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Abstract— The selection of stepsizes has always been an
elusive task in distributed optimization and learning. Although
some stepsize-automation approaches have been proposed in
centralized optimization, these approaches are inapplicable in
the distributed setting. This is because in distributed optimiza-
tion/learning, letting individual agents adapt their own stepsizes
unavoidably results in stepsize heterogeneity, which can easily
lead to algorithmic divergence. To solve this issue, we propose
an approach that enables agents to adapt their individual
stepsizes without any manual adjustments or global knowledge
of the objective function. To the best of our knowledge, this is
the first algorithm to successfully automate stepsize selection in
distributed optimization/learning. Its performance is validated
using several machine learning applications, including logistic
regression, matrix factorization, and image classification.

I. INTRODUCTION

We consider a group of m agents communicating through
a network to cooperatively solve the following optimization
problem:

min
x∈Rn

f(x) =
1

m

m∑
i=1

fi(x), (1)

where fi(x) : Rn → R, i ∈ {1, · · · ,m} is a local objective
function known to agent i only.

Nowadays, substantial progress has been made in solving
the above distributed optimization/learning problem [1]–[8].
In all existing results, the stepsize is a crucial parameter
that determines the performance of convergence. However,
determining a good stepsize usually incurs tedious manual
adjustments [9]–[11]. The distributed setting further com-
plicates stepsize selection because in this case, each agent
independently adapts its stepsize using its partial view of the
objective function, which leads to stepsize heterogeneity that
can easily lead to algorithmic divergence. Our experimental
results in Fig. 1 show that the divergence issue becomes
even more acute when the data distribution is heterogeneous
across the agents. Moreover, existing distributed optimiza-
tion and learning algorithms typically choose a constant or
diminishing stepsize, whose selection requires knowledge of
the communication graph or the Lipschitz constant of the
global objective function, which is generally hard to obtain
in practical distributed applications.

Recently, some stepsize-adaptation approaches have been
proposed in distributed optimization and learning. For ex-
ample, [12] introduced a backtracking line-search method
to adapt stepsizes in distributed optimization. However, it
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requires execution of another subroutine with additional
evaluation of gradients, and hence incurs heavy computa-
tional overheads. [13] used the Barzilai-Borwein stepsize
in a gradient-tracking-based algorithm, which, unfortunately,
requires knowledge of the global Lipschitz constant and the
strongly convex coefficient. Several adaptive gradient meth-
ods have also been proposed to automate stepsize selection in
distributed learning [14]–[16]. Nevertheless, these methods
still require laborious tuning for learning-rate parameters. To
the best of our knowledge, we still lack a solution which
is capable of automating stepsize selection in distributed
optimization and learning without any manual adjustments.

In this paper, we propose an approach that can automate
stepsize selection in distributed optimization and learning
without any manual adjustments or global knowledge of
the objective function. Our basic idea is inspired by a re-
cently proposed stepsize-automation approach for centralized
optimization [17]. It is worth noting that directly apply-
ing the centralized stepsize-automation method in [17] to
the distributed setting will unavoidably make the stepsize
heterogeneous across the agents, which can easily lead to
divergence. Hence, we propose to adjust the centralized
stepsize automation approach in [17] and then combine the
adjusted version with gradient tracking to automate stepsize
selection in distributed optimization and learning. To the best
of our knowledge, this is the first algorithm that successfully
automates stepsize selection in distributed optimization and
learning without any manual adjustments. Our numerical
experiments with logistic regression, matrix factorization,
and image classification confirm the effectiveness of the
proposed approach in real-world machine learning problems.
In fact, the proposed algorithm was shown to have better
learning and test accuracies than existing popular algorithms
for distributed optimization and learning.

Notation: We use R, N, and N+ to represent the sets
of real numbers, nonnegative integers, and positive integers,
respectively. We denote an m-dimensional column vectors
whose elements are 0 and 1 as 0m and 1m, respectively. We
write an n-dimensional vector as x∈Rn, with ∥x∥ denoting
its Euclidean norm. For vectors x1,· · ·, xm, we denote their
stacked column vector by x=col{x1, · · · , xm}. We add an
overbar to a variable to denote the averaged version of all
agents, e.g., x̄= 1

m

∑m
i=1 xi.

