

∀x̂i ∈ Dx̂,∀yk,Dy,

Θ̃ :=
[
Θ;α

]
=

[
λ;βa;βb; q;α

]
∈R×R×R×Rrb×(R+

0 )
N×M×P,

with α=[α1,1
1 ;. . . ;αN,P

M ],
(4.8)

where functions g1, g2, and g3 are as in (4.5a)-(4.5c), respec-
tively, and

gα4(̂xi,u1,. . .,uM, yk,Θ̃):=

M∑
j=1

αi,k
j

(
B(q,f̂(x̂i, uj , yk))−B(q, x̂i)

)
,

with
M∑
j=1

αi,k
j =1, αi,k

j ∈ R+
0 ,∀i ∈{1,. . ., N},∀k∈ {1,. . ., P}.

(4.9)

As a consequence of Proposition 4.1, feasible solutions of
SP and SPα are equivalent in the following sense.

Corollary 4.2: Consider optimization problems SP and
SPα in (4.6) and (4.8), respectively. Then, Θ⋆ is a feasible
solution of SP if and only if Θ̃⋆ is a feasible solution of SPα.

The proof is a simple consequence of Proposition 4.1 and
is omitted here.

Next, we show that the CBC obtained using an optimal
solution of the SPα in (4.8) is a valid CBC for the unknown
PO-dt-CS S in (2.1). To this end, we first propose the
following assumption.

Assumption 3: Function B(q, x̂) in (4.5a) is Lipschitz
continuous with respect to x̂ with Lipschitz constant Lx̂

1 .
Moreover, function g4(x̂, uj , y) in (4.5d), j ∈ {1, . . . ,M},
is also Lipschitz continuous with respect to x̂ and y with
Lipschitz constants Lx̂

4,j and Ly
4,j , respectively. We de-

note the maximum of all these Lipschitz constants with
respect to x̂ and y by Lx̂

max and Ly
max, i.e., Lx̂

max :=
max{Lx̂

1 , L
x̂
4,1, . . . , L

x̂
4,M} and Ly

max := max
j

Ly
4,j .

Note that one can use the estimation technique in [25] to
approximate the Lipschitz constants. Moreover, the Lipschitz
constants are estimated after Θ⋆ is obtained by solving the
SPα in (4.8). We now propose the main result of the paper.

Theorem 4.3: Let S in (2.1) be an unknown PO-dt-CS, Ŝ
in (2.2) its unknown estimator, and Xa and Xb its initial and
unsafe regions, respectively. Suppose Assumptions 2-3 hold.
Consider SPα in (4.8) with its associated optimal solution
λ⋆
S . If the following condition is satisfied

Lx̂
maxdx̂ + Ly

maxdy + λ⋆
S ≤ 0, (4.10)

with Lx̂
max and Ly

max as in Assumption 3, dx̂ and dy as
in (4.2) and (4.3), respectively, then the PO-dt-CS S is safe
in the sense of Theorem 3.4.

Proof: Here, we show that B(q⋆, x̂), where q⋆ is a fea-
sible solution of SPα, is a CBC satisfying conditions (3.1)-
(3.3). Now, since λ⋆

S is a feasible solution of SPα in (4.8),
according to Corollary 4.2, it is also a feasible solution of
SP in (4.6). Hence, the following conditions hold for all
k ∈ {1, . . . , P} and all i ∈ {1, . . . , N}:

g1(x̂i,Θ) ≤ λ⋆
S , ∀x̂i ∈ Dx̂, (4.11)

g2(x̂i,Θ) ≤ λ⋆
S , ∀x̂i ∈ Dx̂, (4.12)

g3(Θ) ≤ λ⋆
S , (4.13)

min
u∈U

g4(x̂i, u, yk,Θ) ≤ λ⋆
S ,∀x̂i ∈ Dx̂,∀yk ∈ Dy. (4.14)
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Now consider inequality (4.14). One can readily see
from (4.14) that for any x̂i and any yk, there exists a choice
of u ∈ U , namely u⋆

ik, such that

g4(x̂i, u
⋆
ik, yk,Θ) ≤ λ⋆

S . (4.15)

Now, for any x̂ ∈ X̂ and y ∈ Y , there exists, respectively,
x̂i ∈ Dx̂ and yk ∈ Dy , i ∈ {1, . . . , N}, k ∈ {1, . . . , P} such
that

g4(x̂, u
⋆
ik, y,Θ)−g4(x̂i, u

⋆
ik, yk,Θ) (4.16)

≤ Lx̂
max∥x̂− x̂i∥+ Ly

max∥y − yk∥
≤ Lx̂

maxdx̂ + Ly
maxdy,

where the first inequality follows from the Lipschitz conti-
nuity of g4 with respect to x̂ and y in Assumption 3. The
second one follows from (4.2) and (4.3) in Assumption 2.
Now from (4.10), (4.15), and (4.16), one gets that for all
x̂ ∈ X and all y ∈ Y , there exists u ∈ U such that

min
u∈U

g4(x̂, u, y,Θ) ≤ Lx̂
maxdx̂ + Ly

maxdy + λ⋆
S≤0.

