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Abstract— Koopman liftings have been successfully used to
learn high dimensional linear approximations for autonomous
systems for prediction purposes, or for control systems for lever-
aging linear control techniques to control nonlinear dynamics.
In this paper, we show how learned Koopman approximations
can be used for state-feedback correct-by-construction control.
To this end, we introduce the Koopman over-approximation,
a (possibly hybrid) lifted representation that has a simulation-
like relation with the underlying dynamics. Then, we prove
how successive application of controlled predecessor operation
in the lifted space leads to an implicit backward reachable set
for the actual dynamics. Finally, we demonstrate the approach
on two nonlinear control examples with unknown dynamics.

I. INTRODUCTION

The goal of backward reachability analysis is to identify a
set of states called the backward reachable set (BRS), which
guarantees the existence of a control strategy to direct a
system’s trajectories towards a predetermined target region
within a finite time. Having BRS can significantly simplify
controller synthesis while ensuring safety. Particularly, it
provides a state-feedback controller defined over the entire
BRS as opposed to point-to-point planners. However, for
general nonlinear systems, computation of maximal BRS
is considered a challenging problem [1]. To overcome this
fundamental limitation, one approach is to compute inner-
approximations which still guarantee existence of safe con-
trollers at the expense of being conservative.

One strategy for addressing nonlinear control problems
involves the application of Koopman operator theory to
extend the use of well-studied linear system analysis [2].
Particularly, a lifting function is sought which transforms
the coordinates to a higher dimensional space over which
the nonlinear dynamics flows in a linear fashion. However,
for an arbitrary nonlinear system, such a lifting function is
in general infinite-dimensional. Therefore, in practice, it is
only possible to construct finite-dimensional approximations,
which in-turn introduces an approximation error. By bound-
ing the approximation error, we provide a novel Koopman-
inspired approach to compute correct-by-construction inner
approximations of the BRS of discrete-time nonlinear sys-
tems. We also show how this approach can be used for
unknown systems where lifted local linear approximations
to the dynamics are computed from data and used for BRS
computation.
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A. Related work

Creating linear approximations of nonlinear systems is a
highly recognized subject in the field of systems and control.
There are various approaches such as Taylor approximation
based linearization, feedback linearization [3] and lineariza-
tion through state immersion [4]. More recently, approaches
motivated by Koopman operator theory start to draw revived
attention in control research. Several ways to use Koopman
lifted systems to address nonlinear control problems using
linear methods are proposed in literature [5], [6]. Koopman-
like lifted systems are also used to identify forward reachable
sets [7] and invariant sets of autonomous systems [8], [9].

Backward reachability analysis has also been extensively
studied as a useful tool to solve constrained control problems.
Existing techniques include set-based methods [1], [10]–
[12], discrete-abstractions [13], [14], Hamilton-Jacobi (HJ)
reachability [15], [16], and more recent work for unknown
dynamics [17]. However, most of the existing methods
cannot be extended to general nonlinear systems, especially
when the state space dimension is large [15]. All in all,
there is a trade-off between generality, scalability, and con-
servativeness, and new methods striking a different balance
between these factors are needed.

B. Notation

For a matrix A, Ai denotes its ith row. For a vector-valued
function f , f i is the ith component of f . The Lipschitz
constant of a function f is denoted by Lf . A norm is
represented by the notation ‖x‖, when it is applied to
a matrix it indicates induced norm. The notation B(c, r)
denotes a closed norm-ball centered at point c with a radius
of r. The symbol ⊕ is used for Minkowski sum. When × is
applied to sets it is to indicate cartesian product.

II. PROBLEM STATEMENT

We consider discrete-time systems of the form

Σ : x+ = f(x, u), (1)

with state x ∈ X ⊆ Rn and input u ∈ U ⊆ Rm. We use
uncertain systems of the form

Σa : x+ = g(x, u, w) (2)

as approximations of a given system Σ, where the distur-
bance input w ∈ W ⊆ Rl accounts for the mismatch. For
an uncertain system, one-step backward reachable sets are
defined as follows.