II. PROBLEM STATEMENT

We assume that a network of m agents interact on an
undirected graph G([m], E), where [m] is the set of agents
and E is the set of edges. The interaction strength is described
by a weight matrix W = {wij} ∈ Rm×m, in which wij > 0
if the edge (i, j) ∈ E exists, and wij = 0 otherwise. The
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neighbor set Ni of agent i is defined as the set of agents
{j|wij > 0}, which always includes itself. We make the
following standard assumption on the interaction:

Assumption 1: W = wij ∈ Rm×m satisfies 1T
mW =

1T
m, W1m = 1m, and ρ ≜ max{|λ2|, |λm|} < 1, where

λm ≤ λm−1 ≤ · · · < λ1 = 1 denote the eigenvalues of W .
In most existing distributed optimization and learning

algorithms [1]–[6], [18]–[23], the stepsize is selected as a
constant value (usually denoted as η) or a decaying sequence
like 1

tv , where t is the iteration index and v is some positive
constant. However, the selection of such η and v requires la-
borious manual adjustments to achieve effective convergence.
Generally, to ensure provable convergence, the stepsize has
to be below a threshold value which is determined by the
interaction graph or the Lipschitz constant of the global
objective function, which, in general, is difficult to obtain
in the distributed setting. To make things worse, even if
a good stepsize is obtained after tedious adjustments, it is
usually highly dependent on the network size, topology, and
datasets, making it hard to migrate to other applications or
even datasets.

III. DISTRIBUTED STEPSIZE-AUTOMATION ALGORITHM

To avoid tedious and repetitive stepsize tuning, we propose
a stepsize-automation approach for distributed optimization
and learning, as summarized in Algorithm 1.

Algorithm 1 Stepsize-Automated Distributed Optimization
and Learning (from agent i’s perspective)

1: Input: Random initialization xi,0 ∈ Rn and ηi,0 > 0;
yi,0 = ∇fi(xi,0).

2: for t = 0, · · · , T − 1 do
3: xi, t2

= xi,t − ηi,tyi,t
4: xi,t+1 =

∑m
j=1 wijxj, t2

5: yi, t2 = yi,t +∇fi(xi,t+1)−∇fi(xi,t)

6: yi,t+1 =
∑m

j=1 wijyj, t2
7: ηi,t+1=min

{√
2ηi,t,

1
∥yi,t+1∥ ,

∥xi,t+1−xi,t∥
2∥∇fi(xi,t+1)−∇fi(xi,t)∥

}
8: end for

In Algorithm 1, the stepsize for each agent i ∈ [m] is
updated locally according to the following rule:

ηi,t+1=min

{√
2ηi,t,

1

∥yi,t+1∥
,

∥xi,t+1 − xi,t∥
2∥∇fi(xi,t+1)−∇fi(xi,t)∥

}
.

(2)
In (2), the first argument of the min function is used

to guarantee that the stepsize does not increase too fast.
The second argument is used to estimate the inverse of the
average gradient of all agents, and the third argument is
used to approximate the inverse of the Lipschitz constant
of the local gradient. It can be seen that the stepsize strategy
in (2) only uses local gradients and variables, and is tuning-
free. This approach differs from existing distributed adaptive
stepsize approaches in [13]–[16], which require knowledge
of the global Lipschitz constant. Moreover, unlike distributed
optimization algorithms [18]–[22] that restrict the stepsize
to be below the reciprocal of the global Lipschitz constant,
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Distributed gradient descent using
stepsize-automation method (3)

(a) Gradient evolution
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(b) Stepsize evolution of all agents

Fig. 1. Matrix factorization using distributed gradient descent [1] with
10 agents. Each agent runs the centralized stepsize-automation approach
in [17]. We use the “MovieLens 100k” dataset under heterogeneous data
distribution.

the stepsize strategy in (2) is not subject to this limitation,
thereby offering potentially fast convergence, as evidenced
in our experimental results in Fig. 2-Fig. 4.