Hence, B(q⋆, x̂) satisfies (3.3). Similarly, one can show that
gz(x̂,Θ) ≤ 0 where z ∈ {1, 2, 3} as in (4.5a)-(4.5c) if (4.11)-
(4.13) hold, respectively. This implies that conditions (3.1)
and (3.2) in Definition 3.1 are also satisfied, and therefore,
the safety of the PO-dt-CS S is ensured in the sense of
Theorem 3.4. This completes the proof.

If (4.10) holds, then the set-valued controller η in (3.4)
can be constructed as follows.

Corollary 4.4: Let B be a CBC obtained by solving
SPα in (4.8), and λ⋆

S be an optimal solution of SPα such
that (4.10) holds. For any x̂ ∈ X̂ and any y ∈ Y , the set-
valued controller η : X̂ × Y → 2U in (3.4) is constructed as
follows:

η(x̂, y) :=
{
u ∈ U | B(f̂(x̂i, u, yk))−B(x̂i)≤λ⋆

S ,

with ∥x̂− x̂i∥ ≤ dx̂, ∥y − yk∥ ≤ dy,

∃i ∈ {1, . . . , N},∃k ∈ {1, . . . , P}
}
. (4.17)

For the sake of completeness, we present the steps required
for utilizing Theorem 4.3 in Algorithm 1.

Algorithm 1 Data-driven safety controller synthesis for
unknown PO-dt-CSs

Inputs: N , P , dx̂, dy , and rb
1: We construct data sets Dx̂,Dy , and D as in Assump-
tion 2.
2: We solve SPα using V-K iteration via the acquired data
from step 1 and obtain λ⋆

S .
3: We estimate the Lipschitz constants of function g4 with
respect to x̂ and y and consider the largest to be Lx̂

max and
Ly
max, respectively.

Outputs: If condition (4.10) is satisfied, then the set-
valued controller η in (4.17) associated with the obtained
CBC makes the PO-dt-CS safe.

Remark 4.5: Note that here, we do not provide a rigorous
method for choosing N and P . However, what might help

in the satisfaction of (4.10) is having a smaller λ⋆
S , as well

as smaller values for dx̂ and dy . Unfortunately, these two
factors move in opposite directions, leading to a trade-off
between reducing λ⋆

S and decreasing dx̂ and dy . When we
reduce dx̂ and dy , it results in a larger λ⋆

S . Conversely, to
achieve a smaller λ⋆

S , we must accept larger values for dx̂
and dy .

V. NUMERICAL EXAMPLE

In this section, we provide a case study in order to
illustrate our results. We consider a van der Pol oscillator,
adopted from [26], as follows.

S :


x1(t+ 1) = x1(t) + 0.01x2(t),

x2(t+ 1) = x2(t) + 0.01
(
− 1.6x2

1(t)x2(t)− x1(t)

1.6x2(t) + u(t)
)
,

y(t) = x2(t)+σ(t),

where u ∈ U := {0, 0.1, . . . , 9.5}, and σ(t) follows a
uniform distribution defined over the interval [0, 0.5]. The
regions of interest are Xa := [0.9, 1.4] × [−0.3, 0.3], Xb :=
[0, 2] × [−3,−2], and X := [0, 2] × [−3, 3]. We as-
sume that the model is unknown. For system S, we de-
sign a neural-networks-based estimator as in (2.2) with
X̂ = Xϵ as the estimator’s state set. Furthermore, we
compute the estimation accuracy ϵ = 0.134 empiri-
cally via data using the results of [20]. Let us fix the
structure of our control barrier certificate as B(q, x̂) =
[x̂2

1; x̂
2
2; x̂1x̂2; x̂1; x̂2; 1]

⊤Pq[x̂
2
1; x̂

2
2; x̂1x̂2; x̂1; x̂2; 1]. To uti-

lize the results of Theorem 4.3, we fix N = 900 and
P = 30. Then, with M = 96, we collect data sets in the
form of Assumption 2. By constructing 900 and 30 cover
sets for X̂ and Y , respectively, we get dx̂ = 0.0667 and
dy = 0.2. We now have all the ingredients to solve SPα.
Note that gα4 (x̂i, u1, . . . , uM , yk, Θ̃) in SPα (4.8) contains a
bilinearity between the decision variables αi,k

j and q, i.e., the
coefficients of the CBC. In order to tackle this bilinearity, we
make use of the idea of V-K iteration [27]. To do so, we first
fix the template of the CBC by restricting the degree of the
polynomial. Then, the bilinear programming problem can be
replaced with a linear programming problem by taking an
initial guess for variables αi,k

