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Abstract— We investigate the scenario where a controller
communicates with a nonlinear plant via a wireless erasure
channel. We present an event-based control strategy to stabilize
the plant while sporadically using the unreliable wireless
network. In particular, control packets may be lost at any time
with a certain probability. Consequently, stability is ensured
in a stochastic sense. We then compare the proposed event-
based policy with a baseline policy that transmits according
to the age of information, i.e., the time elapsed since the last
successful reception. For any given baseline policy, we show
how to design an event-based policy that ensures the same
guaranteed control performance while leading, on average, to
a strictly smaller channel utilization. Numerical simulations
suggest that the achieved channel utilization may in fact be
significantly smaller.

I. INTRODUCTION

This work aims at devising sporadic communication strate-
gies for wireless networked control systems (WNCS). Care-
fully choosing the communication instants is important as
it may reduce the induced energy consumption and net-
work load. In the wireless communication literature, vari-
ous studies have investigated the design of energy-efficient
communication systems, see [1] for an extensive survey.
In that body of work, the goal is to minimize the power
consumed while maintaining a certain data rate or packet
success rate. However, designing the communication system
in such a manner is a priori not well suited for control
systems that have their own objectives like stability and
control performance.

The main directions of research for reducing communica-
tions in WNCS are: i) event-based communications, which
determine transmissions according to the past and present
plant states or outputs e.g., [2]–[5], ii) self-triggered com-
munications, which determine the next transmission based on
the value of the state at the last successful transmission in-
stant e.g., [6], [7], and iii) time-based triggering communica-
tions, which rely on the elapsed time since the last successful
transmission e.g., [8]–[11]. While time-based triggering rules
are easier to implement as they do not require computations
or repeated measurements at the transmitter, event-triggered
or self-triggered control may result in a significant reduction
in communications, see, e.g., [12], [13]. In this work, we
concentrate on event-triggered control strategies.
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Event-triggered control strategies for WNCS subject to
packet drops generally aim to reduce communications cost
with a state-dependent transmission rule. Most approaches
are dedicated to linear time-invariant models, see, e.g., [13]–
[16]. Related results for nonlinear systems typically rely on
strong assumptions on the packet losses, specifically that
there exists a maximum number of consecutive packet drops,
as considered in [2], [17], [18]. A notable exception is
[19], in which an event-based rule is proposed for a class
of continuous-time nonlinear systems with sector bounded
nonlinearities. Another relevant work is [4], where an event-
triggered anytime control approach is studied, which relies
on zeroing hold devices, i.e., where the control input is set
to zero when the packet is dropped.

The literature on the event-triggered control for nonlinear
systems with stochastic packet drops is thus quite sparse,
and our main contribution is to address this issue when
communication occurs over binary erasure channels. In this
case, each packet may be dropped with a certain independent
probability, thereby relaxing the often assumed requirement
that the maximum number of consecutive packet losses is
bounded. In contrast, we present an event-triggered control
strategy for general nonlinear WNCS modeled in discrete-
time (and not continuous-time as in [19]), and for general
holding functions, which cover zeroing devices (as in [4]) as
a special case. We follow an emulation approach, in the sense
that we assume that we know a state-feedback law, which
stabilizes the origin of the closed-loop system under perfect,
all-the-time communications. The event-triggering rule con-
sists in imposing a decaying property of a given Lyapunov
function along the solutions. Our approach is thus akin to that
in [5], [7], [20], [21] for different, deterministic contexts. We
explain how to tune the event-triggering parameters based
on the (known) packet success probability so that the origin
of the closed-loop system is stable in a stochastic sense.
In addition, these parameters can be adjusted to enforce a
desired guaranteed convergence rate on the expectation of
the Lyapunov function along solutions, thereby ensuring a
given control performance.