Our stepsize-automation approach in (2) is inspired by the
centralized stepsize automating approach in [17]:

ηt+1 = min

{√
1 +

ηt
ηt−1

ηt,
∥xt+1 − xt∥

2 ∥∇f (xt+1)−∇f (xt)∥

}
,

(3)
However, directly applying the centralized stepsize-

automation approach (3) to the distributed setting can easily
lead to algorithmic divergence. The reason lies in that
allowing each agent to implement (3) using its own local
gradients and optimization variables will lead to heteroge-
neous stepsizes across the agents. What’s even worse is
that this stepsize heterogeneity is time-varying as agents
adapt their stepsizes over iterations, which may easily lead
to divergence, as confirmed in our numerical experimental
results in Fig. 1.

IV. MAIN RESULTS

In this section, we prove that Algorithm 1 can indeed
avoid algorithmic divergence even when individual agents’
stepsizes are heterogeneous and time-varying. To this end,
we make the following standard assumption, which is com-
monly used in distributed optimization under heterogeneous
stepsizes [18]–[21]:

Assumption 2: Each local objective function fi(x) is
differentiable, li-smooth with some constant li > 0, and µi-
strongly convex with some constant µi > 0.
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Lemma 1: [17] Under Assumption 2, the stepsize ηi,t
in Algorithm 1 satisfies 1

2li
≤ ηi,t ≤ 1

2µi
.

Let us define ηmax ≜ maxt∈N+,i∈[m]{ηi,t} ≤ 1
2µmin

with
µmin ≜ mini∈[m]{µi} and ηmin ≜ mint∈N+,i∈[m]{ηi,t} ≥

1
2lmax

with lmax ≜ maxi∈[m]{li}, respectively.
Lemma 2: Under Assumption 1 and Assumption 2, the

following inequalities always hold for Algorithm 1:

lim
t→∞

∥xt−1m⊗ x̄t∥2 ≤ c1 and lim
t→∞

∥yt−1m⊗ ȳt∥2 ≤ c2,

(4)
with c1 = 8mρ2

(1−ρ)2 and c2 =
8(3+ρ)2ml2maxρ

4

(1−ρ)4 .
Proof: The standard consensus result in [24] implies

∥xt+1 − 1m ⊗ x̄t+1∥ ≤ ρ∥x t
2
− 1m ⊗ x̄t+1∥, (5)

∥yt+1 − 1m ⊗ ȳt+1∥ ≤ ρ∥y t
2
− 1m ⊗ ȳt+1∥. (6)

Based on the 3rd step of Algorithm 1, we have

∥x t
2
− 1m ⊗ x̄t+1∥

≤ ∥xt − 1m ⊗ x̄t∥+ ∥ηtyt∥+ ∥1m ⊗ ηtyt∥.
(7)

The update in the 7th step of Algorithm 1 implies ∥ηtyt∥ ≤√
m and

∥x t
2
− 1m ⊗ x̄t+1∥ ≤ ∥xt − 1m ⊗ x̄t∥+ 2

√
m. (8)

Combing (8) and (5), and then iterating the obtained relation
from 0 to t yield

∥xt − 1m ⊗ x̄t∥ − b1 ≤ ρt (∥x0 − 1m ⊗ x̄0∥ − b1) , (9)

with b1 = 2
√
mρ

1−ρ . Taking squares and then the limit on both
sides of (9), we arrive at the first inequality in (4).

We proceed to prove the second inequality in (4). Step 5
of Algorithm 1 implies ȳt = 1

m

∑m
i=1 ∇fi(xi,t). Combing

this relationship and Assumption 2, we obtain

∥y t
2
− 1m ⊗ ȳt+1∥ ≤ ∥yt − 1m ⊗ ȳt∥+ 2lmax∥xt+1 −xt∥.

