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Abstract— We analyze the optimal Linear Exponential
Quadratic Gaussian (LEQG) control synthesis of a spatially
distributed system with a shift invariance in its spatial co-
ordinate, perturbed by additive white Gaussian noise. We
refer to such a system as spatially invariant. The LEQG
framework accounts for the risk attitude of the controller in
its synthesis by appropriate selection of the value of a free
parameter, providing the possibility to continuously tune the
degree of risk-awareness of the controller. We prove important
structural properties of the optimal LEQG control problem
for spatially invariant systems, namely that: (i) the optimal
LEQG control gain is spatially invariant itself; (ii) the LEQG
control synthesis problem is equivalent to a family of decoupled
LEQG optimization problems of smaller dimension; and (iii)
under some further assumptions, the optimal LEQG control
gain is spatially localized. Through a case study, we illustrate
how the risk attitude of the controller tunes the degree of
spatial localization of the optimal control gain. We argue that
the proven structural properties can be leveraged to reduce
the computational complexity of obtaining the optimal LEQG
control gain in large-scale systems and to design distributed
risk-aware controller implementations.

control of networks, distributed control, optimal control.

I. INTRODUCTION

We study the optimal risk-sensitive control synthesis for
large-scale spatially invariant systems (SIS). SIS are char-
acterized by the fact that their dynamics remain invariant
to a notion of translation in the spatial coordinate [1]. For
concreteness, we focus on linear circulant systems, a class
of finite-dimensional SIS. Circulant networks of dynamical
systems are of importance as they are utilized to model
a wide variety of applications, including autonomous mo-
bile agents in closed tracks [2], vibrations in mechanical
structures [3], cell ensembles [4], synchronization of oscilla-
tors [5] and finite-dimensional approximations of continuum
systems described by partial differential equations (PDEs)
with periodic boundary conditions. These applications are
often of large-scale and involve uncertainties that should be
taken into consideration in controller synthesis. Some of such
uncertainties (e.g., unknown environmental influences) are
commonly modeled through stochastic disturbances perturb-
ing the system [6]. Hence, the control designer might aim
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to make the controller concerned with stochastic outcomes
that are less favorable (“risky”) for the system rather than
accounting only for the statistically typical performance or
expected value. We refer to such controllers as risk-sensitive
or risk-aware. A synthesis framework to design risk-sensitive
controllers is the Linear Exponential Quadratic Gaussian
(LEQG), first introduced by Jacobson [7], [8] and extensively
developed by Whittle [9]–[11]. In this framework, the value
of a free parameter θ tunes the risk attitude of the controller
(i.e., its degree of conservativeness towards uncertainty),
providing the possibility to design risk-averse (θ > 0), risk-
neutral (θ = 0) or even risk-seeking (θ < 0) controllers.
As θ → 0 the LEQG problem converges to the LQG; an
equivalence between the LEQG objective and the minimum
entropy H∞ objective has been established in steady-state
[10], [12].
Main Contributions: SIS provide a useful idealization to
take a first step towards understanding the effect of risk-
awareness on controllers for spatially distributed systems. We
prove important structural properties of LEQG controllers for
circulant systems, extending the seminal results in [1]: we
show that the optimal LEQG gain is circulant, that the LEQG
problem decouples into a family of LEQG problems of
smaller dimension, and that under some further assumptions
the optimal LEQG control gain decays exponentially. A case
study illustrates how the risk attitude of the controller affects
its degree of spatial localization. We discuss useful practical
implications of these results to efficiently compute the opti-
mal LEQG gain and to reduce the operational complexity of
the controller through distributed implementations in large-
scale systems.
Paper Structure: Section II introduces notation and math-
ematical background required for the paper. Section III
describes SIS, their diagonalization through the Discrete
Fourier Transform, and properties of the Fourier-transformed
noise process perturbing the diagonalized dynamics. Section
IV presents the LEQG problem formulation. Section V
contains our main results on the structural properties of
LEQG controllers for SIS and a case study evaluating the
spatial localization of the optimal LEQG control gain. This
section also discusses important practical implications of our
structural results.