j ∈ R+
0 , such that

∑M
j=1 α

i,k
j =

1,∀i ∈ {1, . . . , N} and ∀k ∈ {1, . . . , P}. We use αi,k
j = 1

M
as the initial guess [24]. The coefficients of the candidate
CBC, as well as βa, βb, and λ can then be found by solving
the acquired linear programming problem using a solver such
as MOSEK [28]. We now consider the coefficients of the
CBC to be fixed and solve a linear programming problem
over the variables αi,k

j , βa, βb, and λ. By solving the SPα, we
obtain βa = 10.26, βb = 20.35, and λ⋆

S = −0.0936. Finally,
we estimate the Lipschitz constants as Lx̂

max = 1.009 and
Ly
max = 0.0897. Then, we get Lx̂

maxdx̂ + Ly
maxdy + λ⋆

S =
−0.0083 ≤ 0 satisfying (4.10). To simulate the system, we
randomly select 10 initial states from the initial state set and
simulate the system and its estimator for 500 time steps.
Closed-loop state trajectories of the system are illustrated in
Figure 1. As observed in Figure 1, the initial set Xa and the
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Fig. 1. A few realizations of the closed-loop trajectories of the van der
Pol oscillator. The green dash line shows the βa level set of B.

ϵ-inflated version of the unsafe set Xb is separated through
the βa-level set of the CBC. This visualization demonstrates
that the synthesized controller, which is based on estimated
states, effectively prevents the system trajectories starting
from Xa from entering Xb.

VI. CONCLUSION

In this work, we have presented a data-driven approach
for the synthesis of safety controllers in partially-observable
discrete-time control systems with unknown dynamics. Our
method revolves around the construction of control barrier
certificates (CBCs) specifically for the estimator. We assume
that the dynamics of the estimator are unknown, but we have
knowledge of an upper bound on the estimation accuracy.
By leveraging a scenario program (SPα), which can be
solved using a finite amount of data collected from the
system and its estimator, we compute the CBCs. A key
aspect of our approach is the inclusion of a condition on the
feasible solutions obtained from SPα. This condition plays
a crucial role in ensuring the safety of the unknown system.
By satisfying this condition, we provide a rigorous safety
guarantee for the partially-observable system with unknown
dynamics. Finally, we demonstrated the effectiveness of our
approach via a case study.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC). IEEE, 2019, pp.
3420–3431.

[2] A. Clark, “Control barrier functions for complete and incomplete
information stochastic systems,” in 2019 American Control Conference
(ACC). IEEE, 2019, pp. 2928–2935.

[3] ——, “Control barrier functions for stochastic systems,” Automatica,
vol. 130, p. 109688, 2021.

[4] N. Jahanshahi, A. Lavaei, and M. Zamani, “Compositional construc-
tion of safety controllers for networks of continuous-space pomdps,”
arXiv preprint arXiv:2103.05906, 2021.

[5] N. Jahanshahi, P. Jagtap, and M. Zamani, “Synthesis of stochastic
systems with partial information via control barrier functions,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 2441–2446, 2020.

[6] ——, “Synthesis of partially observed jump-diffusion systems via
control barrier functions,” IEEE Control Systems Letters, vol. 5, no. 1,
pp. 253–258, 2020.

[7] N. Noroozi, A. Salamati, and M. Zamani, “Data-driven safety veri-
fication of discrete-time networks: a compositional approach,” IEEE
Control Systems Letters, vol. 6, pp. 2210–2215, 2021.

[8] A. Lavaei, A. Nejati, P. Jagtap, and M. Zamani, “Formal safety
verification of unknown continuous-time systems: a data-driven ap-
proach,” in Proceedings of the 24th International Conference on
Hybrid Systems: Computation and Control, 2021, pp. 1–2.

[9] P. M. Esfahani, T. Sutter, and J. Lygeros, “Performance bounds for
the scenario approach and an extension to a class of non-convex
programs,” IEEE Transactions on Automatic Control, vol. 60, no. 1,
pp. 46–58, 2014.

[10] A. Salamati, A. Lavaei, S. Soudjani, and M. Zamani, “Data-driven
safety verification of stochastic systems,” 7th IFAC Conference on
Analysis and Design of Hybrid Systems, 2021.

[11] A. Salamati and M. Zamani, “Data-driven safety verification of
stochastic systems via barrier certificates: A wait-and-judge approach,”
in Learning for Dynamics and Control Conference. PMLR, 2022,
pp. 441–452.

[12] ——, “Safety verification of stochastic systems: A repetitive scenario
approach,” IEEE Control Systems Letters, vol. 7, pp. 448–453, 2022.

[13] N. Jahanshahi and M. Zamani, “Synthesis of controllers for partially-
observable systems: A data-driven approach,” IFAC-PapersOnLine,
2023.

[14] H. A. Talebi, F. Abdollahi, R. V. Patel, and K. Khorasani, Neural
network-based state estimation of nonlinear systems: application to
fault detection and isolation. Springer, 2009, vol. 395.

[15] Y. Weng, R. Negi, and M. D. Ilić, “Historical data-driven state esti-
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