(10)
Next, we characterize ∥xt+1 − xt∥ in (10):

∥xt+1 − xt∥ ≤ ∥xt+1 − x t
2
∥+ ∥x t

2
− xt∥

≤ ∥xt+1 − 1m ⊗ x̄t+1∥+ ∥1m ⊗ x̄t+1 − x t
2
∥+

√
m

≤ (1 + ρ)∥x t
2
− 1m ⊗ x̄t+1∥+

√
m

≤ (1 + ρ)(ξ + 2
√
m) +

√
m, (11)

where ξ is given by ξ = 2
√
mρ

1−ρ +ρt(∥x0−1m⊗x̄0∥− 2
√
mρ

1−ρ ).
Note that in the derivation, we have used the update rule in
step 3 of Algorithm 1 and the relation ∥ηtyt∥ ≤

√
m in the

second inequality. Moreover, we have used (5) in the third
inequality, and have used (8) and (9) in the last inequality.

Substituting (11) into (10), and then using (6), we obtain

∥yt+1 − 1m ⊗ ȳt+1∥ ≤ ρ∥yt − 1m ⊗ ȳt∥
+ 2lmaxρ

(
(1 + ρ)(ξ + 2

√
m) +

√
m
)
.

(12)

Iterating the inequality (12) from 0 to t yields

∥yt − 1m ⊗ ȳt∥ − b2 ≤ρt (∥y0−1m ⊗ ȳ0∥ − b2) , (13)

with b2 = 2lmaxρ
2(ξ+3

√
m+(2

√
m+ξ)ρ)

1−ρ . Taking squares and
then the limit on both sides of (13), we obtain the second
inequality in (4).

We proceed to quantify the distance between xi,t and the
optimal solution x∗. We first use the following relationship:

∥x̄t+1 − x∗∥2 = ∥x̄t − x∗∥2 − ∥x̄t+1 − x̄t∥2

+ 2⟨x̄t+1 − x̄t, x̄t − x∗⟩+ 2⟨x̄t+1 − x̄t, x̄t+1 − x̄t⟩. (14)

To bound the right hand side of (14), we need the
following Lemma 3 and Lemma 4.

Lemma 3: Under Assumption 1 and Assumption 2, the
following inequality always holds for Algorithm 1:

2⟨x̄t+1 − x̄t, x̄t − x∗⟩ ≤ 2η̄t(f(x
∗)− f(x̄t))

+ (a1 + η̄t(a2 − µ̄))∥x̄t − x∗∥2 +∆1,t, ∀t > 0,
(15)

with a1, a2 ∈ (0, 1) and ∆1,t =
l2maxηmax

a2m
∥xt −1m ⊗ x̄t∥2 +

η2
max

a1m
∥yt − 1m ⊗ ȳt∥2.
Proof: Based on the 3rd step of Algorithm 1, we have

⟨x̄t+1 − x̄t, x̄t − x∗⟩
= −⟨ηtyt − η̄tȳt, x̄t − x∗⟩ − ⟨η̄tȳt, x̄t − x∗⟩ .

(16)

Using the Young’s inequality, the first term on the right hand
side of (16) satisfies following relation for any a1 ∈ (0, 1):

− ⟨ηtyt − η̄tȳt, x̄t − x∗⟩

≤ 1

2a1

1

m

m∑
i=1

∥ηi,t(yi,t − ȳt)∥2 +
a1
2
∥x̄t − x∗∥2.

(17)

Using Assumption 2, the second term on the right hand side
of (16) satisfies the following inequality for any a2 ∈ (0, 1):

− ⟨ȳt, x̄t − x∗⟩ ≤ l2max

2a2m
∥xt − 1m ⊗ x̄t∥2

+
(a2
2

− µ̄

2

)
∥x̄t − x∗∥2 + f(x∗)− f(x̄t).

