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Abstract— The paper introduces robust indepen-
dence tests with non-asymptotically guaranteed sig-
nificance levels for stochastic linear time-invariant
systems, assuming that the observed outputs are syn-
chronous, which means that the systems are driven
by jointly i.i.d. noises. Our method provides bounds
for the type I error probabilities that are distribution-
free, i.e., the innovations can have arbitrary distribu-
tions. The algorithm combines confidence region esti-
mates with permutation tests and general dependence
measures, such as the Hilbert–Schmidt independence
criterion and the distance covariance, to detect any
nonlinear dependence between the observed systems.
We also prove the consistency of our hypothesis tests
under mild assumptions and demonstrate the ideas
through the example of autoregressive systems.

I. Introduction

Statistical independence is a key notion in several areas
of statistics and probability theory, including system
identification [1], time series analysis, signal processing
and machine learning. In this paper we present a non-
asymptotic framework to construct hypothesis tests for
the independence of two simultaneous linear systems or
time series. Our setup is distribution-free, i.e., the process
noises can follow any probability law. The presented
hypothesis tests might be used for instance to identify
(conditionally) dependent price returns in the stock mar-
ket or to find interconnections between two systems in a
network. Other potential applications include biological
systems, where the independence of cell mechanisms may
be tested, or one could analyze whether social phenom-
ena which occur simultaneously are dependent.

Given an i.i.d. sample of random pairs with some joint
distribution, there already exists several hypothesis tests
for independence, e.g., the celebrated χ2 test, Hoeffding’s
test based on the factorization of the joint distribution
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function, and Hilbert–Schmidt independence criterion
(HSIC) based tests [2]. These methods typically use the
limiting distribution of some test statistic to calculate the
p-values for a given sample size. Usually it is challenging
or even impossible to calculate the exact distribution of
these test statistics, but permutation and Monte Carlo
tests offer viable options. For time series, it is even more
challenging to test independence. For this, HSIC [3] and
distance correlation [4] based approaches were proposed,
which are only supported by asymptotic guarantees.

II. Problem Setting
We construct robust permutation-based independence

tests [5], [6], for linear systems in a general setting [1].
Let us consider two scalar (discrete-time, time-invariant)
stochastic linear systems with general dynamics:

Yt = G1(q−1; θ∗)Ut +H1(q−1; θ∗)Et,

Zt = G2(q−1; γ∗)Vt +H2(q−1; γ∗)Nt,
(1)

for t ∈ Z, where Ut and Vt are (exogenous) inputs; Yt and
Zt are (observable) outputs; q−1 is the backshift operator
given by q−1Xt

.= Xt−1 for any time series {Xt}; Et and
Nt are possibly dependent process noises; G1, H1, and
G2, H2 are rational transfer functions determined by fi-
nite dimensional parameter spaces Θ and Γ, respectively.
The unknown true parameters are θ∗ and γ∗.

Our main assumptions are as follows, cf. [1]:

A1 The true systems generating outputs {Yt} and {Zt}
are in the model classes, i.e., θ∗ ∈ Θ and γ∗ ∈ Γ.

A2 Rational (causal) transfer functions G1, G2, H1 and
H2 have known orders.

A3 H1 and H2 are invertible for all θ ∈ Θ and γ ∈ Γ.
A4 The systems are initialized in zero, i.e., Yt = Zt =

Ut = Vt = Et = Nt = 0, for all t ≤ 0.
A5 The systems are driven by an i.i.d. innovation se-

quence {(Et, Nt)}∞
t=1 from the distribution of (E,N).

A6 The systems operate in open-loop: the inputs {Ut},
{Vt} are independent of the noises {Et}, {Nt}.

ARMAX models, e.g., can satisfy these conditions. For
simplicity, we treat the inputs {Ut}, {Vt} as deterministic
sequences. This is w.l.o.g. as we can always condition on
the inputs, as they are independent of the innovations. In
case the inputs are stochastic, the obtained results should
be interpreted as conditional to the inputs, i.e., we test
whether {Yt} and {Zt} are conditionally independent
given the inputs {Ut}, {Vt}. Also, we can assume that
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the parameterization is unique, e.g., by assuming w.l.o.g.
that H1(0; θ) = 1 and H2(0; γ) = 1 for all θ ∈ Θ, γ ∈ Γ.