Afterwards, we compare the proposed event-based strategy
with a baseline policy from [10] that transmits according to
the age of information (AoI), i.e., the time elapsed since
the last successful transmission, and ensures the same guar-
anteed convergence property as the event-based policy. We
demonstrate that the average channel utilization (or transmis-
sion rate) of the event-based rule is upper bounded by that of
the baseline policy. In other words, for the same guaranteed
control performance, the event-based strategies reduce the

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 884



Plant Controller

Networked input û
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Fig. 1. Schematic of the WNCS (ETM: Event-Triggering Mechanism).

amount of communications compared to a baseline policy.
Moreover, simulations demonstrate that channel utilization
may be significantly reduced with the proposed event-based
policy.

Notation. Let R be the set of real numbers, R≥0 :=
[0,∞), Z be the set of integers, Z>0 := {1, 2, . . .} and
Z≥0 := {0, 1, 2, . . .}. We use Pr(·) for the probability and
E[·] for the expectation taken over the relevant stochastic
variables. A function α : R≥0 → R≥0 is of class K∞ (α ∈
K∞) if it is continuous, strictly increasing, α(0) = 0 and
lims→∞ α(s) = ∞. For any x1 ∈ Rn1 and x2 ∈ Rn2 with
n1, n2 ∈ Z>0, (x1, x2) stands for (x>1 , x

>
2 )> ∈ Rn1+n2 .

II. SETUP

In this section, we first describe the plant and controller
model, followed by the communication model. We then
introduce the event-based strategy and the baseline AoI
policy we will use for comparison.

A. Plant and controller model

We consider the discrete-time nonlinear plant model given
by

x(t+ 1) = f(x(t), u(t)) (1)

where x(t) ∈ Rnp is the plant state, u(t) ∈ Rnu is the control
input at time t ∈ Z≥0 with np, nu ∈ Z>0. We proceed
by emulation and assume that a stabilizing state-feedback
controller for system (1) is known and is of the form u(t) =
g(x(t)). The precise assumption we make on the closed-loop
system (1) with this controller is formalized in the sequel.

We are interested in the scenario where plant (1) and its
controller communicate over a wireless channel as illustrated
in Figure 1. Specifically, the wireless link is used to com-
municate information from the controller to the actuator. A
practical example of such a scenario would be a remote con-
trolled robot, with a camera providing measurements located
at the controller as in [22]. Consequently, the feedback loop
is no longer closed at every time instant t ∈ Z≥0, but only at
certain (a priori unknown) time instants tk ∈ T ⊆ Z≥0 with
k ∈ I ⊆ Z≥0. Communications are attempted at these in-
stants according to the event-triggering conditions described
in the sequel, and packets are successfully received. In the
absence of successful communication, the actuator uses a so-
called networked version [11] of the control input denoted
by û ∈ Rnu .

We introduce the concatenated state χ := (x, û) ∈ Rnχ
with nχ := np+nu, and we write the closed-loop dynamics

of the WNCS as

χ(t+ 1) =

{
fS(χ(t)) for t ∈ T
fU (χ(t)) for t ∈ Z≥0\T ,

(2)

where fS(χ) := (f(x, g(x)), f̂(g(x))), fU (χ) :=
(f(x, g(û)), f̂(û)) for any χ ∈ Rnχ and f̂ is the holding
function1used to generate û, which can take various forms
including the zero-order-hold strategy f̂(û) = û, or the
zeroing policy f̂(û) = 0 for any û ∈ Rnu .

Remark 1: The results presented in this paper apply mu-
tatis mutandis when the network is located between the plant
and the controller, and not between the controller and the
actuator as in Figure 1, by changing the network variable to
be x̂ instead of û. However, the event-based rule that will be
developed in the sequel might be hard to implement at sensor
nodes that lack computational capabilities, as it requires com-
puting the Lyapunov function (as seen in the sequel). When
the network is used in both directions, the analysis becomes
quite convoluted, especially if communication events occur
independently. We leave this case for future work. �
The assumption we make on system (2) is stated next.