Definition 1 ( [10]): Given an uncertain system Σa, a
target set X ⊆ X and a state-input constraint set Sxu =
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Sx × Su ⊆ X × U , the one-step backward reachable set
(BRS) PreΣa(X,Sxu) of the set X with respect to Σa and
constraint set Sxu is given by

PreΣa
(X,Sxu) = {x ∈ Sx | ∃u ∈ Su : g(x, u,W ) ⊆ X}.

(3)
We denote Pre0

Σ(X,Sxu) = X and define recursively the
k-step backward reachable set (k-step BRS) of X by

PrekΣ(X,Sxu) = PreΣ(Prek−1
Σ (X,Sxu), Sxu). (4)

The definition of BRS applies to systems in (1) just by
taking the trivial disturbance W = {0}. For linear systems
and polytopic sets X and Sxu, the k-step BRS of X in
(4) is again a polytope, making it computable relatively
efficiently [18], [19]. However, if the system Σ is nonlinear,
the k-step BRS can be highly nonconvex, which makes
its computation challenging. The focus of this work is to
find inner approximations of the k-step BRS for nonlinear
systems.

Problem 1: Given a nonlinear system Σ, a polytopic tar-
get set X0, and a polytopic constraint set Sxu, find inner
approximations of the k-step BRS Xk = PrekΣ(X0, Sxu).
In the next section, we recast Problem 1 into a problem of
computing BRSs for uncertain linear systems with polytopic
sets using ideas from Koopman operator theory.

III. KOOPMAN OVER-APPROXIMATIONS

Inspired by Koopman operator theory, several recent works
propose to approximate a nonlinear system Σ by a higher-
dimensional linear system. More specifically, for the nonlin-
ear system Σ, there may exist a lifting function ψ : X → Rp
for which the dynamics of ψ(x) is approximately linear, i.e.,

ψ(f(x, u)) ≈ Aψ(x) +Bu.

Given a lifting function ψ : X → Rp, and the sys-
tem matrices A and B, we define the approximation error
EA,B(x, u) by

EA,B(x, u) = ψ(f(x, u))−Aψ(x)−Bu. (5)

When the lifting function ψ and system matrices A and B
are selected properly, the approximation error can be very
small over a domain of interest (see examples in [5]). The
evolution of the lifted state z = ψ(x) can be captured by an
uncertain linear system

Σlin : z+ = Az +Bu+ w, (6)

with z ∈ Rp, u ∈ U ⊆ Rm and w ∈ W ⊆ Rp if the set
W ⊆ Rp bounds the error EA,B(x, u) over given state and
input domains Xsub and Usub.

Definition 2: The tuple (ψ,Σlin) of a lifting function ψ :
X → Rp and a linear system Σlin is an Koopman over-
approximation of the system Σ over subdomains Xsub ⊆ X
and Usub ⊆ U if for all (x, u) ∈ Xsub × Usub, we have

EA,B(x, u) ∈W. (7)
When the lifting function ψ is clear from the context, we say
that Σlin is a Koopman over-approximation of Σ. Here we

do not require the subdomain Xsub to be forward invariant
or controlled invariant. If Usub and W are all {0}, then ψ(·)
is just a finite-dimensional Koopman eigenmapping for the
autonomous system x+ = f(x, 0) over Xsub [20].

To compute the BRS of Σ using the Koopman over-
approximation, we need to map the target and constraint sets
X and Sx from X to Rp. A straightforward method is to find
the images ψ(X) (or ψ(Sx)) of X (or Sx) with respect to
ψ, which is computationally challenging since ψ is typically
nonlinear. Instead, we propose a more relaxed and flexible
way to lift the sets in X to the higher-dimensional space Rp.