In this paper we aim at constructing consistent hy-
pothesis tests with finite sample guarantees for the inde-
pendence of output sequences {Yt} and {Zt}. For this we
observe that if {Yt} and {Zt} are driven by a jointly i.i.d.
noise (E,N), see A5, with joint distribution QE,N and
marginals QE respectively QN , then the independence
of {Et} and {Nt} is equivalent to the independence of
{Yt} and {Zt} conditional on the inputs. Therefore, it is
sufficient to test the null hypothesis

H0 : QE,N = QE ⊗QN H1 : QE,N ̸= QE ⊗QN (2)

The main challenge is that the parameters θ∗, γ∗ are
unknown, henceforth the noise terms are not observable.

For simplicity, we assume that the finite sample of
inputs, {Ut}, {Vt}, and outputs, {Yt}, {Zt}, available for
estimation is large enough to compute n prediction errors
{(Et(θ), Nt(γ))}n

t=1 for any values of θ and γ.
We construct the hypothesis tests in several steps.

First we estimate the system parameters with non-
asymptotic confidence regions, then we reconstruct the
residuals on the set of possible parameters and apply per-
mutation tests on them. Our main assumption is that the
linear systems are driven simultaneously, see assumption
A5, and that the noise terms could be recovered if the
system parameters were known, see assumption A3. We
only rely on the i.i.d. assumption to quantify the user–
chosen probability of type I error and prove that the
probability of type II error vanishes asymptotically.

III. Permutation Tests for the I.I.D. Case
First, for simplicity, assume that the parameters are

known. In this case we can compute the noise terms as

Et = Et(θ∗) = H−1
1 (q−1; θ∗)(Yt −G1(q−1; θ∗)Ut),

Nt = Nt(γ∗) = H−1
2 (q−1; γ∗)(Zt −G1(q−1; γ∗)Vt),

(3)

using A3, A4 and A6. Then the independence of E and
N can be tested based on the i.i.d. sample, {(Et, Nt)}n

t=1.

A. Resampling
Let D0

.= {(Et, Nt)}n
t=1 be the known noise terms.

We propose a rank test which is based on empirical
dependence measure values calculated from perturbed
samples. The idea is to generate new, perturbed datasets
which have the same distributional properties as the
original observations in case the null hypothesis is true.

We apply the permutation test which was first pre-
sented in [5]; proof of consistency and further ramifica-
tions have been provided in [6]. We choose an arbitrary
(rational) significance level α in advance and integer
hyperparameters 1 ≤ r ≤ p ≤ m such that

α = 1 − p− r + 1
m

. (4)

Let Sn be the set of permutations on [n] .= {1, . . . , n}
and {πj}m−1

j=1 be uniformly randomly generated from Sn.

We construct m− 1 new alternative samples by

Dj = πjD0
.= {(Ei, Nπj(i))}n

i=1 (5)

for j = 1, . . . ,m − 1. Altogether we end up having m
datasets to compare. Observe that if H0 holds true then
D0 =

(
(E1, N1), . . . , (En, Nn)

)
has the same distribution

as Dj =
(
(E1, Nπj(1)), . . . , (En, Nπj(n))

)
for any permu-

tation πj , whereas if H1 holds then the distribution of Dj

is different from that of D0. Our goal is to quantify this
difference whenever the null hypothesis does not hold.
B. Exact Coverage

The comparison of the datasets is carried out with the
help of ranking functions, [7], [8]. Let ψ be a ranking
function that orders the datasets in a total order, i.e.,

Definition 1: Let A be a set. We say that ψ : Am → [m]
is a ranking function if it has the two properties below:

1) For all a1, . . . , am ∈ A and for all permutation τ :
{2, . . . ,m} → {2, . . . ,m} we have that

ψ(a1, . . . , am) = ψ(a1, aτ(2), . . . , aτ(m)). (6)
2) If ai ̸= aj, then ψ(ai, {ak}k ̸=i) ̸= ψ(aj , {ak}k ̸=j).
Our main tool for quantifying the probability of type I

error will be the following lemma, see [8, Lemma 1]:
Lemma 1: Let ξ1, . . . , ξm be a.s. pairwise different ex-

changeable variables and let ψ be a ranking function. Then
ψ(ξ1, . . . , ξm) has a uniform distribution on [m].
A technical challenge is posed by identical datasets. We
use a random permutation σ on [m−1]0

.= {0, . . . ,m−1}
independently generated from everything else to resolve
this issue, i.e., let Dσ

j
.= (Dj , σ(j)) for j ∈ [m− 1]0.