II. MATHEMATICAL PRELIMINARIES

· Notation: x denotes a scalar and bold x a vector. Capitals
denote matrices. Let A be a complex matrix; A⊤ denotes
its transpose, Ā its complex conjugate, and A∗ its transpose
conjugate (i.e., A∗ = A⊤). c(l) refers to the l-th entry of c.
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· Group structure of the spatial coordinate [13]: we work
with SIS in which the spatial coordinate varies in the integers
modulo n, Zn := {0, 1, . . . , n− 1}. Zn is an abelian group
with modular arithmetic: k equals l modulo n if k − l is an
integer multiple of n: k ≡n l ⇔ ∃m ∈ Z s. t. k − l = mn.
Any two integers k and l with k − l a multiple of n are
members of the same equivalence class. Two integers in the
same equivalence class represent the same element in Zn.
· Complex-valued jointly Gaussian random vectors [14],
[15]: a Cn-valued jointly Gaussian random vector z has
n complex-valued entries z(k) (k = 0, 1, . . . , n − 1) that
are jointly Gaussian: {ℜ(z(k)),ℑ(z(k))}n−1

k=0 is a set of 2n
jointly Gaussian (real-valued) random variables. In general,
the probability density of z is not fully characterized by its
mean µz = E[z] and covariance Σz := E[(z − µz)(z −
µz)

∗]; the pseudo-covariance Γz := E[(z −µz)(z −µz)
⊤]

must be specified as well. We use the notation z ∼
CN

(
µz,Σz,Γz

)
for complex Gaussians. z can be viewed

as 2n real-valued random variables:

ζ :=

[
ℜ(z)
ℑ(z)

]
, ζ ∼ N (µζ ,Σζ), (1)

where µζ =

[
ℜ(µz)
ℑ(µz)

]
and Σζ = 1

2

[
ℜ
(
Σz + Γz

)
ℑ
(
Γz − Σz

)
ℑ
(
Σz + Γz

)
ℜ
(
Σz − Γz

)] .
· Circulant matrices & the Discrete Fourier Transform:

Definition 2.1 (Discrete Fourier Transform, DFT): Given
x ∈ Cn, its Discrete Fourier Transform x̂ ∈ Cn has
entries x̂(k) := 1√

n

∑n−1
j=0 x(j) e−i 2πkj

n (k = 0, . . . , n − 1),
with i the imaginary unit. Define the matrix F with
entries Fjk := 1√

n
e−i 2πkj

n . Then, x̂ = Fx. F is unitary
(F−1 = F ∗) and symmetric (F = F⊤).

Proposition 2.1 (Conjugate symmetry): The DFT x̂ := Fx
of x ∈ Rn is conjugate symmetric, that is, x̂(n−m) =

x̂(m), for m = 0, 1, . . . , n− 1.

Remark 2.2: Proposition 2.1 implies that the first
⌊
n
2

⌋
+ 1

entries of x̂ suffice to completely define x̂ when x ∈ Rn.

Definition 2.2 (Circulant right-shift operator, S): Let
S denote the circulant right-shift operator defined by
its action on vectors: S(x(0),x(1), . . . ,x(n−1))⊤ :=
(x(n−1),x(0), . . . ,x(n−2))⊤. S∗ is the circular left-shift
operator and S∗S = SS∗ = I .

Definition 2.3 (Circulant matrix): For c =
(c(0), c(1), . . . , c(n−1))⊤ ∈ Cn, the associated circulant
matrix C ∈ Cn×n is:

C =


c(0) c(n−1) . . . c(1)

c(1) c(0) . . . c(2)

...
. . .

c(n−1) c(n−2) c(0)

 =
[

c Sc . . . Sn−1c
]
.

(2)
(2) is completely defined by c. A matrix C is circulant iff

it commutes with the circular shift operator S: CS = SC.

Proposition 2.3: (Simultaneous diagonalization of circulant
matrices, [13]) Given any circulant matrix C, Λc := FCF ∗

is diagonal. We denote the diagonal entries of Λc by λc.

Corollary 2.4 (Eigenvalues of a circulant matrix, [13]):

Let C be the circulant matrix generated by c ∈ Rn.
Then, the eigenvalues λc of C are the entries
of the DFT ĉ of c, scaled by a factor

√
n:

λc
(j) =

∑n−1
l=0 c(l) e−i 2π

n jl, j = 0, . . . , n − 1. By
Proposition 2.1, λc =

√
n ĉ is conjugate symmetric.

