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Abstract— This paper presents a novel solution for the
discrete time dynamic average consensus problem. Given a set
of time-varying input signals over the nodes of an undirected
graph, the proposed algorithm tracks, at each node, the input
signals’ average. The algorithm is based on a sequence of con-
sensus stages combined with a second order diffusive protocol.
The former overcomes the need of k-th order differences of
the inputs and conservation of the network state average, while
the latter overcomes the trade-off between speed and accuracy
of the consensus stages by just storing the previous estimate
at each node. The result is a protocol that is fast, arbitrarily
accurate, and robust against input noises and initializations.
The protocol is extended to an asynchronous and randomized
version that follows a gossiping scheme that is robust against
potential delays and packet losses. We study the convergence
properties of the algorithms and validate them via simulations.

I. INTRODUCTION

The problem of consensus in control theory [1] consists
of finding a protocol such that a set of nodes in a network
agree on the value of a certain quantity of interest. In
particular, the discrete time dynamic average consensus [2]
is interesting because the tracked signals usually evolve with
time, and protocols are implemented in computing units that
work in discrete steps. Despite the existing literature, current
solutions still suffer from some of the following issues: (i)
integral and difference input terms are not robust against
input and initialization noise, or changes of network size;
(ii) trade-off between convergence speed and steady-state
accuracy; (iii) absence of robustness against packet losses
and communication delays. These aspects affect the appli-
cability of consensus in real-world scenarios such as smart
grids [3] or sensor networks [4]. To overcome these issues,
we propose a novel algorithm that combines a multi-stage
consensus protocol and a second order diffusion method,
along with its asynchronous and randomized version.

Several solutions have been proposed to improve the
capabilities of discrete time dynamic average consensus
algorithms. For instance, some works achieve an arbitrarily
small steady-state error by exploiting the k-th differences
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of the input signal [5], [6]. This is problematic when the
inputs are noisy since noise breaks the boundedness of the
input signal. An alternative is to rely only on the input
signal, achieving an arbitrarily small steady-state error by
concatenating a cascade of consensus filters [7], [8], as
we do in this work. Besides, this leads to other desirable
properties like robustness against non-averaged initializations
and changes in the network size. The counterpart is a slow
convergence. Regarding robustness, there exist continuous-
time algorithms [9]–[12] that address initialization issues
and time-varying networks. Our algorithm achieves the same
robustness but in the desired discrete-time setting.

The issue of slow convergence has been considered from
two main perspectives. Ghosh et al. [13] present second
order diffusion methods, which significantly speed up the
convergence [14] by increasing the memory requirements
with the previous estimate. These works are for static prob-
lems, while our work deals with the dynamic consensus
problem. On the other hand, polynomial filters [15] consider
a sequence of consensus iterations as the evaluation of a
polynomial. For instance, Montijano et al. [6], [16] ana-
lyze Chebyshev polynomials, proving that they significantly
increase the convergence speed. However, the k-th order
differences of the input signal are exploited. Thus, this work
opts for a second order method to speed up convergence.
Closely related to our paper, Van Scoy et al. [17] present
a fast and robust discrete time dynamic average consensus
estimator. Compared to them, our proposal does not need
bounded inputs while achieving the same robustness against
initialization errors and accelerated convergence. Beyond
consensus, compression techniques [18] or decomposition
principles [19] can be used to reduce the dimensionality of
the data and computational cost.

Finally, regarding robustness against potential communi-
cation delays and packet losses, many applications deal with
time-varying networks, where nodes connect and disconnect
depending on events exogenous to the consensus protocol. To
account for this, gossip algorithms [20], [21] propose con-
sensus protocols computed at random asynchronous instants
and neighbors. Other works either propose reformulations
over linear proportional consensus protocols against packet
drops [22] or continuous-time protocols against delays [23].
This motivates our second proposed algorithm, which is
an accelerated version of a discrete time dynamic average
consensus protocol that runs asynchronously and with ran-
domized communication links.