Theorem 1: Assume A1 – A6 and that θ∗, γ∗ and ψ
are given. If H0 holds true then for any 1 ≤ r ≤ p ≤ m:

P
(
r ≤ ψ(Dσ

0 , . . . ,Dσ
m−1) ≤ p

)
= p− r + 1

m
. (7)

Proof: Notice that {Dσ
j }m−1

j=0 are almost surely pair-
wise different exchangeable variables under H0, therefore
Theorem 1 follows from Lemma 1.
Observe that Theorem 1 is completely distribution-free
and provides us finite sample guarantees for the type I
error probabilities. In addition, the significance level of
the proposed scheme is exact and user-chosen (rational).
In the following section we construct ranking functions
that ensure the consistency of the proposed test.
C. Dependence Measures

Dependence measures are used for assessing depen-
dency between random variables E, N with joint dis-
tribution QE,N , or, in the empirical case, i.i.d. datasets
D0 = {(Ei, Ni)}n

i=1 generated from QE,N . A dependence
measure, ∆, has two properties. First, it needs to be
characteristic, i.e., ∆(E,N) = 0 if and only if E and N
are independent. Second, it needs to exhibit a consistent
estimator ∆̂, that is (as the sample size n increases)

∆̂(D0) .= ∆̂({(Ei, Ni)}n
i=1) p−−→ ∆(E,N). (8)

We consider the following two dependence measures.
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1) Hilbert–Schmidt Independence Criterion: Let Hk

be a reproducing kernel Hilbert space (RKHS) and k :
R × R → R be its reproducing kernel. For a random
variable E with E

√
k(E,E) < ∞, the distribution QE

of E can be embedded into Hk by µ(QE) .= E[k(E, ·)],
where the expectation is a Bochner integral; µ(QE) is
called the kernel mean embedding of QE [9]. Kernel k is
called characteristic if µ is injective.

In what follows, let k and ℓ be positive definite kernels.
It is well-known that the (tensor) product kernel

k ⊗ ℓ : (R × R)2 → R(
(x1, x2), (y1, y2)

)
7→ k(x1, x2) · ℓ(y1, y2)

(9)

is also positive definite. With this object, the (centered)
cross–covariance operator is defined as

CE,N

.= E
[
k ⊗ ℓ

(
(E,N), (·, ·)

)]
− E[k(E, ·)] ⊗ E[ℓ(N, ·)]

= µ(QE,N) − µ(QE ⊗QN).

Note that one can recover the standard covariance by
applying linear kernels, k(x, y) = ℓ(x, y) = x · y.

With this notation, we are now able to recall the
definition of Hilbert–Schmidt independence criterion [2]:

HSIC(QE,N ,Hk,Hl)
.= ∥CE,N∥2

⊗ , (10)

where ∥ · ∥⊗ denotes the norm of the product RKHS. If
k, ℓ and QE,N are fixed, we may write HSIC(E,N) .=
HSIC(QE,N ,Hk,Hl) and use a more intuitive form:

HSIC(E,N) = E[k(E,E′)ℓ(N,N ′)]

+ E[k(E,E′)]E[ℓ(N,N ′)] − 2E[k(E,E′)ℓ(N,N ′′)],
(11)

where (E,N), (E′, N ′) and (E′′, N ′′) are i.i.d. copies
from QE,N . HSIC is characteristic if k⊗ℓ is characteristic.