Definition 3: Given a lifting function ψ : X → Rp, a set
Z ⊆ Rp is a ψ-implicit inner approximation of a set X ⊆ X
if {x | ψ(x) ∈ Z} ⊆ X. If these two sets are equal, then Z
is called a ψ-implicit representation of X .

Note that implicit inner approximations (or representa-
tions) of a set may not be unique. The following assumption
is made in the remainder of this work, which allows one
to construct an implicit representation of any subset of X
easily.

Assumption 1: The lifting function ψ in Definition 2 has
a linear left inverse. That is, there exists a matrix C ∈ Rn×p
such that for all x ∈ X , Cψ(x) = x.
Assumption 1 can be satisfied by including the states x of
Σ as part of the outputs of ψ(x). The following proposition
shows how to utilize this assumption to construct implicit
representations.

Proposition 1: Under Assumption 1, for any subset X ⊆
X , the set Z = {z | Cz ∈ X} ⊆ Rp is a ψ-implicit
representation of X . In particular, if X is a polytope, Z
gives a polytopic ψ-implicit representation of X .

Proof: By definition of Z, the set {x | ψ(x) ∈ Z} is
equal to {x | Cψ(x) ∈ X}, which is further equal to X
since Cψ(x) = x by Assumption 1.
The next theorem shows how easily we can control the
nonlinear system Σ using a Koopman over-approximation
Σlin of Σ and ψ-implicit representations of sets.

Theorem 1: Suppose that (ψ(x),Σlin) is a Koopman
over-approximation of Σ over Xsub × Usub. Let Z be a ψ-
implicit inner approximation of a target set X . Then, for any
state x ∈ Xsub of Σ, if there exists an input u ∈ Usub such
that (Aψ(x) + Bu) ⊕W ⊆ Z, then the same u steers the
next state x+ = f(x, u) of Σ to X .

Proof: Suppose that there exists (x, u) ∈ Xsub × Usub
such that (Aψ(x) + Bu) ⊕ W ⊆ Z. By the definition
of Koopman over-approximation, ψ(f(x, u)) ∈ (Aψ(x) +
Bu) ⊕ W ⊆ Z, which further implies that f(x, u) ∈ X
since Z is a ψ-implicit inner approximation of X .
We call the set of inputs u ∈ Usub in Proposition 1 such
that (Aψ(x) + Bu) ⊕ W ⊆ Z the admissible input set
A(x, Z) of x with respect to the implicit target set Z. Under
Assumption 1, when X and W are polytopes,A(x, Z) can be
easily computed via standard polytope operations, thanks to
Proposition 1. The next theorem draws a connection between
the one-step BRS for Σ and that for Σlin.

Theorem 2: Let (ψ,Σlin) be a Koopman over-
approximation of Σ over Sxu = Sx × Su. If Z and

47



Sz are ψ-implicit inner approximations of X and Sx,
respectively, the one-step BRS PreΣlin

(Z, Szu), with
Szu = Sz × Su, is a ψ-implicit inner approximation of the
one-step BRS PreΣ(X,Sxu). That is,

{x | ψ(x) ∈ PreΣlin
(Z, Szu)} ⊆ PreΣ(X,Sxu). (8)

Proof: Let x0 be such that ψ(x0) ∈ PreΣlin
(Z, Szu).

Then (i) ψ(x0) ∈ Sz which implies x0 ∈ Sx; and (ii) there
exists u0 ∈ Su such that (Aψ(x0) + Bu0) ⊕ W ⊆ Z.
Because (ψ,Σlin) is a Koopman over-approximation of Σ,
then ψ(f(x0, u0)) ∈ (Aψ(x0) + Bu0) ⊕ W which is a
subset of Z. This shows that x0 ∈ PreΣ(X,Sxu). Since x0

is arbitrary in {x | ψ(x) ∈ PreΣlin
(Z, Szu)}, the proof is

complete.
By construction, every state x in the set on the LHS of (8)
has a nonempty admissible input set A(x, Z), which can be
easily extracted under Assumption 1. Moreover, according
to Proposition 1, the polytopic sets X and Sx in Problem
1 have polytopic implicit representations Z0 = {Cx | x ∈
X}, Sz = {Cx | x ∈ Sx}. Then, by applying Theorem
2 recursively, the k-step BRS Zk = PrekΣlin

(Z, Szu) of Z
provides a polytopic inner approximation of the k-step BRS
Xk = PreΣ(X,Sxu). Their relationship is illustrated in Fig.
1.