This paper builds from the works by Franceschelli and
Gasparri [7], [8]. They present a multi-stage discrete time
dynamic average consensus filter that is fully distributed,
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does not use the k-th order differences of the inputs signals,
and is robust against non-averaged nodes’ initialization.
Besides, the steady-state error can be arbitrarily reduced
by increasing the number of stages. The main limitation
is the slow convergence, so there is a trade-off between
accuracy and speed. To solve this issue, we propose a second
order method to accelerate the convergence, which permits
to either increase the number of stages (and reduce the
steady-state error) with the same convergence speed of the
original filter, or speed up the convergence for the same
number of stages while maintaining the steady-state error.
Our main contribution is an acceleration method to speed up
(i) the multi-stage discrete time dynamic average consensus
protocol, which yields to quick, accurate and robust tracking
of the dynamic average, and (ii) the asynchronous and
randomized version of the former.

II. PRELIMINARIES

The system1 under study is a network composed by N > 1
nodes. The network is described by an undirected graph
G = {V, E}, where V = {1, . . . , i, . . . , N} is the set of
nodes and E is the set of edges. Nodes i and j can exchange
information if and only if (i, j) ∈ E , which implies that
(j, i) ∈ E . Ni = {j|(j, i) ∈ E} is the neighborhood of
node i. The adjacency matrix A ∈ RN×N associated to
G is such that Aij = 1 if (i, j) ∈ E and 0 otherwise.
Aii = 0 always because we do not allow self-loops. The
degree matrix D associated to G is such that Dij = car(Ni)
∀i = j and 0 otherwise. The Laplacian matrix associated to
G is L = D −A. For undirected graphs, it holds that L is
symmetric and has real eigenvalues. The sorted eigenvalues
of L are λ1(L) < . . . ≤ λN (L) ≤ 2Dmax, where
the relation Dmax = max({Dii}Ni=1) holds. The second
smallest eigenvalue, λ2(L), is called algebraic connectivity.
We denote vr,i(L),vl,i(L) the right and left eigenvectors of
L associated to the i-th eigenvalue.

A. Second Order Diffusion Methods

The linear (first-order) discrete time static average con-
sensus algorithm ([24]) is

xi(k + 1) = Wiixi(k) +
∑

j∈Ni
Wijxj(k), (1)

with xi(0) the initial condition and W ∈ RN×N a weighted
matrix. In matrix form, (1) leads to

x(k + 1) = Wx(k). (2)

If W is doubly stochastic, i.e., 1TW = 1T and W1 = 1,
then it is known that the protocol in Eq. (2) converges to the
average of the initial states x̄i(0) = (1/N)

∑N
i=1 xi(0).

1Notation: lower-case is for scalars, bold lower-case for vectors, bold
capital for matrices, and calligraphic capital for sets. We use ≥ for greater
than or equal, ⪰ for positive semidefiniteness, σ( ) for the eigenvalues of
a matrix, T for the transpose, car( ) for the cardinality of a set, E[ ] for
the expectancy operator, | | the absolute value, and || || for the 2-norm of a
vector/matrix. Pij (resp. pi) denotes the ij-th (resp. i-th) element of matrix
P (resp. vector p). I is the identity matrix of appropriate dimensions, 0 is
the zero matrix of appropriate dimension, and 1 is a column vector of ones.

Without loss of generality, we consider W = I− ϵL. The
convergence speed can be too slow, specially in networks
with a small algebraic connectivity (λ2(W) = 1− ϵλ2(L)).
To accelerate convergence, Ghosh et al. ([13]) proposed a
second-order modification:

x(k + 1) = γWx(k) + (1− γ)x(k − 1). (3)

The properties of the protocol in Eq. (3) are well-studied
(e.g., [13]). In particular, protocol (3) improves the conver-
gence speed of (2) if γ ∈ (1, 2).