Standing Assumption 1 (SA1): There exist α, α ∈ K∞,
aS ∈ [0, 1), aU > 1 and V : Rnχ → R≥0 such that, for
any χ ∈ Rnχ ,

α(|χ|) ≤ V (χ) ≤ α(|χ|) (3a)
V (fS(χ)) ≤ aSV (χ), (3b)
V (fU (χ)) ≤ aUV (χ). (3c)

�
Properties (3a) and (3b) in SA1 imply that the origin of

the ideal system χ(t+ 1) = fS(χ(t)) is uniformly globally
asymptotically stable (UGAS), which means the feedback
law g has been designed to ensure that the origin of system
(1) is UGAS. Moreover, aS in (3b) is a guaranteed decay
rate of the Lyapunov function along χ(t+ 1) = fS(χ(t)) in
the absence of the network. Property (3c) in SA1 imposes a
condition on the growth rate of V along solutions to (2) when
using û instead of u as control input. These assumptions
can be easily verified for linear time-invariant systems and a
detailed discussion of other classes of systems satisfying it
is available in [10, Section V].

To conclude the description of the closed-loop system
(2), we need to explain when a communication attempt is
successful or not.

B. Communication setup

We now describe the sequence of successful communica-
tion instants tk ∈ T , k ∈ I. We assume that the control
packet can be perfectly communicated (without any additive
noise) over the wireless channel with a certain probability
π ∈ (0, 1), the packet success rate, hence the wireless
channel is an i.i.d erasure channel.

The controller may decide at any time t ∈ Z>0, to attempt
communication over the wireless channel. We use η(t) ∈
{0, 1} to denote the channel utilization at time t, with:

1Note that û is never reset to the actual value of u in (2).
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• η(t) = 1 implying that the channel is utilized and
transmission is attempted at time t;

• η(t) = 0 implies that the transmitter was not active and
the channel is not utilized at time t.

In view of random packet dropouts, we can write Pr(t ∈
T ) = πη(t).

We focus on event-based transmission policies that deter-
mine the channel utilization η(t) at each instant t ∈ Z>0.
Before describing this triggering rule, we first introduce the
AoI variable τ(t) ∈ Z>0 for all t ∈ Z>0, which counts
the number of time instants elapsed since the last successful
communication as follows

τ(t+ 1) =

{
1 for t ∈ T
τ(t) + 1 for t ∈ Z≥0\T .

(4)

We assume that the initial time is a successful communi-
cation instant, i.e., we set t1 = 0 resulting in 0 ∈ T and
τ(0) = 1. The event-triggered policy is described in the
following subsection.

C. Event-based transmission policies

Inspired by [7], [20], [21], the idea is to enforce that
V (χ(·)), with V from SA1, decreases (in expectation) with
a given decay rate along the solutions to (2). We introduce
for this purpose the variable V̂ to keep track of the value
of V (χ) at the last successful transmission instant. We set
V̂ (0) := V (χ(0)) and note that

V̂ (t+ 1) =

{
V (χ(t)) for t ∈ T
V̂ (t) for t ∈ Z≥0\T .

(5)

Under the proposed policy, the channel is utilized in the
following manner

η(t) =

{
1 if V (fU (χ(t))) > µτ(t)+1νV̂ (t)
0 otherwise,

(6)

where ν ∈ [0, 1] and µ ∈ (aS , 1) are tunable parameters, and
fU and τ(t) come from (2) and (4). The policy in (6) implies
that, at every time t, the transmitter compares the value of
the Lyapunov function if no transmission is attempted to the
imposed upper-bound µτ(t)+1νV̂ (t). Parameter µ denotes the
desired convergence rate of the Lyapunov function and ν
must be selected carefully in order to ensure the desired
control property as explained in Section III. If π = 1,
then ν = 1 can be chosen to ensure that the Lyapunov
function is exponentially decreasing with rate µ, along the
solutions to (2), for any given µ ∈ (aS , 1). However, since
the transmissions are stochastic, a ν strictly smaller than one
must be selected to compensate for potential packet drops.
Additionally, policy (6) enforces that (re)transmissions are
attempted until successful as long as (6).