So far, we assume that there exists a single Koopman over-
approximation Σlin over Sxu. Similar to local linearizations
in gain-scheduled control, one can also find a set of local
Koopman over-approximations {Σlin,i}Nk

i=1 (with the same
lifting function ψ) at each step, where each Σlin,i over-
approximates Σ over a subdomain Sx,i×Su,i of Sxu. Then,
Theorem 2 can be easily extended to show that if Zk−1 is
an ψ-implicit inner approximation of Xk−1, the union Zk
of the one-step BRSs PreΣlin,i

(Zk−1, Szu,i)
1 for all i is a

ψ-implicit inner approximation of the k-step BRS Xk of Σ.
That is,

{x | ψ(x) ∈ ∪Nk
i=1PreΣlin,i

(Zk−1, Szu,i)} ⊆ Xk.

Later, our numerical examples show that using local
Koopman over-approximations allows us to compute much
larger BRSs, while as a cost, if Nk > 1, the k-step implicit
BRS Zk needs to be represented by a union of polytopes
(instead of a single polytope).

IV. COMPUTATIONAL APPROACH FOR FINDING
KOOPMAN OVER-APPROXIMATIONS

In this section, we first discuss how to obtain global
Koopman over-approximations. When the system dynamics
is unknown, we discuss how one may use data to obtain
such over-approximations. Then, we provide a method to
efficiently find local Koopman over-approximations based on
the obtained global Koopman over-approximations.

A. Computing Koopman over-approximations

Trivially, if we can bound the error in (5) in the entire
constraint set, i.e., for all (x, u) ∈ Sxu, EA,B(x, u) ∈
B(c, ε), then the linear system Σlin defined by A, B and

1Here Szu,i = Sz,i×Su,i with Sz,i a ψ-implicit representation of Sx,i.

Dynamics
x+ = f(x, u)

Koopman
over-approximation
z+ ∈ Az +Bu⊕W

BRS
Xt

BRS
Zt

z = ψ(x)

x = Cz

Implicit
Inner Approx.

Fig. 1. Relation between different systems and their BRSs.

W = B(c, ε) is a Koopman over-approximation of Σ over
Sxu. Note that such a bounding ball always exists if f and
ψ are continuous and Sxu is compact (see Theorem 4.15 in
[21]). Moreover, it can be computed analytically or using
optimization techniques (e.g., [22]) when the dynamics of Σ
is known.

Let us now assume the dynamics is unknown and we are
given a finite data set D = {(xi, ui, x+

i )}Ni=1 where (xi, ui)
is sampled in Sxu and x+

i = f(xi, ui). We denote by Dxu,
the state-input pairs in the data set D. Let us further assume
that we are given a valid Lipschitz constant LEA,B

for the
error function EA,B . We use the dispersion of the data set
together with the Lipschitz constant of the error to evaluate
the error bound.

Definition 4 ( [23]): Given the constraint set Sxu and
data set Dxu, the dispersion b of Dxu in Sxu is defined
by

b = sup
(x,u)∈Sxu

min
(x̄,ū)∈Dxu

‖(x, u)− (x̄, ū)‖.

Note that we do not require Dxu ⊆ Sxu. The next theorem
translates the error on the data set to an error bound.