III. SPATIALLY INVARIANT SYSTEMS

We consider LTI dynamics in continuous time t > 0

ẋ(t) = Ax(t) +Bu(t) +w(t), (3)

for x(0) ∈ Rn given. The following assumptions hold:

Assumption 1: The state x(t), control input u(t), and noise
w(t) are Rn-valued. A and B are circulant1 elements of
Rn×n. The pair (A,B) is controllable.

Assumption 2: Process noise w(·) is Gaussian white noise:
E[w(t)] = 0 for all t and E[w(t)w(t − τ)⊤] = Σwδ(τ),
where δ(·) denotes the Dirac delta distribution; Σw is a
positive definite circulant covariance matrix.

Under assumptions 1-2, we refer to the dynamics (3) as
spatially invariant or circulant.

Assumption 3: For simplicity of exposition, we analyze the
setting in which full state measurements are available for
control, i.e., y(t) = x(t),∀t.

A. Diagonalization: modal dynamics

Circulant systems (3) are diagonalized by the DFT. Using
x̂ := Fx, (3) is equivalently written as ˙̂x(t) = Λax̂(t) +
Λbû(t)+ ŵ(t), which is decoupled in n (scalar) subsystems

˙̂x(j)(t) = λ(j)
a x̂(j)(t) + λ

(j)
b û(j)(t) + ŵ(j)(t), (4)

indexed by j = 0, . . . , n − 1. We refer to (4) as the
modal dynamics. Next, we derive some properties of the
Fourier-transformed (complex) noise process ŵ which will
be useful later on to prove the decoupling of the LEQG
control problem in our spatially invariant setting.

Proposition 3.1 (Properties of ŵ): Let ŵ(t) := F w(t),∀t,
where w(·) satisfies assumptions 1 and 2. Then, ŵ(·) is
a complex Gaussian white noise process such that the first⌊
n
2

⌋
+ 1 entries of ŵ(t) are independent complex Gaussian

random variables, ∀t. The real and imaginary parts of each
such complex entries are independent as well.

Proof. See Appendix A.

IV. THE OPTIMAL LEQG CONTROL PROBLEM

We briefly review the Linear Exponential Quadratic Gaussian
(LEQG) control synthesis problem formulation following the
seminal works of Jacobson [7], [8] and Whittle [9]–[11]. We
focus on the regulation problem. Define

JT :=

∫ T

0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)
dt, (5)

where x(·) is given by (3) and the following holds:

1Our main results in Section V generalize to the setting in which A and
B are block-circulant by replacing F by the block-DFT in the proofs.
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Assumption 4: Q ∈ Rn×n is circulant and Q = Q⊤ ≻ 0;
R ∈ Rn×n is circulant and R = R⊤ ≻ 0.

JT in (5) is a random variable. The traditional LQG syn-
thesizes u to minimize JT ’s time-averaged expected value:
uLQG(·) := argmin limT→∞

1
T E[JT ], a risk-neutral objec-

tive. Instead, we consider the control synthesis problem [10]:

uθ(·) := argmin lim
T→∞

1

θ T
lnE

[
eθJT

]
,

s.t. ẋ(t) = Ax(t) +Bu(t) +w(t), x(0) = x0

(6)

where JT is as defined in (5) and θ ∈ R is a free parameter.
(6) is the infinite-horizon LEQG problem.
a) Risk attitude of the controller: θ models the risk attitude
of the controller. When θ → 0 the objective in (6) approx-
imates that of the LQG, yielding a risk-neutral controller.
When θ > 0, the controller is risk-averse; it assumes that the
noise w(·) behaves as a non-cooperative “phantom” agent.
When θ < 0, the controller is risk-seeking and assumes that
w(·) behaves as a cooperative player in the cost minimization
[7]. Thus, a risk-seeking (risk-averse) controller is optimistic
(pessimistic) as it implicitly assumes that uncertainties will
turn out to its advantage (disadvantage). Problem (6) does
not have a stabilizing solution ∀θ ∈ R. Critical values θ̄
and θ of extreme pessimism and optimism exist. At θ the
optimizer is too lax for stability; at θ̄, so pessimistic that it
has the conviction of inability to control [10].
b) Solution to the infinite horizon LEQG: The optimal risk-
sensitive control input that solves the LEQG problem (6) is
a linear function of the state uθ(t) = −K∞x(t) with [7]