Formula (11) motivates the empirical estimate:

HSICn(D0) .= 1
n2

∑
(i,j)∈[n]2

k(Ei, Ej)ℓ(Ni, Nj)

+ 1
n4

∑
(i,j,r,s)∈[n]4

k(Ei, Ej)ℓ(Nr, Ns)− 1
n3

∑
(i,j,s)∈[n]3

k(Ei, Ej)ℓ(Ni, Ns).

(12)
The consistency of HSICn is proved in [5].

2) Distance Covariance: Distance covariance was first
introduced in [10, Definition 2.] and the definition below
is due to [4, Theorem 8.]. For E, N with finite expecta-
tions, the distance covariance is defined as

dCov2(E,N) .= E ∥E − E′∥ ∥N −N ′∥
+ E ∥E − E′∥E ∥N −N ′∥ − 2E ∥E − E′∥ ∥N −N ′′∥ ,

where (E,N), (E′, N ′) and (E′′, N ′′) are i.i.d. copies
from QE,N . Distance covariance has some excellent prop-
erties in terms of measuring independence, most impor-
tantly, it is characteristic [10, Theorem 3.].

The doubly centered distances are Aj,k = aj,k − aj· −
a·k + a·· where aj,k = ∥Ej − Ek∥, aj· =

∑n
k=1 aj,k/n,

a·k =
∑n

j=1 aj,k/n and a·· =
∑n

j,k=1 aj,k/(n2); and let B

Algorithm 1: Independence Test for an I.I.D. Sample
Inputs: i.i.d. sample D0, desired significance level α,

dependence measure estimator ∆̂
tie breaking permutation σ on [m− 1]0

1: Choose integers 1 ≤ r ≤ m such that α = r/m.
2: Generate m− 1 random permutation {πj}m−1

j=1

uniformly from Sn.
3: Construct m− 1 new alternative sample

by Dj = {(Ei, Nπj(i))}n
i=1 for j ∈ [m− 1]

and let Dσ
j
.= (Dj , σ(j)) for j ∈ [m− 1]0.

4: Calculate the dependence measure estimates
∆̂(j)

n = |∆̂(Dj)| for j = 0, 1, . . . ,m− 1.
5: Compute the rank statistic:

ψ∆(Dσ
0 , . . . ,Dσ

m−1) = 1 +
m−1∑
j=1

I
(

∆̂(0)
n ≺σ ∆̂(j)

n

)
.

6: Reject H0 if and only if

ψ∆(Dσ
0 , . . . ,Dσ

m−1) ≤ r.

be analogously for {Ni}n
i=1. Then, the empirical distance

covariance [10, Definition 4.] can be computed as:

dCov2
n(D0) .= 1

n2

n∑
j=1

n∑
k=1

Aj,kBj,k. (13)

This empirical estimate is consistent [10, Theorem 2].
D. Hypothesis Test for Independence

Our hypothesis test compares empirical dependence
measure estimates via a ranking function ψ. To resolve
(the unlikely event of) ties during comparison, we amend
the order function ≺σ; for technical details, see [11]. Let

∆̂(j)
n = |∆̂(Dj)| for j = 0, 1, . . . ,m− 1 and

ψ∆(Dσ
0 , . . . ,Dσ

m−1) .= 1 +
m−1∑
j=1

I
(

∆̂(0)
n ≺σ ∆̂(j)

n

)
.

(14)

We choose an integer r for significance level α in such
a way that α = r /m and reject H0 if and only if
ψ∆(Dσ

0 , . . . ,Dσ
m−1) ≤ r. If H0 holds then {Dσ

j }m−1
j=0

are exchangeable, hence the rank statistic is uniform.
If H0 does not hold, then ∆(E,N) ̸= 0 and by (8),
variable ∆̂(D0) tends to a positive number. However, the
perturbed samples {Dσ

j }m−1
j=1 are almost i.i.d. , because

the pairs are shuffled, thus one expects that ∆̂(Dj) tends
to 0 for j ∈ [m− 1]. In conclusion asymptotically ∆̂(D0)
dominates ∆̂(Dj) for every j ∈ [m − 1]. The hypothesis
test is summarised in Algorithm 1. Our exact coverage
result below is a direct consequence of Theorem 1:

Theorem 2: Assume A1 – A6. Let ∆̂ be a dependence
measure estimator, ψ∆ be the corresponding ranking func-
tion and r ≤ m be integers. If H0 holds, then

P
(
ψ∆(Dσ

0 , . . . ,Dσ
m−1) ≤ r

)
= r

m
. (15)

7600



E. Strong Consistency
In this section we give asymptotic bounds for the

type II error probability. Assume:

A7 A characteristic dependence measure ∆ and a con-
sistent estimator is given such that for j ∈ [m− 1]

∆̂(0)
n

p−−→ |∆(E,N)| and ∆̂(j)
n

p−−→ 0.