B. Multi-Stage Discrete Time Dynamic Average Consensus

The concepts in subsection II-A apply to the static con-
sensus problem, but this work deals with a dynamic con-
sensus problem. Node i has an input ri(k) ∈ R and an
estimate xi(k) ∈ R associated to a quantity of interest
r(k) ∈ R. x(k) = [x1(k), . . . , xN (k)]T is the joint estimate
and r(k) = [r1(k), . . . , rN (k)]T is the joint input of the
network. Nodes, by means of x(k), cooperate to track the
average r̄(k) = 1

N

∑N
i=1 ri(k) by exchanging information

with their neighbors j ∈ Ni.
The multi-stage discrete time dynamic average consensus

algorithms presented by Franceschelli and Gasparri ([7], [8])
solve the problem for two cases: the synchronous and time-
invariant topology, and the asynchronous and randomized
topology. The former is solved by the following protocol:

xs(k + 1) =(I− ϵL)xs(k) + α(xs−1(k)− xs(k)). (4)

Here, s = {1, . . . ,m} denotes the stages of the filter, xs(k) is
the estimate at instant k and stage s, x0(k) = r(k), parameter
ϵ < 1

2Dmax
to ensure stability, and α ∈ (0, 1) is a parameter

that trades-off steady-state accuracy and convergence speed.
From (4) it is seen that the protocol is a chain of linear
discrete dynamic average consensus filters indexed by s.

The asynchronous and randomized algorithm follows the
same multi-stage architecture. In this case, each node selects
randomly and at each instant a single node j ∈ Ni to
communicate. For a given edge (i, j), the algorithm is:

xs(k + 1) =Pijx
s(k) +

α

Dii
pip

T
i x

s−1(k), (5)

with Pij = I+
pip

T
j

2 − (1+2/Dii)pip
T
i

2 and pi ∈ RN a vector
of zeros except for the i−th element, which is equal to 1.

As shown in [7], [8], the steady-state error and con-
vergence rate of protocols (4) and (5) are tied together
by α: for a fixed m, small values of α lead to quick
convergence but large steady-state error and vice versa. The
trade-off can be alleviated by m, but at the expense of an
increase of computation, memory and convergence time at
final stages. Importantly, [8] proves that both algorithms
are robust against arbitrary initializations and noisy and
unbounded inputs due to the absence of integral control
actions and input differences respectively. The next section
proposes a second order diffusion protocol that, by adding
an additional parameter, decouples the steady-state error and
the convergence speed, overcoming the undesired trade-off
in the multi-stage protocols.
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As a remark, the stages of protocols (4), (5) run in parallel,
in the sense that, to estimate at stage s and instant k+1, we
only need information from s− 1 and s at time k.

III. PROPOSED CONSENSUS ALGORITHM

In this section, we present two algorithms. The first solves
the problem of discrete time dynamic average consensus
by means of a second order recurrence and the multi-
stage architecture inspired by [7], [8]. The second solves
the same problem but under asynchronous and randomized
restrictions, where the nodes randomly communicate in a
gossip-like style [20].

A. Accelerated Multi-Stage Filter
The first proposed consensus protocol is based on two

steps. Given the current input ri(k) and estimates from
neighbors {xs

j(k)}ms=0 ∀j ∈ Ni ∪ {i}, node i updates
{xs

i (k)}ms=0 following the multi-stage filter in Eq. (4), ob-
taining {x̃s

i (k)}ms=0, where x̃s
i (k) ∈ R for s = 1, . . . ,m

is a temporal estimate used in the second step of the
protocol. The updated estimate is then corrected using the
second order method in Eq. (3), leading to the next estimate
{xs

i (k + 1)}ms=0. Algorithm 1 details the protocol.

Algorithm 1 Accelerated Multi-Stage Dynamic Consensus
Protocol at node i

1: State of agent: xs
i (−1) and xs

i (0), for s = 1, . . . ,m
2: Parameters: γ ∈ (1, 2), ϵ ∈ (0, 1

2Dmax
), α ∈ (0, 1

γ )
3: while True do
4: Measure ri(k) and gather xs

j(k) for all s and j ∈ Ni

5: Update xs
i (k) for s = 1, . . . ,m as follows:

x̃s
i (k)=xs

i (k)−
∑

j∈Ni

ϵ(xs
i (k)−xs

j(k))+α(xs−1
i (k)−xs

i (k))

xs
i (k + 1) = γ(x̃s

i (k)) + (1− γ)xs
i (k − 1) ∀s

6: end while

Note that Algorithm 1 is equal to (4) for γ = 1. First, for
space convenience, in the following we use the sub-index k to
abbreviate (k). We now prove the convergence properties of
the proposed protocol. The next result shows that the second
order method does not alter the steady-state properties of
the original multi-stage filter in [7], [8], which is important
in the subsequent results about the convergence rate of the
accelerated protocol.