K∞ = R−1B⊤P∞. (7)

P∞ solves the Generalized Algebraic Riccati Equation
(GARE)

Q+P∞A+A⊤P∞−P∞(BR−1B⊤− θΣw)P∞ = 0. (8)

The following assumption guarantees the well-posedness of
the LEQG problem (6) for the system (3):

Assumption 5: BR−1B⊤ − |θ|Σw ≻ 0. We denote its
principal matrix square root by Bθ. Such positive definiteness
imposes lower θ and upper θ̄ bounds on θ; in our circulant
problem set-up, these are

θ := max
j

−
|λ(j)

b |2

λ
(j)
r λ

(j)
σ

, θ̄ := min
j

|λ(j)
b |2

λ
(j)
r λ

(j)
σ

, (9)

with j = 0, . . . , n− 1. We work with θ < θ < θ̄.

When θ ≤ 0, [16, Lemma 4] together with assumptions 1
and 4 guarantee that the GARE (8) has a unique solution
satisfying P∞ ∈ Rn×n and P∞ = P⊤

∞ ≻ 0, such that
A − BθB

⊤
θ P∞ is Hurwitz. When θ > 0, such a unique

solution is guaranteed by assumption 5, which provides
controllability of the pair (A,Bθ). In both settings, the
stability of the optimal closed-loop is checked by defining
the Lyapunov function V (x) := x⊤P∞x, which under
assumption 5 satisfies: V̇ (x) = x⊤(P∞(A−BR−1B⊤P∞)+

(A − BR−1B⊤P∞)⊤P∞
)
x

(8)
= x⊤( − Q − P∞(BR−1B⊤ +

θΣw)P∞
)
x < 0, ∀x ̸= 0. The optimal infinite horizon cost

of the LEQG problem (6) is [12]

min lim
T→∞

1

Tθ
lnE

[
eθJT

]
= tr

(
ΣwP∞

)
. (10)

V. STRUCTURAL PROPERTIES OF OPTIMAL LEQG
CONTROLLERS FOR SPATIALLY INVARIANT SYSTEMS

We derive structural properties of optimal LEQG controllers
for SIS. First, we prove that the optimal LEQG control gain
is spatially invariant and provide explicit expressions for
its eigenvalues. Second, we prove that the LEQG problem
(6) for the circulant system (3) is equivalent to a family of
⌊n
2 ⌋ + 1 decoupled scalar LEQG problems. Finally, under

some further assumptions we show that the optimal LEQG
control gain is spatially localized; through an example, we
illustrate how the degree of spatial localization is dependent
on the risk-attitude (θ) of the system.

Theorem 5.1 (Spatial invariance of P∞): Let assumptions
1 to 5 hold. Then, the stabilizing solution P∞ of the GARE
(8) is circulant and has eigenvalues (j = 0, . . . , n− 1):

λ
(j)
p =

ℜ
(
λ
(j)
a

)
+

√
ℜ
(
λ
(j)
a

)2
+ λ

(j)
q

(
|λ(j)

b
|2

λ
(j)
r

− θλ
(j)
σ

)
( |λ(j)

b
|2

λ
(j)
r

− θλ
(j)
σ

) . (11)

Proof: (i) Spatial invariance of P∞: Left- and right-
multiplying (8) by S and S∗, respectively, yields S

(
Q +

P∞A + A⊤P∞ − P∞(BR−1B⊤ − θΣw)P∞
)
S∗ = 0. By

assumptions 1, 2 and 4, A,Q, and (BR−1B⊤ − θΣw) are
circulant and thus, commute with S and S∗. Then,

Q+(SP∞S∗)A+A⊤(SP∞S∗)

− (SP∞S∗)(BR−1B⊤ − θΣw)(SP∞S∗) = 0. (12)

(12) shows that SP∞S∗ is a solution to the GARE (8). Fur-
thermore, SP∞S∗ ≻ 0 because P∞ ≻ 0. Since assumption 5
holds, P∞ is the unique (in the sense of Section IV) solution
to (8). Then P∞ = SP∞S∗ and thus, P∞ is circulant.
(ii) Eigenvalues of P∞: Using the DFT we write (8) as

Λq +ΛpΛa+ΛaΛp−Λp

(
ΛbΛ

−1
r Λb− θΛσ

)
Λp = 0, (13)

where we used Λa⊤ = Λa and Λ(r−1) = Λ−1
r . (13) is a

system of n decoupled scalar GAREs; they are written in
terms of eigenvalues (j = 0, . . . , n− 1) as:

λ(j)
q + 2λ(j)

p ℜ
(
λ(j)

a

)
−

(
λ(j)

p

)2( |λ(j)
b |2

λ
(j)
r

− θλ(j)
σ

)
= 0.