Assumption A7 ensures that the empirical estimates
of the used dependence measure vanish for the permuted
samples. This assumption is satisfied, for example, by the
HSIC-based ranking, see [6, Lemma 1].

Theorem 3: Assume that A1 – A7 hold and θ∗, γ∗ are
given. If H1 holds, then for any r ≥ 1 :

P
(
ψ∆(Dσ

0 , . . . ,Dσ
m−1) ≤ r

) n→∞−−−−→ 1. (16)

Proof: One can bound the probability in (16) as

P(ψ∆ ≤ r) ≥ P(ψ∆ ≤ 1) ≥ P
(
∀j ∈ [m− 1] : ∆̂(0)

n > ∆̂(j)
n

)
= 1 − P

(
∃j ∈ [m− 1] : ∆̂(0)

n ≤ ∆̂(j)
n

)
≥ 1 −

m−1∑
j=1

P
(

∆̂(0)
n ≤ ∆̂(j)

n

)
≥ 1 −m · P

(
∆̂(0)

n ≤ ∆̂(1)
n

)
,

where P
(

∆̂(0)
n ≤ ∆̂(1)

n

)
goes to zero, because of A7.

By Theorem 3 the probability of type II error tends to
zero as the sample size goes to infinity, assuming that
the applied dependence measure is characteristic.

IV. Robust Independence Tests
We now turn our attention to the general problem

when the true parameters are unknown constants. In
this case, the exact noise terms cannot be computed, but
only estimated. Assume we can build non-asymptotically
guaranteed confidence sets for the true parameters. The
idea is then to use a two-step algorithm: first, we con-
struct these (distribution-free) confidence regions, and
then apply a parameter-dependent version of the above
hypothesis test on each parameter in the confidence set.

A. Parameter-Dependent Hypothesis Test
We present a meta-algorithm that can work with any

confidence region construction for θ∗ and γ∗. We assume
that we have confidence sets Θ̂n and Γ̂n such that

P
(
θ∗ ∈ Θ̂n

)
≥ 1 − β and P

(
γ∗ ∈ Γ̂n

)
≥ 1 − β (17)

hold for all sample size n ∈ N and for some significance
level β ∈ (0, 1). For simplicity, we will omit n from the
notation. By A3 we can obtain Et(θ) and Nt(θ) for any
parameter-pair candidate (θ, γ) ∈ Θ̂ × Γ̂ by

Et(θ)
.= H−1

1 (q−1, θ)
(
Yt −G1(q−1, θ)Ut

)
,

Nt(γ) .= H−1
2 (q−1, γ)

(
Zt −G2(q−1, γ)Vt

)
,

(18)

for t = 1, . . . , n. These quantities can be perturbed as
before to construct parameterized alternative datasets

Dj(θ, γ) = {(Ei(θ), Nπj(i)(γ))}n
i=1 (19)

for j = 1, . . . ,m−1 and extended by σ as before to create
Dσ

j (θ, γ) for j = 0, . . . ,m − 1. Finally, for any ranking
function ψ one can define parameter-dependent ranks as

ψ(θ, γ) .= ψ(Dσ
0 (θ, γ), . . . ,Dσ

m−1(θ, γ)). (20)

Theorem 4: Assume A1 – A6. Let ψ be any ranking
function, Θ̂ and Γ̂ conservative confidence sets with sig-
nificance level at most β. If H0 holds true then

P
(

max
(θ,γ)∈Θ̂×Γ̂

ψ(θ, γ) ≤ r
)

≤ r

m
+ 2β. (21)

Proof: Using the union bound and (17), one can
show that Θ̂ × Γ̂ is a confidence region for (θ∗, γ∗), i.e.,

P
(

(θ∗, γ∗) /∈ Θ̂ × Γ̂
)

≤ P
(
θ∗ /∈ Θ̂

)
+ P

(
γ∗ /∈ Γ̂

)
≤ 2β.