Theorem 3: Given a constraint set Sxu, a data set D for
which Dxu has dispersion b in Sxu, a lifting function ψ, and
matrices A, B of compatible dimensions, and consider the
Lipschitz constant LEA,B

. Define

e(A,B) = min
c

max
(x̄,ū,x̄+)∈D

‖ψ(x̄+)−Aψ(x̄)−Bū− c‖,

with c∗ as the minimizer. Let ε = LEA,B
b+ e(A,B). Then

the linear system Σlin defined by A, B, and W = B(c∗, ε) is
a Koopman over-approximation of Σ over the domain Sxu.

Proof: Following [24], for any (x̄, ū) ∈ Dxu and
(x, u) ∈ Sxu, one can write

‖EA,B(x, u)− c∗‖
≤ ‖EA,B(x, u)− EA,B(x̄, ū)‖+ ‖EA,B(x̄, ū)− c∗‖
≤ LEA,B

‖(x, u)− (x̄, ū)‖+ ‖ψ(x̄+)−Aψ(x̄)−Bū− c∗‖,

where the last inequality follows from the definition of Lips-
chitz constant and the definition of x̄+. Finally, by definition
of b, e and ε, we conclude that ‖EA,B(x, u) − c∗‖ ≤ ε, for
all (x, u) ∈ Sxu.

Given a data set D, Theorem 3 provides a way to find
a Koopman over-approximation over a domain Sxu. First,
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solve the following convex optimization problem to obtain
the system parameters:

A,B = arg min
A,B

e(A,B). (9)

Second, find (an over-estimation of) the Lipschitz constant
LEA,B

(see Remark 1 below). Third, Theorem 3 provides a
W which leads to a Koopman over-approximation.

Remark 1: While it is not possible to obtain deterministic
Lipschitz constant bounds from finite amount of data, esti-
mation of Lipschitz constants is an active research area [25],
[26]. For instance, given A, B, ψ and a data set D, if Dxu is
independent and identically distributed, statistical methods
such as scenario approach or extreme value theory can be
used to obtain an estimate [24], [27]. The same statistical
techniques can also be applied to directly estimate a bound
on EA,B from data. In the next subsection, we show how a
given valid estimate LEA,B

can be used to locally calibrate
A, B in an efficient way.

B. Computing local Koopman over-approximations

The error bound for globally estimated A, B matrices
can be large, possibly resulting in conservative BRS inner
approximations. For this reason, we want to establish a
smaller error bound by adapting the globally estimated Σlin
parameters to smaller localities. We rely on the fact that for
matrices Ã and B̃, the function ∆Ã,B̃ defined by

∆Ã,B̃(x, u) = EÃ,B̃(x, u)− EA,B(x, u)

= (A− Ã)ψ(x) + (B − B̃)u,

is independent of the nonlinear dynamics f . The following
theorem is useful for developing a method to compute a local
Koopman over-approximation over a subset of Sxu.

Theorem 4: Given a subdomain S̃ ⊆ Sxu, a data set D
with dispersion b in Sxu, a lifting function ψ, and matrices
A, B, Ã, B̃ of compatible dimensions, consider the Lipschitz
constants L∆Ã,B̃

and LEA,B
. Define D̃ ⊆ D such that D̃xu =

Dxu ∩
(
S̃ ⊕ B(0, b)

)
, and

ẽ(Ã, B̃) = min
c̃

max
(x̄,ū,x̄+)∈D̃

‖ψ(x̄+)− Ãψ(x̄)− B̃ū− c̃‖,

with c̃∗ as the minimizer. Let ε̃ = (L∆Ã,B̃
+ LEA,B

)b +

ẽ(Ã, B̃). Then the linear system Σ̃lin defined by Ã, B̃, and
W̃ = B(c̃∗, ε̃) is a Koopman over-approximation of Σ over
the subdomain S̃.