Remark 2: Since we consider noiseless system dynamics
and measurements, and deal with state feedback, assuming
that the controller knows fS , it can easily determine if
a packet was successfully transmitted at t by comparing
x(t+ 1) with the predicted value using fS . However, when
the system is noisy, packet acknowledgements (which are

often implemented in wireless links) can be used in order to
determine τ(t). �

Under policy (6), the WNCS in (2) becomes

 χ(t+ 1)

V̂ (t+ 1)
τ(t+ 1)

 =



 fS(χ(t))
V (χ(t))

1

 if V (fU (χ(t))) >

µτ(t)+1νV̂ (t) with
probability π, fU (χ(t))

V̂ (t)
τ(t) + 1

 otherwise.

(7)

D. AoI policies

As mentioned in the introduction, we will compare the
proposed event-based strategy with an AoI policy, which
we now present. As before, we assume that the initial time
is a successful communication instant, i.e., we set t1 = 0
resulting in 0 ∈ T and τ(0) = 1. The AoI policy is
characterized by τ̄ ∈ Z>0, which denotes the threshold on
the AoI after which transmissions are attempted [10]. Under
the proposed policy, the channel utilization evolves in the
following manner

η(t) =

{
1 if τ(t) ≥ τ̄
0 otherwise. (8)

Implementing this policy implies that after each successful
communication, the next transmission is only attempted after
τ̄ steps have passed. The (random) closed loop dynamics can
thus be described as follows

(
χ(t+ 1)
τ(t+ 1)

)
=


(
fS(χ(t))

1

)
if τ(t) ≥ n+ 1
with probability π(

fU (χ(t))
τ(t) + 1

)
otherwise.

(9)

III. DESIGN SPECIFICATIONS

A. Control guarantees

The primary objective of this work is to preserve the
stability of the WNCS and the secondary objective is to
reduce a communication cost compared to an AoI policy,
which ensures the same control guarantees as the proposed
event-based strategy. Due to the stochastic nature of com-
munication success, we can no longer ensure the original
UGAS property guaranteed by SA1. Instead, we rely on the
stochastic notion of stability defined next, which is inspired
by [4].

Definition 1: The set {(χ, V̂ , τ) : χ = 0} is stochasti-
cally stable for system (7), if there exists α ∈ K∞, such
that for any solution to (7) with V̂ (0) = V (0), τ(0) = 0,∑∞
t=0 E[α(|χ(t)|)] <∞. �
Definition 1 implies that we are interested in stability of

the set where χ = 0 consistently with SA1. In addition
to the stability property described above, we also want to
ensure that the Lyapunov function V in SA1 converges in
expectation, with a given decay rate µ ∈ (aS , 1) defined
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previously, along any solution χ to (7) with τ(0) = 0 and
V̂ (0) = 0, i.e.,

E[V (χ(t))] ≤ µtV (χ(0)), ∀t ∈ Z>0. (10)

The desired stability property (10) serves as a measure
of the control performance of system (2) and satisfying it
automatically ensures Definition 1 as µ < 1 in view of (3a).

B. Network usage

To evaluate the amount of network usage, we consider the
expected average channel utilization over an infinite horizon.
Specifically, the communication cost for the event-triggered
policy for any given ν ∈ [0, 1], and any solution χ to (7)
with τ(0) = 1, is given by

JET(ν, χ) := lim
T→∞

1

T
E

[
T∑
t=1

η(t)

]
, (11)

where η(1), η(2), . . . is the sequence of transmission at-
tempts applied at instances dictated by (6). Since, t1 = 0 by
definition, if ν and the sequence χ are given, then V (χ), V̂ , τ
can be evaluated for any time and thus the sequence η is
fixed. This allows us to write JET as a function of ν and χ.