Solving for the positive solution yields (11).

Remark 5.2: By Proposition 2.1, it suffices to solve for the
first ⌊n

2 ⌋+ 1 eigenvalues (11) to completely determine P∞.

Corollary 5.3 (Spatial invariance of K∞ & performance):
Let assumptions 1 to 5 hold. Then, the optimal risk-sensitive
gain K∞ (7) for the system (3) is circulant with eigenvalues

λ
(j)
k =

λ
(j)

b

λ(j)
r

λ(j)
p , j = 0, . . . , n− 1 (14)

with λp as in (11); the optimal LEQG performance (10) is
minu(·) limT→∞

1
Tθ lnE[e

θJT ] = λ⊤
σλp.
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The spatial invariance of K∞ implies that the same control
algorithm is run at each actuator location, which eases
controller implementation.

A. A decoupled family of scalar LEQG control problems

By Theorem 5.1, in a n× n circulant setting the GARE (8)
decouples into a family of n scalar GAREs; the first ⌊n

2 ⌋+1
completely determine P∞, and thus, K∞. This suggests that
in such a setup the LEQG problem (6) might decouple as
well. We show next that it is equivalent to a family of ⌊n

2 ⌋+1
decoupled LEQG problems with scalar decision variable.

Theorem 5.4 (LEQG problem decoupling): Let assumptions
1 to 5 hold. W.l.g., let u(t) = −Kx(t), where K ∈ Rn×n is
circulant. Then, the infinite horizon LEQG control synthesis
problem (6) for the system (3) is

min
K

lim
T→∞

1

θ T
ln
(
E
[
eθJT

])
s.t. ẋ(t) = Ax(t) +Bu(t) +w(t), x(0) = x0,

u(t) = −Kx(t), K circulant,

(15)

with JT as in (5). Problem (15) is equivalent to
⌊
n
2

⌋
+ 1

decoupled scalar LEQG control problems,

min
λ

(j)
k ∈C

lim
T→∞

1

θT
ln
(
E
[
eθG

(j)
T

])
,

s.t. ˙̂x(j)(t) =
(
λ(j)
a − λ

(j)
b λ

(j)
k

)
x̂(j)(t) + ŵ(j)(t),

(16)

where j = 0, . . . ,
⌊
n
2

⌋
and

G
(j)
T :=

{
J
(j)
T , if j = 0 or j = n

2 ,

2J
(j)
T , otherwise,

(17)

with J
(j)
T :=

(
λ(j)
q + |λ(j)

k |2λ(j)
r

) ∫ T

0
|x̂(j)(t)|2dt. We refer

to the family of problems (16) as the modal LEQG problems.

Proof. See Appendix B.

B. Spatial localization of the optimal LEQG control gain

For SIS over unbounded spatial domains with distributed
sensing and actuation, [1] proved that quadratically-optimal
control gains exhibit fast spatial decay, asymptotically ex-
ponential. Informally, this implies that for each spatial site,
measurements from its neighborhood are more valuable for
control than those further away. System’s parameters deter-
mine the exponential asymptotic decay rate, which has been
analytically characterized in some settings [17], [18]. In our
circulant problem set-up the spatial coordinate is bounded.
To analyze the spatial decay of the optimal risk-sensitive
gain we use the arguments in [19], based on Bernstein’s
theorem from approximation theory [19, Theorem 3.3]. We
are interested in the setting in which matrix A in (3) is
symmetric and sparse. To this matrix, we associate a graph
G(A) = (V,E), where V denotes the vertex set consisting of
integers from 0 to n−1 and E is the edge set containing all
pairs (i, j) with A(i, j) ̸= 0. The distance dA(i, j) between
i, j ∈ V is the length of the shortest path connecting node
i to node j. Assuming that the rest of the matrices in the
LEQG problem are multiples of the identity, we provide an
upper bound for the spatial decay rate of K∞.