Proposition 1. Assume that rk = r is constant, G connected,
α ∈ (0, 1), and ϵ ∈ (0, 1

2Dmax
). Then, the steady-state

equilibrium xm,∗ of the protocol in (4) and Algorithm 1 is

xm,∗ = r̄1+
∑N

i=2(1 + ϵλ2(L)/α)
−mvr,i(L)v

T
l,i(L)r (6)

Proof. From Algorithm 1 and using the matrix form, the
operations at stage s = 1 and steady-state can be written in
a single equation

x1,∗ = γ(I− ϵL)x1,∗ + γαr− γαx1,∗ + (1− γ)x1,∗. (7)

This leads to ((1 + γα− 1 + γ − γ)I+ γϵL)x1,∗ = γαr.
Dividing both sides by γ, and concatenating the m stages,

xm,∗ = (αI+ ϵL)−1αmr, (8)

which is the steady-state equilibrium in the proof of Theorem
3.1 in [8]. The rest of the proof follows from there.

Corollary 1. Assume that rk = r is constant and G
connected. Then, the 2-norm of the error at equilibrium of
a network under Algorithm 1 is

||r̄1− xm,∗|| ≤ (N − 1)(1 + ϵλ2(L)/α)
−m||r̄1− r||. (9)

The statement is a direct consequence of Proposition 1
and Theorem 3.2 in [7], showing that the steady-state er-
ror decreases when: the graph is more connected (greater
λ2(L)), the protocol has more stages (greater m), and α gets
smaller. The following result proves necessary equivalences
to demonstrate the convergence properties of Algorithm 1.

Proposition 2. Let ys
k = xs

k − xs,∗ be the error at the s-th
stage of the filter in Algorithm 1. Then, the error dynamics
can be expressed as(

ys
k+1

ys
k

)
= Q̂

(
ys
k

ys
k−1

)
+ αR̂

(
∆us

k

∆us
k−1

)
, (10)

where Q̂ =

(
γQ (1−γ)I
I 0

)
, R̂ =

(
R R(1−γ)
0 0

)
,

Q = (1− α)I− ϵL, R = (αI+ ϵL)−1, ∆us
k = us

k − us
k+1,

u1
k = rk and us

k = xs−1
k for s = 2, . . . ,m.

Proof. Using the steps in Algorithm 1 in a single operation
and matrix form,

ys
k+1 =γQys

k+γx
s,∗−xs,∗+(1−γ)xs

k−1 =

γQys
k+γx

s,∗−xs,∗+(1−γ)ys
k−1+(1−γ)xs,∗ (11)

Eq. (11) can be rewritten using Eq. (8):

ys
k+1 = γQys

k+(1−γ)ys
k−1+αR∆us

k+(1−γ)αR∆us
k−1. (12)

Eq. (10) follows from Eq.(12), concluding the proof.

Now we are ready to prove the convergence rate of
Algorithm 1 .

Theorem 1. Consider a network that executes Algorithm 1
with rk = r constant, with α ∈ (0, 1/γ), γ ∈ (1, 2) and
ϵ ∈ (0, 1/2Dmax). Then, the convergence rate for the s-th
stage is βs = 1− αγ.

Proof. Let us consider the following Lyapunov function:

V s
k =

(
ys,T
k ys,T

k−1

)(
ys,T
k ys,T

k−1

)T

= ŷs
kŷ

s,T
k , (13)

with ŷs
k=

(
ys,T
k ys,T

k−1

)
. Then, the Lyapunov difference is

∆V s
k = V s

k+1 − V s
k = ŷs

k+1ŷ
s,T
k+1 − ŷs

kŷ
s,T
k . (14)

Exploiting Eq. (10) and the fact that rk is constant, Eq. (14)
leads to

∆V s
k = ŷs

k(Q̂Q̂T − I)ŷs,T
k . (15)