We evaluate the average channel utilization for an AoI
policy described in Section II-D as

JAoI(τ̄) := lim
T→∞

1

T
E

[
T∑
t=1

η̃(t)

]
=

1

1 + (τ̄ − 1)π
(12)

where η̃(1), η̃(2), . . . is the sequence of transmission at-
tempts applied at instances dictated by the AoI policy (8).
The sequence η̃ is a Markov process that is independent of
the plant state as seen from (8) and this expectation becomes
independent of χ, in contrast to (11). Since transmissions are
attempted until a packet is successfully communicated, the
expected length of attempted transmissions is given by π−1.
On the other hand, after every successful transmission, trans-
missions are stopped for a duration of τ̄ − 1 (by definition
of the AoI policy). Thus, the average channel utilization,
which is the fraction of time during which transmissions are
attempted, is given by π−1

π−1+(τ̄−1) = (1 + (τ̄ − 1)π)−1.
Minimizing JET over ν directly is challenging as the trig-

ger times are a priori unknown and thus the communication
cost for a given ν is hard to evaluate as it depends on the
trajectory of χ, which is stochastic due to the random packet
drops. As a consequence, our secondary objective is to find
an AoI policy with the largest τ̄ ∈ Z>0 which ensures the
same guaranteed rate of convergence µ as an event-triggered
policy and satisfies JET(ν, χ) ≤ JAoI(τ̄). This will provide
us with a bound on the communication cost for the event-
triggered policy.

IV. MAIN RESULTS

In this section, we first provide conditions on (π, ν) to
ensure the stability property (10), when the event-triggered
policy (6) is used, thereby satisfying Definition 1. Given a
desired convergence rate µ ∈ (aS , 1) for the expected value

of V along (7) as in (10), we first identify a set of feasible
ν ensuring (10).

A. Stability guarantees

We first provide conditions on ν to ensure the desired
stability property in (10).

Theorem 1: Consider system (7) with µ ∈ (aS , 1) and
π ∈ [0, 1] such that πaS < µ− aU (1− π). If

ν ∈
[
aS
µ
,
µ− aU (1− π)

µπ

]
, (13)

then (10) holds for any solution with τ(0) = 1 and V̂ (0) =
V (0), and the system is thus stochastically stable according
to Definition 1. �

Let µ, ν, π be such that (13) holds and consider an arbitrary
solution (χ, τ, V̂ ) to (7) with τ(0) = 1 and V̂ (0) = V (0).
Recall that we use T to denote the set of time instants where
the communication succeeded and t1 = 0 ∈ T by definition.
Let us first denote by t′1 the first time instant where (6)
triggered. If no such time instant exists, then that implies
that

V (χ(t)) ≤ µtνV (χ(0))

for all t ∈ Z>0 by definition of the event-triggering rule,
leading to the desired stability property without any com-
munication as ν < 1 from (13), with the upper-limit of (13)
being increasing in π and taking the value 1 when π = 1. If
such a t′1 exists, then we have

V (fU (χ(t′1))) > µτ(t′1)+1νV̂ (t′1) (14)

by (6). On the other hand (3b) implies that

V (χ(t1 + 1)) ≤ µνV (χ(t1)) (15)

as ν ≥ aS
µ . By iteration and (6), we have that for any t ∈

{t1 + 1, . . . , t′1}, we have

V (χ(t)) ≤ µt−t1νV (χ(t1)) (16)

as (6) will first trigger when this inequality is false at the
time instant t′1 + 1. Thus, we have

V (χ(t′1)) ≤ µt
′
1−t1νV (χ(t1)), (17)

leading to the desired stability property and concluding the
proof for this case. On the other hand, given any tk ∈ T ,
k ∈ I, the k-th successful transmission, let us denote by
t′k <∞ the first time instant after tk where (6) was satisfied.
We will use T ′ ⊆ Z>0 to collect all such time instants
where the event-triggered policy (6) was first met before
communication succeeded and V̂ was reset. We have

V (fU (χ(t′k))) > µτ(t′k)+1νV̂ (t′k) (18)

by (6) and we can repeat the same logic as applied for t1,
t′1 to obtain that for any t ∈ {tk + 1, . . . , t′k}

V (χ(t)) ≤ µt−tkνV (χ(tk)) (19)

This implies that if t′k =∞ for some k, then

V (χ(t)) ≤ µt−tkνV (χ(tk)). (20)
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for all t > tk. By design, we know that for any t ∈
{t′k, . . . , tk+1} communication was attempted, with a success
probability π. Consider {Pj}j∈Z>0 , with Pj ∈ {ν, aUµ−1}
for any j ∈ Z>0, a sequence of independent Bernoulli
variables, with Pr(Pj = ν) = π and Pr(Pj = aUµ