Theorem 5.5 (Spatial decay of the optimal control gain):
Consider the optimal risk-sensitive control problem (6) for
the system (3), subject to assumptions 1 to 3. Furthermore,
assume that B = bI,Σ = σI,Q = qI and R = rI with
q, b, r, σ ∈ R+ and that θ satisfies the bounds in (9). Let A
be such that A = A⊤ and

∣∣A(i, j)
∣∣ < αβdA(i,j) with α > 0

and 0 < β < 1. Assume2 dA(i, j) ≥ dA2(i, j),∀i, j. Then,
there exists constants µ > 0 and 0 < η < 1 such that ∀ i, j
the optimal risk-sensitive gain (7) satisfies∣∣K∞(i, j)

∣∣ < µηdA2 (i,j). (18)

Proof: Since all matrices in the GARE (8) are cir-
culant and hence they commute and A = A⊤, the op-
timal risk-sensitive control gain is K∞ = b

b2−rσθ

(
A +√

A2 + q(b2−rσθ)
r

I
)
, where we use

√
· to refer to the

principal square root. Denote R := A2 + q(b2−rσθ)
r I . By

assumption 5, R ≻ 0. Furthermore, R is circulant and
thus diagonalized by the DFT, which has condition number
κ(F ) = 1. Taking the branch cut of f(·) :=

√
· to be

the non-positive real axis, f is analytic in the open right-
half complex plane, which contains the spectrum of R.
Thus, by [19, Theorem 3.4] constants ξ > 0 and 0 <
γ < 1 exist such that |f(R)(i, j)| < ξγdA2 (i,j). Then,
|K∞(i, j)| < b

b2−rσθ

(
αβdA(i,j)+ξγdA2 (i,j)

)
≤ µ′(βdA(i,j)+

γdA2 (i,j)) ≤ µ′(βdA2 (i,j) + γdA2 (i,j)) ≤ µηdA2 (i,j), where
µ′ := bmax{α,ξ}

b2−rσθ , η := max{β, γ}, and µ := 2µ′.

Remark 5.6: The upper bound (18) for the spatial decay of
K∞ is meaningful when A2 is sparse. This is often the
case in large-scale systems (e.g., obtained by discretization
of partial differential equations [20]).
Remark 5.7: The spatial decay rate η of the optimal LEQG
control gain depends on the strength of the noise (σ)
perturbing the plant and on the risk-attitude (θ) of the system.
We illustrate the sensitivity to θ through a case study.
1) A case study: consider the LEQG regulation problem
of Theorem 5.5. We analyze the setting in which A =
−toeplitz([2 −1 0 . . . 0 −1]), the negative Laplacian
of a cycle graph. We select b = σ = q = r = 1 and let θ vary
in −1 < θ < 1. The dynamics of the state are described by
ẋ(t) = −toeplitz([2 −1 0 . . . −1])x(t)+u(t)+w(t).
The corresponding steady-state LEQG control gain is

K∞ =
1

1− θ

(
A+

√
A2 + (1− θ)I

)
. (19)

Since A is (circulant) banded and hence completely spatially
localized, the spatial decay rate of (19) is determined by√
A2 + (1− θ)I; in particular, the decay rate depends on

the spectrum of R(θ) = A2 + (1 − θ)I and the analyticity
region of f(·) =

√
· [19]. The eigenvalues of A are λ(j)

a =
−2

(
1− cos( 2πjn )

)
(with j = 0, . . . , n− 1). Hence, σR(θ) ⊂

D, where σR(θ) denotes the spectrum of R(θ) and D :=

2The condition dA(i, j) ≥ dA2 (i, j),∀(i, j) is satisfied when A
is a circulant symmetric graph Laplacian: A = dI − adj(A), where

adj(A)(i, j) :=

{
1, if (i, j) ∈ E,

0, otherwise,
is the adjacency matrix and d > 0

is the degree of the d-regular circulant graph G(A).
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{z ∈ C : (ℜ(z) − z0)
2 + ℑ(z)2 ≤ ρ}, with z0 = 9 − θ

and ρ = 8. f(·) =
√
· is analytic in the concentric open

disk of radius R0 = 9− θ. Then, by [19, Theorems 3.3 and
3.4] the sensitivity of the spatial decay rate η of K∞ to θ is
dη
dθ = d(ρ/R0)

dθ = − 8
(9−θ)2 . η monotonically decreases with

θ: the more risk-averse the system is, the slower the spatial
decay of K∞. Fig. 1 shows the LEQG gain at different values
of θ, illustrating such a monotonic spatial decay.