Then, under H0, we have

P
(

max
θ∈Θ̂,γ∈Γ̂

ψ(θ, γ) ≤ r
)

= P
(

{(θ∗, γ∗) /∈ Θ̂ × Γ̂} ∩ { max
θ∈Θ̂,γ∈Γ̂

ψ(θ, γ) ≤ r}
)

+ P
(

{(θ∗, γ∗) ∈ Θ̂ × Γ̂} ∩ { max
θ∈Θ̂,γ∈Γ̂

ψ(θ, γ) ≤ r}
)

≤ P
(

(θ∗, γ∗) /∈ Θ̂ × Γ̂
)

+ P(ψ(θ∗, γ∗) ≤ r ),

where the first term is less than 2β because of (21) and
the second term is r/m because of Theorem 1.

B. Dependence Measure Ranking
Ranking functions can be defined similarly to the i.i.d.

case via dependence measures. The idea is to compute de-
pendence measure estimates w.r.t. plausible parameters.
Let ∆ be some characteristic dependence measure and ∆̂
be its (consistent) estimator as above. Let us define the
dependence measure estimate functions as

∆̂(j)
n (θ, γ) .= |∆̂(Dj(θ, γ))|, (22)

for j = 0, 1, . . . ,m− 1 and the ranking function as

ψ∆(θ, γ) .= 1 +
m−1∑
j=1

I
(

∆̂(0)
n (θ, γ) ≺σ ∆̂(j)

n (θ, γ)
)
. (23)

If H0 does not hold, then ∆̂(0)
n (θ, γ) tends to be the

greatest around (θ∗, γ∗), henceforth, we reject the null
hypothesis if ψ∆(θ, γ) is at most some user-chosen rank
value r on Θ̂ × Γ̂. The step–by–step method is presented
in the pseudocode of Algorithm 2. Note that the test
exhibits finite sample guarantees for the significance
level, as it is showed by Theorem 4.

C. Strong Consistency of the Robust Test
In this section we quantify the asymptotic behaviour of

rejection probability when H1 is true, thus let us consider
the case when E and N are dependent. We prove that
the power of the suggested test tends to 1 as the sample
size goes to infinity. Let B(θ, ε) denote the Euclidean ball
around θ with radius ε. We assume that:
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Algorithm 2:
Independence Test for Synchronous Systems
Inputs: observations {Ut}, {Yt}, {Vt} and {Zt},

transfer functions G1, G2, H1 and H2 parame-
terized by θ ∈ Θ and γ ∈ Γ,
user-chosen significance level α ∈ (0, 1),
confidence sets Θ̂ and Γ̂ for θ∗ and γ∗ respec-
tively with confidence level at least 1 − β,
dependence measure estimator ∆̂,
tie breaking permutation σ on [m− 1]0

1: Choose integers 1 ≤ r ≤ m such that r/m ≤ α− 2β.
2: Generate m− 1 random permutation {πj}m−1

j=1

uniformly from Sn.
3: Construct noise term functions for t = 1, . . . , n by
Et(θ)

.= H−1
1 (q−1, θ)

(
Yt −G1(q−1, θ)Ut

)
,

Nt(γ) .= H−1
2 (q−1, γ)

(
Zt −G2(q−1, γ)Vt

)
.

4: Build m− 1 new alternative sample functions by
Dj(θ, γ)={(Ei(θ), Nπj(i)(γ))}n

i=1 for j ∈ [m− 1]
and let Dσ

j (θ, γ) = (Dj(θ, γ), σ(j)) for j ∈ [m− 1]0.
5: Formulate the dependence measure estimates

∆̂(j)
n (θ, γ) = |∆̂(Dj(θ, γ))| for j = 0, 1, . . . ,m− 1.