Now, since γ ∈ (1, 2) and the spectral radius of Q is less
than 1 by construction, it can be shown that Eq. (15) is
upper-bounded by the following inequality:

∆V s
k ≤ −ŷs

k

(
γ2I− γ2Q2 0

0 I

)
ŷs,T
k = −ŷs

kFŷ
s,T
k . (16)

8408



The eigenvalues of matrix F are the eigenvalues of
γ2I− γ2Q2 and I. If α < 1

γ , then γ2I− γ2Q2 ⪰ γI− γQ
and σ(γI− γQ) > 0. Therefore, F is positive definite, and

V s
k+1 − V s

k ≤ −λ̄ŷs
kŷ

s,T
k = −λ̄V s

k . (17)

It turns out that λ̄ = minλi∈σ(γI−γQ)∪σ(I){λi} = αγ. Thus,
V s
k+1 ≤ (1− αγ)V s

k .

Once the convergence rate of Algorithm 1 is proved, we
can compare it with its non-accelerated counterpart.

Proposition 3. Algorithm 1 always converges faster than the
protocol in Eq. (4) if γ ∈ (1, 2).

Proof. The convergence rate of the protocol in Eq. (4) is
βs = 1 − α, which coincides with the convergence rate
obtained by Franceschelli and Gasparri ([7]). By comparing
both convergence rates, we have that 1 − α > 1 − αγ for
γ ∈ (1, 2). Thus, the bound in Eq. (17) is smaller, and the
decrease in the Lyapunov function defined in Eq. (13) is
greater, which implies a faster convergence of Algorithm 1
than the protocol in Eq. (4).

These results draw interesting properties. First, for any
choice of m and α of the original algorithm, such that α
also fulfills the condition α ∈ (0, 1/γ) with γ ∈ (1, 2), then
Algorithm 1 always converges faster than the non-accelerated
protocol (4). Besides, while α ties together steady-state
and convergence rate in both the original and accelerated
algorithm, on the original protocol we can only exploit
m to further tune the steady-state error. Meanwhile, on
Algorithm 1, by introducing γ, we have an additional degree
of freedom to also further tune the convergence, independent
from the steady-state error. Thus, the accelerated protocol
provides more flexibility in simultaneously tuning the steady-
state error and convergence rate.

All the previous results address the case where the input
is constant. The following result considers a dynamic input.

Proposition 4. Consider a time-varying input rk and a
network under Algorithm 1, with α ∈ (0, 1/γ). Besides,
define ∆us

∞ = supk=0,...,∞∆us
k. Then,

||ys
k|| ≤ (1− γα)k||ys

0||+ 1/(αγ) ·∆us
∞. (18)

Proof. The result follows from Input-to-State Stability re-
sults for linear systems. From Eq. (12) we have that

||ys
k|| ≤ ||Kk|| · ||ys

0||+ α
(∑k

h=0 ||Kh||||R||
)
∆us

∞, (19)

with K = (γQ + (1 − γ)I). First, note that ||R|| ≤ 1
α .

Second, ||K|| ≤ (1− γ) + γ(1− α) = 1− γα. Then,

||ys
k|| ≤ (1− γα)k||ys

0||+ α
(∑k

h=0
(1−γα)h

α

)
∆us

∞. (20)

Eq. (20) directly yields to Eq. (18).

Therefore, under dynamic inputs the system still con-
verges. Moreover, the convergence rate only depends on the
variations of the signal.

Corollary 2. The convergence rate of Algorithm 1 is faster
than the convergence rate of the original filter in (4) under
time-varying input signals rk, α ∈ (0, γ−1) and γ ∈ (1, 2).

Proof. In Proposition 3.5 from ([7]) it is shown that

||ys
k|| ≤ (1− α)k||ys

0||+ 1/α ·∆us
∞. (21)

Comparing Eqs. (20) and (21), the first term experiences a
faster decay in (20) since 1− γα < 1−α. The second term
is lower in (20) since (αγ)−1 < α−1.

In summary, the proposed algorithm proves to enhance the
convergence speed towards the dynamic average consensus
without modifying the steady-state error at any of the stages
of the filter. This is achieved by using an additional memory
slot for the estimate at the previous instant of time.