. ..

Fig. 1: Steady-state normalized optimal LEQG control gain
K̃∞ := K∞/K∞(0, 0) for the case study in Section V-B with
n = 30. K̃∞ is plotted for different θ, as indicated. a) k̃ as a
function in the discrete circle Z30. The change in the spatial decay
rate of the gain at different values of θ is apparent in the lower
panel. b) K̃∞: entries colored according to their respective values,
following the colorbar. The second column shows the closed disk
D containing the spectrum σR(θ) and the largest concentric open
disk where f(·) :=

√
· is analytic in the complex plane.

C. Complexity reduction

The properties of LEQG controllers for circulant systems
derived so far have important practical implications.
a) Solving large-scale AREs: Traditional solution methods
for AREs require O(n3) flops [21], and hence, are unsuitable
for large-scale systems. In our circulant setting, the fact
that K∞ is circulant (Corollary 5.3) together with the ef-
ficient computation of the DFT provided by the Fast Fourier
Transform (FFT) can be utilized to reduce the complexity
of computing K∞: computing the eigenvalues of the sys-
tem (A,B,Σw) and cost (Q,R) matrices has O(n log(n))
complexity using the FFT. The eigenvalues of K∞ can be
independently computed using (14); k∞ is obtained with
O(n log(n)) complexity using the inverse FFT on λk.
b) Controller implementation: When the decay bound pro-
vided in Theorem 5.5 is meaningful, K∞ exhibits fast spatial
decay. The controller might be implemented in a distributed
manner by dropping those entries of K∞ that are below
a certain threshold (as long as the closed-loop remains
stable). Alternatively, an optimal circulant control gain with a
desired sparsity pattern could be designed using the problem
formulation in Theorem 5.4 and extending the arguments in
[22]. These strategies reduce the complexity of controller
implementation, as they only require local computation and
communication between sensors and actuators, avoiding the
need for a centralized processing unit.
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APPENDIX

A. Proof of Proposition 3.1
By assumption 1, w(t) is Rn-valued and F ∈ Cn×n,
then ŵ(t) is Cn-valued; write it as ŵ(t) = ℜ(F )w(t) +
iℑ(F )w(t) and define the R2n-valued random vector3 ω̂(t)
ω̂(t) :=

[
ℜ[F ] ℑ[F ]

]⊤
w(t). Since by assumption 2 w(t) is

jointly Gaussian and linear transformations preserve Gaus-
sian distributions [15], ω̂(t) is jointly Gaussian (and ŵ(t) is
complex jointly Gaussian). µω̂ = E[ω̂(t)] = 0 ∀t, and

E
[
ω̂(t)ω̂(t− τ)⊤

]
=

[
ℜ[F ] Σw ℜ[F ] ℜ[F ] Σw ℑ[F ]
ℑ[F ] Σw ℜ[F ] ℑ[F ] Σw ℑ[F ]

]
︸ ︷︷ ︸

=:Σω̂

δ(τ),

where we have used the symmetry of F . ω̂(·) is a white
Gaussian noise process. Next, we evaluate the (y, k)-th entry
of each block of Σω̂ . First, consider the odd n case. Let
σ ∈ Rn denote the first column of Σw. Since Σw = Σ⊤

w and
circulant, σ(k) = σ(n−k) = σ(−k) (k = 0, 1, . . . , n − 1),
that is, σ = [σ(0) σ(1) σ(2) . . . σ(2) σ(1)]⊤ ∈ Rn.
The entries of the respective blocks of Σω̂ are given in
(20). Since ω̂(t) is Gaussian, the sparsity pattern of the
covariance matrix Σω̂ provided in (20) proves the claimed
independence relations among its entries. When n is even,
σ = [σ(0) σ(1) σ(2) . . . σ(n

2 ) . . . σ(2) σ(1)]⊤ ∈ Rn. (20)
must be augmented with additional terms corresponding
to the n

2 -th entry of σ, but the sparsity pattern of Σω̂ is
preserved. ■

3By Proposition 2.1 some entries of ω̂(t) are identically zero, namely:
the entry with index n; and the entry with index 3n/2 when n is even.
These correspond to the imaginary parts of entries of ŵ(t) that are real.
Such identically zero entries do not affect the off-diagonal sparsity pattern
of Σω̂ , and hence, they have not been removed.