Proof: First, let us show that D̃xu has dispersion at
most b in S̃. If b is finite, then S is bounded and so is S̃.
Let (x, u) be in the closure of S̃ and let (x̄, ū) be its closest
neighbor in Dxu. By definition of b, ‖(x, u) − (x̄, ū)‖ ≤ b.
But then, (x̄, ū) ∈ S̃ ⊕ B(0, b) and finally (x̄, ū) ∈ D̃xu,
which proves the claim.

Then, for any (x, u) ∈ S̃ and (x̄, ū) ∈ S̃ ∩ D, one can

write

‖EÃ,B̃(x, u)− c̃∗‖
= ‖EÃ,B̃(x, u)− EÃ,B̃(x̄, ū) + EÃ,B̃(x̄, ū)− c̃∗‖
≤ ‖EÃ,B̃(x, u)− EÃ,B̃(x̄, ū)‖+ ‖EÃ,B̃(x̄, ū)− c̃∗‖
= ‖EÃ,B̃(x, u)− EA,B(x, u) + EA,B(x̄, ū)

− EÃ,B̃(x̄, ū) + EA,B(x, u)− EA,B(x̄, ū)‖
+ ‖EÃ,B̃(x̄, ū)− c̃∗‖
≤ ‖∆Ã,B̃(x, u)−∆Ã,B̃(x̄, ū)‖

+ ‖EA,B(x, u)− EA,B(x̄, ū)‖+ ‖EÃ,B̃(x̄, ū)− c̃∗‖
≤ (L∆Ã,B̃

+ LEA,B
)‖(x, u)− (x̄, ū)‖

+ ‖EÃ,B̃(x̄, ū)− c̃∗‖.

Since D̃xu has dispersion at most b in S̃, then for all (x, u) ∈
S̃, ‖EÃ,B̃(x, u)− c∗‖ ≤ ε̃, which concludes the proof.

Theorem 4 can be used to find Ã, B̃ and c̃∗ over a
subdomain S̃ by solving the following optimization problem

Ã, B̃, c̃∗ = arg min
Ã,B̃,c̃

{(
L∆Ã,B̃

+ LEA,B

)
b

+ max
(x̄,ū,x̄+)∈D̃

‖ψ(x̄+)− Ãψ(x̄)− B̃ū− c̃‖
}
. (10)

In general the dependence on L∆Ã,B̃
makes the optimiza-

tion problem (10) hard to solve. However, the following
theorem states that if Sxu is equipped with the infinity norm
and if for each dimension i = 1, . . . , p a Lipschitz constant
LEi

Ai,Bi

of EiAi,Bi
(x, u) = ψi(f(x, u)) − Aiψ(x) − Biu is

known, then a local Koopman over-approximation can be
found by solving p linear programs.

Theorem 5: Given a subdomain S̃ ⊆ Sxu equipped with
the infinity norm, a data set D with dispersion b in Sxu, a
lifting function ψ, and matrices A, B, Ã, B̃ of compatible
dimensions, consider the Lipschitz constants Lψ and LEi

Ai,Bi

for i = 1, . . . , p. Define D̃ ⊆ D such that D̃x,u = Dxu ∩(
S̃ ⊕ B(0, b)

)
, and for i = 1, . . . , p, define

ẽi(Ãi, B̃i) = min
c̃i

max
(x̄,ū,x̄+)∈D̃

|ψi(x̄+)− Ãiψ(x̄)− B̃iū− c̃i|,

with c̃∗i as the minimizer. Let

ε̄i =
(
‖A>i − Ã>i ‖1Lψ + ‖B>i − B̃>i ‖1 + LEi

Ai,Bi

)
b

+ ẽi(Ãi, B̃i).

Then the linear system Σ̄lin defined by Ã, B̃, W̄ = c̃∗ ⊕
×p

i=1
[−ε̄i, ε̄i] is a Koopman over-approximations of Σ over

the subdomain S̃.
Proof: Following the same reasoning as the proof of

Theorem 4, for all (x, u) ∈ S̃,

|Ei
Ã,B̃

(x, u)− c∗i | ≤ (L∆i
Ãi,B̃i

+ LEi
Ai,Bi

)b+ ẽi(Ãi, B̃i).