−1) =
1−π. For any t ∈ Z>0, we can exploit the definition of Pj ,
(3c) in SA1 and (19) to derive

V (χ(t)) ≤ µt
J∏
j=1

PjV (χ(0)) (21)

where J ≤ t is the number of time instants before t such that
transmissions were attempted. This simplification is possible
because the packet loss or success events are i.i.d and occur
at all t ∈ {t′k, . . . , tk+1}. We thus can replace the growth
or decay of the Lyapunov function relative to µ during
these instants with Pj . On the other hand, (19) bounds the
Lyapunov function for the remaining time instants. We have

E[Pj ] = πν + (1− π)aUµ
−1. (22)

The expectation of a product of independent random vari-
ables is simply the product of their expectations. Therefore,
E[
∏J
j=1 Pj ] ≤ 1 for all J , as πν + (1− π)aUµ

−1 ≤ 1 from
(13). Since E[

∏J
j=1 Pj ] ≤ 1 for all J , (21) implies that

E[V (χ(t))] ≤ µtV (χ(0)). (23)

for all t and therefore (10) holds, and our statement is proven.

Theorem 1 implies that we can pick any ν according to
(13) and the event-based policy (6) will result in stochastic
stability and (10) is satisfied. If π is sufficiently close to 1
and µ > aS , any ν ∈ [aSµ , 1) results in the desired stability
property. Next, we look to compare and upper bound the
communication cost of the event-triggered policy with an
AoI policy.

B. Comparison with AoI policies

We now compare control-communications tradeoff of the
event-triggered policy (6) with parameters designed in a
specific manner with that of the AoI policy (8), while both
policies ensure the same guaranteed rate of convergence µ.
For any given µ ∈ (aS , 1), π ∈ [0, 1] and τ̄ ∈ Z>0 (see
Section II-D), we define the next quantity, which we use
in the proposition below to determine if (10) holds along
solutions to (9),

βAoI(τ̄) :=
πaSa

τ̄−1
U

µτ̄
+
aU (1− π)

µ
. (24)

The next proposition gives conditions for the AoI policy to
be stochastically stable, inspired by [10].

Proposition 1: Consider (9) with µ ∈ (aS , 1) and π ∈
[0, 1]. If βAoI(τ̄) ≤ 1, then (10) holds with V from SA1, for
any solution with τ(0) = 0. �
Sketch of proof: The desired result is obtained by following
the proof of Theorem 1 and replacing the event-based counter
with a constant τ̄ , i.e., we can set t′k = tk + τ̄ for all tk ∈
T , k ∈ I. We also replace ν := aSa

τ̄−1
U µ−τ̄ to get the

condition on βAoI(τ̄). �
Proposition 1 provides conditions under which, for any given
µ ∈ (aS , 1), system (9) satisfies the property (10) with decay
rate µ. Next, for any AoI policy such that βAoI(τ̄) ≤ 1, we
find an event-triggered policy ensuring the same convergence
rate and a reduced communication cost.

Theorem 2: Given µ ∈ (aS , 1) and τ̄ ∈ Z>0 such that
βAoI(τ̄) ≤ 1, any solution (χ, V̂ , τ) to (7) with ν =
aSa

τ̄−1
U µ−τ̄ , τ(0) = 1 and V̂ (0) = V (0) satisfies (10) and

JET(ν, χ) ≤ JAoI(τ̄).
As a first step, we prove that the event-triggered policy with
ν := aSa

τ̄−1
U µ−τ̄ has convergence rate µ, i.e., we need to

show this ν respects (13). We know that βAoI(τ̄) ≤ 1, i.e.,

πaSa
τ̄−1
U

µτ̄
+
aU (1− π)

µ
≤ 1 (25)

replacing aSa
τ̄−1
U µ−τ̄ with ν we have ν ≤ µ−aU (1−π)

µπ .
Furthermore, as aU > 1 and µ < 1, we have that ν ≥ aS

µ for
any τ̄ ∈ Z>0. Thus, we have that ν respects (13) ensuring
the desired control property in (10) by using Theorem 1.