B. Proof of Theorem 5.4

We note that

E[eθJT ] = E
[
eθ

∫ T
0

(
x(t)⊤Qx(t)+u(t)⊤Ru(t)

)
dt
]

= E
[
eθ

∫ T
0

(
x̂(t)∗Λqx̂(t)+û(t)∗Λrû(t)

)
dt
]

(a)
= E

[
eθ

∑n−1
j=0

(
λ(j)

q +|λ(j)
k |2λ(j)

r

) ∫ T
0

|x̂(j)(t)|2dt
]

(b)
=

E
[
eθJ

(0)
T · e2θ

∑n−1
2

j=1 J
(j)
T

]
, if n odd,

E
[
eθJ

(0)
T · eθJ

(n
2

)

T · e2θ
∑n

2
−1

j=1 J
(j)
T

]
, if n even,

(c)
=

⌊n
2 ⌋∏

j=0

E
[
eθG

(j)
T

]
, (21)

where
(a)
= follows using u(t) = −Kx(t), with K cir-

culant;
(b)
= follows by defining J

(j)
T as in Theorem 5.4

and using the conjugate symmetry of the DFT of a real
vector (see Proposition 2.1);

(c)
= follows by assumption

2 and Proposition 3.1, together with the observation that
J
(j)
T (j = 0, . . . ,

⌊
n
2

⌋
) only depends on the correspond-

ing stochastic process ŵ(j); using G
(j)
T as defined in

(17), we write (21). Substitution of (21) in the objec-
tive of problem (6) yields limT→∞

1
θT

ln
(
E
[
eθJT

])
=

limT→∞
1
θT

∑⌊n
2
⌋

j=0 ln
(
E
[
eθG

(j)
T

])
. Together with the modal

dynamics (4), the family of decoupled modal optimization
problems (16) is obtained. ■

ℜ[F ] Σw ℜ[F ](y, k) =
1

n

n−1∑
z=0

cos

(
2πkz

n

) n−1∑
j=0

cos

(
2πyj

n

)
σ(j−z) (a)

=
1

n

n−1∑
p=0

n−1∑
z=0

cos

(
2πkz

n

)
cos

(
2πy(p+ z)

n

)
σ(p)

(b)
=

1

n

n−1∑
z=0

cos

(
2πkz

n

)
cos

(
2πyz

n

)
σ(0) +

1

n

n−1
2∑

p=1

n−1∑
z=0

cos

(
2πkz

n

)[
cos

(
2πy(p+ z)

n

)
+ cos

(
2πy(z − p)

n

)]
σ(p)

=
1

n

n−1∑
z=0

cos

(
2πkz

n

)
cos

(
2πyz

n

)
σ(0) +

2

n

n−1
2∑

p=1

cos

(
2πyp

n

) n−1∑
z=0

cos

(
2πkz

n

)
cos

(
2πyz

n

)
σ(p)

(c)
=

(
χ(k − y) + χ(k + y)

)[1
2
σ(0) +

n−1
2∑

p=1

cos

(
2πyp

n

)
σ(p)

]
. (20)

(a)
= follows defining p := j − z, noticing that for a given z:

∑n−1−z
p=−z cos

( 2πy(p+z)
n

)
σ(p) =

∑n−1
p=0 cos

( 2πy(p+z)
n

)
σ(p), and

rearranging the sums;
(b)
= follows using the symmetry of σ and the fact that n is odd; and

(c)
= follows using∑n−1

j=0 cos
( 2πjk

n

)
cos

( 2πjy
n

)
= n

2

(
χ(k − y) + χ(k + y)

)
, where χ(k) :=

{
1, if k ≡n 0

0, if k ̸≡n 0
. Similarly, we obtain that

ℑ[F ] Σw ℑ[F ](y, k) =
(
χ(k − y)− χ(k + y)

)[
1
2
σ(0) +

∑n−1
2

p=1 cos
(

2πyp
n

)
σ(p)

]
and ℑ[F ] Σw ℜ[F ](y, k) = 0, ∀ y, k.
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