(18)

Plugging (17) and (18) into (16) yields (15).
Lemma 4: Under Assumption 1 and Assumption 2, the

following inequality always holds for Algorithm 1:

2⟨x̄t+1 − x̄t, x̄t+1 − x̄t⟩ ≤
(1 + a4

2
+ a6 + a7 −

√
2µ̄η̄t

)
× ∥x̄t − x̄t−1∥2 +

(1 + a3
2

+ a5

)
∥x̄t+1 − x̄t∥2

+ 2
√
2η̄t(f(x̄t−1)− f(x̄t)) + ∆2,t, ∀t > 0, (19)

where a3 to a7 are arbitrary numbers within (0, 1) and
∆2,t is given by ∆2,t = (1 + 1

a4
+

2η2
maxl

2
max

a7
) 1
m∥xt −

1m ⊗ x̄t∥2 + (
η2
max

a6
+

η2
max

a3
) 2
m∥yt − 1m ⊗ ȳt∥2 + (1 +

1
a4
) 1
m∥xt−1 − 1m ⊗ x̄t−1∥2 + (

η2
max

a5
+

2η2
max

a3
) 2
m∥yt−1 −

1m⊗ ȳt−1∥2+ 8η2
maxl

2
max

a3m
((1 + ρ)ξ + 2

√
mρ+ 3

√
m)

2 with
ξ = 2

√
mρ

1−ρ + ρt(∥x0 − 1m ⊗ x̄0∥ − 2
√
mρ

1−ρ ).
Proof: To prove the inequality in (19), we use the

following decomposition:

2⟨x̄t+1 − x̄t, x̄t+1 − x̄t⟩ = − 2

m

m∑
i=1

⟨ηi,tyi,t−1, x̄t+1 − x̄t⟩

− 2

m

m∑
i=1

⟨ηi,t(yi,t − yi,t−1), x̄t+1 − x̄t⟩ . (20)
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Based on step 5 of Algorithm 1, we have

− 2

m

m∑
i=1

⟨ηi,t(yi,t − yi,t−1), x̄t+1 − x̄t⟩

≤
(
1 +

1

a4

)
1

m

(
∥xt − 1m ⊗ x̄t∥2 + ∥xt−1 − 1m ⊗ x̄t−1∥2

)
+

1 + a3
2

∥x̄t+1 − x̄t∥2 +
1 + a4

2
∥x̄t − x̄t−1∥2

+
2η2max

a3m
(∥yt−1m ⊗ ȳt∥2+∥y t−1

2
−1m ⊗ ȳt∥2). (21)

Using the Young’s inequality and the definition (2) yields

− 2

m

m∑
i=1

⟨ηi,tyi,t−1, x̄t+1−x̄t⟩≤
2η2max

a5m
∥yt−1−1m ⊗ ȳt−1∥2

+ a5∥x̄t+1 − x̄t∥2 + (a6 + a7 −
√
2µ̄η̄t)∥x̄t − x̄t−1∥2

+
2η2max

a6m
∥yt − 1m ⊗ ȳt∥2 +

2η2maxl
2
max

a7m
∥xt − 1m ⊗ x̄t∥2

+ 2
√
2η̄t (f(x̄t−1)− f(x̄t)) . (22)

By substituting the results in inequalities (10), (11), (21),
and (22) into (20), we can arrive at (19) in Lemma 4.

Theorem 1: Under Assumption 1 and Assumption 2,
the optimization error of Algorithm 1 satisfies

lim
t→∞

∥xi,t+1 − x∗∥2

≤ 16mρ2

(1− ρ)2
+

2

1− γ

[
8ρ2

(1− ρ)2

(
2 +

3l2max

µ2
min

+
3 + 12l3max√

2µ3
min

)

+
8(3 + ρ)2l2maxρ

4

(1− ρ)4

(
(36 + 3

√
2)lmax√

2µ3
min

)
+

24l3max(3 + ρ)2√
2µ3

min(1− ρ)2

]
,

(23)
for all t > 0, where γ is given by γ = max{γ1, γ2, γ3} with
γ1 = 1− µ̄

6lmax
, γ2 = 6lmax−3

√
2µ̄

6lmax−2
√
2µ̄

, and γ3 ∈
[

2
1+

√
2
, 1
)
.