(11)
We are going to show that

L∆i
Ãi,B̃i

≤ ‖A>i − Ã>i ‖1Lψ + ‖Bi − B̃i‖1. (12)

49



Indeed, for all (x1, u1), (x2, u2) ∈ S̃, using the triangular
inequality, the definition of Lipschitz constant and the defi-
nition of infinity norms, one can write

|∆i
Ãi,B̃i

(x1, u1)−∆i
Ãi,B̃i

(x2, u2)|

= |(Ai − Ãi)
(
ψ(x1)− ψ(x2)

)
+ (Bi − B̃i)(u1 − u2)|

≤ |(Ai − Ãi)
(
ψ(x1)− ψ(x2)

)
|+ |(Bi − B̃i)(u1 − u2)|

≤ ‖A>i − Ã>i ‖1Lψ‖x1 − x2‖∞ + ‖B>i − B̃>i ‖1‖u1 − u2‖∞
≤
(
‖A>i − Ã>i ‖1Lψ + ‖B>i − B̃>i ‖1

)
‖(x1 − x2, u1 − u2)‖∞,

which proves relation (12). Combining (11) and (12) with
the definition of ε̄i, we have |Ei

Ã,B̃
(x, u) − c̃∗i | ≤ ε̄i for all

(x, u) ∈ S̃, which concludes the proof.
An important consequence of Theorem 5 is that a Koop-

man over-approximation can be found by solving the follow-
ing linear programs: For i = 1, . . . , p,

Ãi,B̃i, c̃
∗
i = arg min

Ãi,B̃i,c̃i

{(
‖A>i − Ã>i ‖1Lψ + ‖B>i − B̃>i ‖1+

LEi
Ai,Bi

)
b+ max

(x̄,ū,x̄+)∈D̃
|ψi(x̄+)− Ãiψ(x̄)− B̃iū− c̃i|

}
.

V. RESULTS AND DISCUSSION

In this section, our method is illustrated by computing
the BRS of two nonlinear dynamical systems, the forced
Duffing oscillator and the inverted pendulum, and com-
pared with the HJB method on these examples. Our code
that generates the figures and implements our algorithm
is available at: https://github.com/haldunbalim/
KoopmanBRS. The reported computation times are obtained
with a laptop with a Quad-Core Intel i7 CPU and 16 GB of
RAM.

A. Forced Duffing oscillator

We consider forced Duffing oscillator [28] with dynamics

ẋ =

[
y

2x− 2x3 − 0.5y + u

]
, discretized using Runge-Kutta

4(5) scheme with a 0.025 time step. The state is x =[
x, y
]> ∈ [−0.5, 0.5] × [−1.5, 1.5] and the input is u ∈[

−5, 5
]
. The target set is XT = [−0.1, 0.1]× [−0.1, 0.1] and

the considered lifting function is ψ(x) = [x, y, x3]>.
A Koopman over-approximation is estimated from 1000

random tuples (x, u,x+) according to (9). Then the error
EA,B is bounded component-wise via the extreme value
theory using 200 samples (see Remark 1). We validated
the fit of an extreme value distribution with significance
0.05 using the Kolmogorov-Smirnov (KS) goodness-of-fit
test [29] with 50 samples. The estimated error bound is
ε = [0.0005, 0.0004, 0.0133]>.

We use our method to compute a 10-step BRS. The
results are presented in Figure 2 with a comparison with
BRS obtained by the Hamilton-Jacobi (HJB) method [15].
Note that unlike our method, HJB requires knowledge of
the dynamics and can be seen as a ground truth modulo
numerical inaccuracies in PDE solutions. The HJB method
took 74.41 s, while our method ran in 0.41 s given the
Koopman over-approximation.

Fig. 2. Backward reachable sets for the Duffing oscillator.

Fig. 3. Backward reachable sets for the inverted pendulum.