6: Construct the parameter-dependent ranking function
ψ∆(θ, γ) .= ψ∆

(
Dσ

0 (θ, γ), . . . ,Dσ
m−1(θ, γ)

)
= 1 +

m−1∑
j=1

I
(

∆̂(0)
n (θ, γ) ≺σ ∆̂(j)

n (θ, γ)
)
.

7: Reject the null hypothesis if and only if
max

θ∈Θ̂,γ∈Γ̂
ψ∆(θ, γ) ≤ r.

A8 Control inputs {Ut}, {Vt} and driving noises {Et},
{Nt} are a.s. included in a Césaro space for p = ∞,
i.e., for {Wt} ∈ {{Ut}, {Vt}, {Et}, {Nt}} we have

∥W∥c(∞)
.= sup

n∈N

1
n

n∑
t=1

|Wt| < ∞.

A9 There a.s. exist K, ε̃ > 0 such that for θ ∈ B(θ∗, ε̃):

∥E(θ∗) − E(θ)∥c(∞) ≤ K · ∥θ∗ − θ∥ ,

and respectively for N(γ), where γ ∈ B(γ∗, ε̃).

A10 The confidence sets are uniformly consistent, i.e., for
all ε > 0 there a.s. exists an N0 ∈ N such that for
all n > N0 both Θ̂n ⊆ B(θ∗, ε) and Γ̂n ⊆ B(γ∗, ε).

A11 Dependence measure estimator ∆̂ is Lipschitz con-
tinuous around (θ∗, γ∗), i.e., ∃C, ≈

ε > 0 such that

|∆̂
(
Dj(θ∗, γ∗)

)
− ∆̂

(
Dj(θ, γ)

)
|

≤ C ·
(

∥E(θ∗) − E(θ)∥c(∞) +∥N(γ∗) −N(γ)∥c(∞)

)
for θ ∈ B(θ∗,

≈
ε ), γ ∈ B(γ∗,

≈
ε ) and j = 0, . . . ,m− 1.

Theorem 5: Assume A1 – A11. If H1 holds true, then

P
(

max
(θ,γ)∈Θ̂n×Γ̂n

ψ∆(θ, γ) ≤ r
)

n→∞−−−−→ 1. (24)

Proof: We use a characteristic ∆, thus under H1
we have ∆̂(0)

n (θ∗, γ∗) p−→ κ
.= |∆(E,N)| > 0. In addition,

∆̂(j)
n (θ∗, γ∗) p−→ 0 for j ∈ [m−1] because of A7. Let us fix

a positive ε that is smaller than ε̃ and ≈
ε. By A10, there

exists almost surely an N0 ∈ N such that Θ̂n ∈ B(θ∗, ε)
and Γ̂n ∈ B(γ∗, ε) for all n > N0. We prove that for
n large enough the rank values equal to 1 uniformly on
B(θ∗, ε) ×B(γ∗, ε) with large probability. We know that
∆̂(j)

n (θ∗, γ∗) is closer than ε to κ with large probability if
n is large enough. Then, condition A9 and A10 yield

|∆̂(0)
n (θ∗, γ∗) − ∆̂(0)

n (θ, γ)|
≤ C ·

(
∥E(θ∗) − E(θ)∥c(∞) + ∥N(γ∗) −N(γ)∥c(∞)

)
≤ C ·K ·

(
∥θ∗ − θ∥ + ∥γ∗ − γ∥

)
,

which proves that there exists C1 > 0 such that a.s.

sup
θ∈B(θ∗,ε),γ∈B(γ∗,ε)

∣∣∆̂(0)
n (θ∗, γ∗) − ∆̂(0)

n (θ, γ)
∣∣ ≤ C1 · ε.

Thus, the infimum of ∆̂(0)
n (θ, γ) on confidence set Θ̂n×Γ̂n

tends to κ in probability. Similarly one can prove that
sup ∆̂(j)

n (θ, γ) on Θ̂n × Γ̂n tends to 0 for j = 1, . . . ,m−1,
implying that the probability of rejection goes to 1.