To design the algorithm, a possible way of proceed is
the following: (i) set βs ∈ (0, 1), which implies that
αγ = 1− βs ∈ (0, 1); (ii) therefore, α = (1−βs)/γ, which
is always feasible because (1 − βs)/γ < 1/γ; (iii) at
this point, set the desired steady-state error and choose m
according to Corollary 1 to achieve the desired performance.
Notably, the computational and memory cost of Algorithm 1
grows linearly with the number of stages, and thus increasing
m is a scalable design decision, considering also the current
advances in PMEMS technology. For instance, if we consider
the Ethernet protocol, with a frame between 64 and 1518
bytes and a 18-byte header, we can send between 11 and 375
floating point numbers, equivalent to m ∈ [11, 375]. Thus,
we can fully exploit the real structure of communication net-
works. In addition, by leveraging the results provided in [8],
Algorithm 1 inherits the robustness against initialization and
noisy unbounded inputs.

B. Accelerated Asynchronous Randomized Protocol

The second contribution is the asynchronous and random-
ized version of Algorithm 1. Now, instead of using all the
estimates from the neighborhood, node i selects one of its
neighbors j ∈ Ni according to an independent and identical
distribution (i.i.d.) with uniform probability. The rest of the
protocol follows the same reasoning, detailed in Algorithm 2.

The main result in this section shows the equivalence in
expectation between Algorithm 2 and Algorithm 1. Then, the
results provided in subsection III-A can be extrapolated to
the asynchronous and randomized setting.

Theorem 2. Consider a network under Algorithm 2 with G
connected, r(k) = r constant, α ∈ (0, 1

γ ), and γ ∈ (1, 2).
If the sequence of selected edges is i.i.d. with uniform
probability, then Algorithm 2 preserves the steady-state error
properties of the original filter in (5), i.e,:

• xm(k) converges in distribution to a random variable
xm
∞, and this distribution is unique.

• limk→∞ E[xm(k)] = E[xm
∞] = xm,∗.

Proof. The first statement of the proof is a direct extrap-
olation of the proof of Theorem 6 in [8]. Algorithm 2
fulfills all the following requirements: discrete time, Schur
stability, affine dynamics and the sequence of edges is i.i.d.
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with uniform probability. Regarding the second statement,
Theorem 4.1 in [7] proves

E[x̄1(k+1)] = (I− ϵ′L)E[x1(k)]+α′(r−E[x1(k)]), (22)

with ϵ′ = 1
2car(E) and α′ = α

car(E) . Accordingly, the protocol
in Algorithm 2 is

E[x1(k + 1)] =γ(I− ϵ′L)E[x1(k)]+γα′(r− E[x1(k)])

+ (1− γ)E[x1(k − 1)]).
(23)

The rest of the proof follows from the fact that, if we replace
E[x1(k)] = E[x1(k+1)] = E[x1(k− 1)] = E[xm,∗(k)], then
Eq. (23) and Eq. (7) are the same, so the same procedure
can be followed to prove the second statement.

Algorithm 2 Accelerated Asynchronous Randomized Multi-
Stage Dynamic Consensus Protocol at node i

1: State of agent: xs
i (−1) and xs

i (0), for s = 1, . . . ,m
2: Parameters: γ∈ (1, 2), α ∈ (0, 1

γ ), Di = Lii

3: while True do
4: Measure ri(k) and pick a random neighbor xs

j(k)
5: Update xs

i (k) for s = 1, . . . ,m as follows:
x̃s
i (k) = (xs

i (k)+xs
j(k))/2+α/Di(x

s−1
i (k)−xs

i (k))
xs
i (k + 1) = γ(x̃s

i (k)) + (1− γ)xs
i (k − 1) ∀s

6: end while

Therefore, Algorithms 1 and 2 are equivalent in expec-
tation. Interestingly, another advantage of our accelerated
proposal is that α can be tuned to have lower values while
preserving the convergence speed, leading to lower noise.
In addition, Algorithm 2 is easier to implement in a real
device because no synchronization is needed, and an inherent
robustness against delays and packet losses is achieved, fol-
lowing the considerations in [8]. Besides, since the tracking
properties are independent on the initialization, the protocol
is robust against a varying number of nodes. Regarding the
estimates’ variance, the sequence of consensus stages act as
a filter, reducing the variance from stage to stage. This is
observed in Algorithm 2, where the neighboring estimates
are averaged and corrected by the estimate from the previous
stage. We empirically verify this fact in section IV, leaving
its theoretical characterization for future work.