Proof: Incorporating (15) and (19) into (14) yields

∥x̄t+1 − x∗∥2 +
(
1− a3

2
− a5

)
∥x̄t+1 − x̄t∥2

+
(
2η̄t + 2

√
2η̄t

)
(f(x̄t)− f(x∗))

≤ (a1 + η̄t(a2 − µ̄) + 1) ∥x̄t − x∗∥2

+

(
1 + a4

2
+ a6 + a7 −

√
2µ̄η̄t

)
∥x̄t − x̄t−1∥2

+ 2
√
2η̄t(f(x̄t−1)− f(x∗)) + ∆1,t +∆2,t.

(24)

We now select parameters ai (i = 1, · · · , 7) to control
the coefficients of the items on the right hand side of (24):
(i) We set a1 = 1

3ηminµ̄ and a2 = 1
3 µ̄, which imply

a1 + ηmin(a2 − µ̄) + 1 ≤ γ1 × 1, where γ1 = 1− 1
3ηminµ̄ ∈

(0, 1) is always valid since ηmin < 3
µ̄ holds according

to Lemma 1. (ii) We select a3 = a4 =
√
2
3 µ̄ηmin and

a5 = a6 = a7 =
√
2
6 µ̄ηmin, which imply 1+a4

2 + a6 + a7 −√
2µ̄ηmin ≤ γ2(

1−a3

2 − a5) with γ2 = 3−3
√
2µ̄ηmin

3−2
√
2µ̄ηmin

∈ (0, 1).
(iii) Based on (2), we have η̄t ≤

√
2η̄t−1, which further

implies 2
√
2η̄t ≤ γ3(2η̄t−1 + 2

√
2η̄t−1), where γ3 is within

the interval [ 2
1+

√
2
, 1). Defining γ = max{γ1, γ2, γ3} and

then iterating (24) from 1 to t+ 1, one obtains

∥x̄t+1 − x∗∥2 +
(1
2
−

√
2µ̄ηmin

3

)
∥x̄t+1 − x̄t∥2

+
(
2η̄t + 2

√
2η̄t

)
(f(x̄t)− f(x∗))

≤ γt
[
∥x̄1 − x∗∥2 +

(1
2
−

√
2µ̄ηmin

3

)
∥x̄1 − x̄0∥2

+ 2(1 +
√
2)η̄0(f(x̄0)− f(x∗))

]
+
(∆1,t +∆2,t)(1− γt−1)

1− γ
.

(25)
By taking the limit on both sides of (25) and combining

the definitions of ∆1,t and ∆2,t in Lemmas 3 and 4 with
Lemma 2, we arrive at (23).

Theorem 1 shows that besides avoiding divergence, Al-
gorithm 1 can ensure convergence to a neighborhood of the
optimal solution x∗. The size of this neighborhood is only
determined by the size of the network m, the second largest
absolute eigenvalue ρ of the weight matrix W , the global
Lipschitz parameter lmax, and the global strongly convex
coefficient µmin. A larger µmin and a smaller lmax will lead
to more accurate convergence.

V. NUMERICAL EXPERIMENTS

In this section, we used three real-world machine learning
problems to evaluate the performance of Algorithm 1, includ-
ing logistic regression using the “Mushroom” dataset and the
“Covtype” dataset, respectively, matrix factorization using
the “MovieLens 100k” dataset, and image classification using
the “MNIST” dataset. For each experiment, we considered
heterogeneous data distribution (the distribution of data is
non-identical on different agents), which is highly likely in
distributed learning applications. In all experiments, we com-
pared Algorithm 1 with distributed optimization algorithms
DSGD [25], DSGD with Polyak’s momentum (DSGD-
P) [25], and DSGD with Nesterov momentum (DSGD-
N) [25]. We also compared with the distributed stepsize adap-
tation methods DGM-BB-C [13], DADAM [15], DAMS-
Grad [16], and DAdaGrad [16]. The interaction pattern is set
as a ring network, where W ={wij} is given by wii = 0.4
and wi,i+1=wi,i−1=0.3.