V. Illustrative Example: AR(1) Systems
We considered two AR(1) systems: Yt = α∗Yt−1 +Et,

and Zt = β∗Zt−1 + Nt with α∗ = 0.5 and β∗ = 0.3. For
parameters (α, β) the residuals {Et(α)} and {Nt(β)} can
be computed from {Yt}, {Zt} as Et(α) = Yt −αYt−1 and
similarly for {Nt(β)}. For AR(1) systems, the required
Lipschitz continuity can be easily satisfied. If |α| < 1,
then under A8 one can prove ∥Y ∥c(∞)< ∞ and A9. For
HSIC estimates, presented in (12), A7 holds and if k⊗ ℓ
is Lipschitz and characteristic, then A11 is also satisfied.

A. Sign-Perturbed Sums
For ARX systems, confidence sets satisfying A10 can

be constructed, e.g., by the Sign-Perturbed Sums (SPS)
method [11]. Standard SPS assumes independent and
symmetric noises. Under the i.i.d. assumption, symmetry
is no more required [12]. An instrumental variable-based
extension of SPS was proposed in [13], which is uniformly
consistent, even for ARX systems with feedback control.

B. Numerical Simulations
We simulated two AR(1) systems with nonlinearly

dependent i.i.d. innovations {(Et, Nt)}n
i=1. The processes

were initialized in zero (A4). First, a rotated mixture of
Gaussian distributions [2] was considered for innovations,
see Figure 1(e). We generated a sample with n = 50
elements from a zero mean two-dimensional Gaussian
distribution with covariance matrix 1/4·I, then we shifted
each data-point with a pair of random signs and rotated
the obtained points around the origin with an angle of
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(a) HSIC (b) Ranks (HSIC) (c) Distance Covariance (d) Ranks (Dist. Cov.)

(e) Rotated Gaussian Mixture (f) Power Functions (g) Extinct Gaussian (h) Power Functions

Fig. 1: Reference functions, ranking functions, innovation data and power functions for AR(1) systems.

0.1 (radian). We used SPS to construct confidence sets
for α∗ and β∗ with significance level 1/80 and tested
independence with m = 40 datasets. We maximized the
ranking function on a fine grid of the confidence region.

Reference value functions ∆̂(0)
n and ranking functions

ψ∆ are plotted on Figure 1(a), 1(c), 1(b) and 1(d) for
HSIC and distance covariance. At significance level 0.15
based on Figure 1(b) we reject the null hypothesis, but
we accept H0 at this level based on Figure 1(d), because
ψ∆ exceeds 5 at some points. The (estimated) power
functions, i.e., the rejection probability functions, are
plotted for n = 200 and significance level 0.15 on Figure
1(f) w.r.t. the rotation angle, which served as a depen-
dence factor. Second, a sample from an extinct version
of Gaussian vector variable with covariance 1/4 · I was
used to generate innovations, see Figure 1(g). We induced
dependence between E and N by throwing away the
pairs that lied in a circle around the origin with radius r.
Figure 1(h) shows the (estimated) power functions w.r.t.
the distinction rate increasing with r for n = 500 using
HSIC and distance covariance with significance level 0.15.

VI. Conclusion
In this paper we introduced hypothesis tests for in-

dependence of synchronous linear systems with non-
asymptotically guaranteed significance levels. The main
idea was to apply permutation tests over a confidence
region for the system parameters. We combined these
ideas with characteristic dependence measures to detect
any nonlinear dependence between the innovations of the
systems. We proved consistency under general assump-
tions and demonstrated the method on AR(1) systems.
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[8] B. Cs. Csáji and A. Tamás, “Semi-Parametric Uncertainty
Bounds for Binary Classification,” in 58th IEEE Conference
on Decision and Control (CDC), pp. 4427–4432, 2019.

[9] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A Hilbert
Space Embedding for Distributions,” in International Confer-
ence on Algorithmic Learning Theory, pp. 13–31, 2007.
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[13] V. Volpe, B. Cs. Csáji, A. Care, E. Weyer, and M. C. Campi,
“Sign-perturbed sums (SPS) with instrumental variables for
the identification of ARX systems,” in 54th IEEE Conference
on Decision and Control (CDC), pp. 2115–2120, IEEE, 2015.

7603