Finally, while protocols (4) and (5) allow α ∈ (0, 1),
Algorithms 1 and 2 constrain α ∈ (0, 1/γ). This is not a
limitation of the proposed algorithms. The discussion after
Corollary 2 shows how to ensure that α < 1/γ always.

IV. ILLUSTRATIVE EXAMPLES

To evaluate Algorithms 1 and 2, we consider
an undirected graph of N = 8 nodes with
E={(1,2),(1,5),(1,8),(2,3),(2,8),(3,4),(3,6),(4,8),(6,7),(7,8)}
The parameters are α = 0.04, ϵ = 0.01, and m = 5. The
signals ri(k) evolve according to a uniform random
process, such that, every 2000 steps, ri(k) ∼ U(0, 1)
∀i ∈ V . Besides, we set the initial estimates for all stages
as xs(0) = [0.99, 0.27, 0.02, 0.48, 0.18, 0.24, 0.65, 0.50]T .
This initialization is random, according to the inherited

original ours

st
ag

e
1

st
ag

e
5

Fig. 1: Simulation results for (left) the original multi-stage and
(right) the accelerated multi-stage algorithm (ours). The red bold
line is the average to be tracked, whereas the local estimates are
depicted in thin random color lines.

Fig. 2: Evolution of the absolute error between the average estimate
across the network and the average of the input signals. The
accelerated multi-stage filter is in solid lines, whereas the original
multi-stage filter is in dashed lines.

robustness of the multi-stage protocol [8]. The value of
γ can be computed by means of distributed algorithms
that estimate the algebraic connectivity of the graph (see,
e.g., [25], [26]).

The evolution of the estimates for the synchronous and
non-randomized algorithms is shown in Fig. 1. With the
additional memory slot, the convergence time has been sub-
stantially improved by Algorithm 1 (Fig. 1 (right)) compared
to the original non-accelerated protocol (Fig. 1 (left)), while
maintaining the steady-state performance. To better compare
the steady-state error and convergence speed, Fig. 2 draws
the absolute error between the average estimate across the
network es(k) = 1

N

∑N
i=1 |xs

i (k)−ri(k)| and the average of
the input signals e(k) = [e1(k), . . . , em(k)]T . For the same
convergence speed, the accelerated filter can be designed
with more stages and improve the steady-state error in
various orders of magnitude.

In the randomized algorithms, we set α = 0.0005. Besides,
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Fig. 3: Simulation results for (left) the randomized original multi-
stage and (right) the accelerated randomized multi-stage algorithm
(ours). The style is the same in Fig. 1.

since the topology changes arbitrarily, we fix γ = 1.7.
Finally, the signals ri(k) change every 20000 steps. Fig. 3
represents the result of the experiments. With a low value
of α, the noise due to the randomized links is filtered. The
accelerated filter can compensate the degradation in conver-
gence speed, while the original filter is too slow to converge
before the signals change. Thus, a single additional memory
slot per stage leads to an acceleration that overcomes the
trade-off between speed and accuracy present in the original
protocols in [7], [8].

V. CONCLUSIONS

This paper has presented two novel accelerated discrete
time dynamic average consensus protocols based on a se-
quence of proportional consensus filters and a second or-
der recurrence. The combination overcomes the trade-off
between convergence speed and steady-state error, while
achieving robustness against initialization and input noise.
The multi-stage scheme can arbitrarily reduce the steady-
state error, but this implies a slow convergence. Thanks to
the second order recurrence, the convergence is sped up,
counteracting this drawback, specially at final stages of the
protocol. These conclusions are shared by the asynchronous
and randomized version of the algorithm. In the latter, pa-
rameter α manifests a trade-off between convergence speed,
noise and average steady-state error that the acceleration due
to the second order method compensates, while achieving
robustness against communication delays and packet losses.
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