B. Inverted pendulum

Consider the dynamics of an inverted pendulum: ẋ =[
θ̇

3g
2l sin(θ) + 3

ml2u

]
. It is discretized with time step 0.1

using explicit Euler scheme. The state is x = [θ, θ̇]> ∈ Sx =
[0, 3π

2 ] × [−6, 4], and the input is u ∈ Su = [−0.35, 0.35].
The parameters (m, l, g) are set to (0.1, 1, 10) respectively.
The target set is [0, 0.2]× [−0.5, 0.5] and the lifting function
considered is ψ(x) = [θ, θ̇, sin(θ)]>.

Matrices A, B are computed using equation (9) from
a data set of approximately 300, 000 samples created via
grid-sampling with 0.04 unit separation in the state dimen-
sions and 0.08 unit separation in the action dimension.
The component-wise Lipschitz constant LEi

A,B
of the error

function is estimated using extreme value theory [25] with
40, 000 samples for fitting and 10, 000 samples for KS test
with a significance value of 0.05. We obtain LEA,B

=
[0, 0, 0.737]>.

For each local Koopman over-approximation, matrix B is
kept constant, while matrix A is adapted using Theorem 4.
Since we are only changing A matrix, L∆Ã,B̃

is replaced
with L∆Ã

which only depends on states. Therefore, we only
need to multiply this term by dispersion bx computed over
states.

To choose the subdomains for a given target set, we filter
tuples in our dataset for which the next state falls into
the target set. Then, the subdomain is chosen as a rotated
bounding box around the states of these tuples using [30]. If
the 1-norm of the radii of W̄ for a subdomain is greater than
0.18, the corresponding target set is split into two halves,
through its Chebyshev center along the axis its bounding
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box has the greatest span. This is done to create smaller
subdomains where local Koopman over-approximations yield
smaller errors.

In Figure 3, we present a comparison of the BRS computed
using our method, a variant where ψ(x) is the identity
function, and the BRS computed using the HJB method.
All three methods are used to compute BRS for a horizon
of 15 and the computation times for these approaches were
245.4 s, 952.6 s, and 85.4 s, respectively. Our results indicate
that the inclusion of a lifting dimension led to a significant
increase in computational speed (thanks to a smaller number
of subdomains being sufficient for achieving small error)
and generated sets with larger volume. Finally, we show
a trajectory starting from x = [π, 0]> that is steered to
the target set using control inputs extracted according to
Theorem 1. The pendulum initially moves counter-clockwise
to accumulate energy before proceeding towards the target
set. This intricate maneuver demonstrates the effectiveness
of our methodology in tackling the problem at hand.

VI. CONCLUSION AND FUTURE DIRECTIONS

Inspired by Koopman operator theory, in this paper, we
have introduced Koopman over-approximations for discrete-
time nonlinear systems. These over-approximations allow us
to use linear system backward reachability tools to compute
implicit BRSs of nonlinear systems. Crucially, control inputs
steering the system to the target set can be easily extracted
from these implicit BRSs at run-time. We have also pre-
sented computational approaches to construct Koopman over-
approximations from data when the underlying nonlinear
system is unknown. Finally, we have discussed a local
version of these over-approximations, which, in a sense,
generalizes the hybridization approaches, such as [31], in
correct-by-construction control literature using lifting.

While our theoretical results hold for any given Lipschitz
lifting function, a limitation of our work is the lack of
a method for choosing the lifting function, which affects
the size of the computed BRS. Our future work will aim
to overcome this limitation by investigating how to obtain
lifting functions incrementally in a way to yield monotoni-
cally better performance. From an algorithmic point of view,
we plan to replace the polytopic reachability tools used
in this paper to compute the BRS of the Koopman over-
approximation with more efficient zonotopic ones [12] to
improve scalability. Finally, it is also interesting to generalize
the results to handle uncertainty in dynamics and measure-
ments.
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