Consider an arbitrary solution (χ, V̂ , τ) to (7), due to
SA1, we know that the V (χ(tk + τ̄)) ≤ aSa

τ̄−1
U V (χ(tk)),

where V (χ(tk)) was the value at the successful transmission
instant. Since ν = aSa

τ̄−1
U µ−τ̄ , we have that t′k ≥ tk+ τ̄ for

all tk ∈ T . Due to the erasure channel, the expected time
instants spent transmitting per attempt is π−1. Therefore, we
can evaluate

JET(ν, χ) ≤ π−1

π−1 + τ̄ − 1
= JAoI(τ̄). (26)

concluding our proof.
Theorem 2 provides the design of an event-triggering

policy that ensures the same guaranteed convergence rate
as a given AoI policy, but has reduced communication cost.
However, it is important to note that we have merely estab-
lished a bound for the convergence rate of the expectation of
the Lyapunov function along the solutions to (9), i.e., for the
AoI policy. The simulations in the next section demonstrate
that the communication rate may in fact be much smaller for
the event-triggered policy even when the convergence rate is
similar.

V. NUMERICAL EXAMPLE

We illustrate our results on a single-link robot arm model,
obtained by discretizing the continuous-time system using
an Euler method with a sampling period of 10−3 seconds.
System (1) with state x = (x1, x2) ∈ R2 is given by(

x1(t+ 1)
x2(t+ 1)

)
=

(
x1(t) + 10−3x2(t)

x2(t) + 10−3(sin(x1(t)) + u(t))

)
.

(27)
The emulated feedback law is given by u = − sin(x1) −
25x1 − 10x2 and we use zero-order-hold when the com-
munication packet is dropped. We consider that the packet
success rate is given by π = 0.8. SA1 is verified with
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V (χ) 7→ χ>Pχ, aS = 0.98, aU = 1.0009 and where

P =


0.0384 −0.0019 −0.0336 0.0031
−0.0019 0.0015 0.0033 −0.0008
−0.0336 0.0033 0.0341 −0.0032
0.0031 −0.0008 −0.0032 0.0009

 .

We take a range of µ ∈ {0.992, 0.993, . . . , 0.996} and
apply Theorem 1 with ν = µ−aU (1−π)

µπ , which ensures the
desired stability property for the event-triggered control after
verifying that aSµ−1 < ν. We draw inspiration from works
like [13] that study the control-communication trade-off of
event-triggered policies and compare it with simpler policies,
namely AoI as described in Section IV-B. In Fig. 2, we
plot the control-communication trade-off incurred by the
proposed event-triggered (for various µ) and AoI policies
from [10] that ensure (10) for the considered µ. Specifically,
we look at the time it takes (on average over 1000 simulations
with random initial conditions) for the Lyapunov function
to decrease by a factor of 104 as a measure of the control
performance and the average transmissions per time instant
as an estimate of JET. We plot the same trade-off for
AoI policies with τ̄ ∈ {14, 16, . . . , 22}. We observe that
the event-triggered policies significantly outperform the AoI
policies in both control and communication performance,
and this figure offers insights on how to design µ based on
desired performance.

Fig. 2. The average time for the Lyapunov function to decrease by a factor
of 104 along the solutions to the systems (7) and (9) respectively and the
corresponding average channel utilization.

VI. CONCLUSIONS

We have proposed an approach to design event-triggered
transmission policies for nonlinear systems communicating
over a lossy channel. We have compared its control and
communication performance with a AoI policy ensuring the
same convergence rate guarantees on the expectation of the
Lyapunov function along the respective solutions. Numerical
simulations demonstrate the proposed event-triggered policy
may have a smaller channel utilization even when both
classes of policies have the same convergence rate. Some
of the limitations of the current approach include assuming
perfect measurements and noiseless dynamics, lack of com-
munication delays, and considering that the wireless channel

is only present between the plant and the actuator. Future
works will focus on resolving these issues.
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