A. Logistic Regression

For the first experiment, we ran an l2-logistic regression
classification problem using the “Mushroom” dataset and
the “Covtype” dataset [26], respectively. The local objective
function for agent i is given by fi(x) = 1

Di

∑Di

j=1(1 −
bi,j)a

T
i,jx− log(s(aTi,jx))+

ri
2 ∥x∥

2, where Di is the number
of samples, ri > 0 is a regularization parameter, (ai,j , bi,j)
are samples, and s(t)=1/(1+ e−t) is the sigmoid function.
Following [17], we made ri proportional to 1

Di
, and selected

the initial stepsize as 1
Li

with Li=
1

4Di
∥Ai∥2 + ri for Ai =

col{ai,j , · · · , ai,Di}, j ∈ Di. We spread the data across
the agents based on the value of the target, which results
in heterogeneous data distributions. For DSGD, DSGD-P,
and DSGD-N, the stepsize is fixed to 1

Li
. For DADAM,
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(c) The “Covtype” dataset, gradient evolution
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(d) The “Covtype” dataset, stepsize evolution

Fig. 2. Comparison of logistic regression results: panels (a) and (c) depict the average gradient, and panels (b) and (d) depict the average stepsize of all
agents.

DAMSGrad, and DAdaGrad, we used the default parameters
with β1 = 0.9 and β2 = β3 = 0.99 given in [16].

Fig. 2 shows that our Algorithm 1 outperforms existing
algorithms in terms of both convergence speed and accuracy.
It is worth noting that in Fig. 2-(c), DGM-BB-C is slightly
faster than our algorithm under the “Covtype” dataset.
However, DGM-BB-C is very unstable even for strongly
convex and smooth objective functions, because in both the
experiment on the “Mushroom” dataset and the experiment
for matrix factorization, it leads to divergence (see details
in Fig. 2-(a) and Fig. 3). Moreover, DGM-BB-C requires
global knowledge of the Lipschitz constant and the strongly
convex coefficient, which makes it hard to implement in
many practical distributed applications.

B. Matrix Factorization
For the second experiment, we performed the matrix fac-

torization problem using the “MovieLens 100k” dataset [27],
where gradients are not globally Lipschitz. The local objec-
tive function for agent i is given by fi(U, V ) = 1

2∥UV T −
Ai∥2F with Ai∈Rm×n, U ∈Rm×10, and V ∈Rn×10. We split
data samples into ten classes and assigned each class to one
single agent. In our comparison, we used the best stepsize
that we could find for existing distributed algorithms such
that doubling the stepsize leads to nonconverging behaviors.

Fig. 3 shows that Algorithm 1 has a faster and more
accurate convergence than existing algorithms even when the
objective functions are non-smooth and nonconvex.

C. ResNet-18 Training for Image Classification
We used a standard ResNet-18 architecture and trained it

to classify images from the “MNIST” dataset [28] with cross-

entropy loss. We used batch size 60 for all algorithms. In the
comparison, following [25], we set ηt = 0.5

0.07t+1 for DSGD,
DSGD-P, and DSGD-N. Fig. 4 shows that our algorithm has
better training and test accuracies than existing distributed
algorithms.
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Fig. 3. Comparison of matrix factorization results
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(b) The “MNIST” dataset, test accuracy
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Fig. 4. Comparison of image classification results

VI. CONCLUSION

In this paper, we have proposed an algorithm that can
automate stepsize selection in distributed optimization and
learning with proven convergence guarantees. Note that in
the distributed setting, allowing individual agents to adapt
their stepsizes results in time-varying stepsize heterogeneity
which can easily lead to divergence, so this problem is
highly nontrivial. To the best of our knowledge, our approach
is the first to successfully automate stepsize in distributed
optimization and learning without any manual adjustment.
Numerical experimental results on several machine learning
problems confirm the effectiveness of the proposed approach.
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