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Abstract— The increasing availability of sensing techniques
provides a great opportunity for engineers to design state
estimation methods, which are optimal for the system under
observation and the observed noise patterns. However, these
patterns often do not fulfill the assumptions of existing ap-
proaches. We provide a direct method using samples of the
noise to create a moving horizon observer for linear time-
varying and nonlinear systems, which is optimal under the
empirical noise distribution. Moreover, we show how to enhance
the observer with distributional robustness properties in order
to handle unmodeled components in the noise profile, as well
as different noise realizations. We prove that, even though
the design of distributionally robust estimators is a complex
minmax problem over an infinite-dimensional space, it can
be transformed into a regularized linear program using a
system level synthesis approach. Numerical experiments with
the Van der Pol oscillator show the benefits of not only using
empirical samples of the noise to design the state estimator,
but also of adding distributional robustness. We show that our
method can significantly outperform state-of-the-art approaches
under challenging noise distributions, including multi-modal
and deterministic components.

I. INTRODUCTION

Estimating and predicting the states of a system is a
fundamental problem in many areas of science and engi-
neering, ranging from control theory to signal processing
and machine learning. The goal is to use a set of noisy and
possibly incomplete observations of the system’s output to
infer the true internal state of the system with minimal error.
The problem of state smoothing, filtering, and prediction
(hereafter referred to as state estimation problem, for short)
is challenging due to several factors, such as the presence of
measurement noise, unmodeled dynamics, nonlinearities, and
uncertainty. The recent advances in sensing and communica-
tions technologies and computation have allowed engineers
to gather large amounts of data about the noise affecting
systems of various nature.

The design of a high-performance state estimator for a
given system follows three steps: (i) the accurate modeling
of the system dynamics and the statistics of the process
and measurement noises, (ii) the choice of an estimator
that best fits the model and noise assumptions, and (iii) the
optimization of the estimator parameters. This process can
be difficult, especially if the noises follow an uncommon
profile (e.g., including outliers or deterministic signals), or
if the system is time-varying. In the latter case, the design
process must be repeated online.

The most popular estimation method is the Kalman Filter
(KF), which has a closed form solution that can be computed
online. This is the backbone of the Extended Kalman Filter
(EKF), which recomputes the filter parameters at each time

step based on the linearization of a system at the current
operating point [1]. KFs may not perform well when the
variance is not accurately measured, even if the noise is
Gaussian. To address this issue, [2] proposes an automatic
method for learning KF parameters. Another popular es-
timation method is to stabilize the error dynamics and
reject errors in the initial state estimate using a Luenberger
Observer (LO). While the KF provides optimality guarantees
for linear systems under Gaussian noise, the LO can be a
better candidate for other noise distributions, even though its
optimal design is challenging in real time.

When dealing with non-Gaussian disturbances, particle fil-
ters are a popular approach, but they are computationally ex-
pensive and do not exploit specific patterns in non-stochastic
noise profiles. Other methods involve learning the non-
stochastic part of the noise and assuming standard Gaussian
or worst-case distributions for the stochastic component [3],
[4]. However, these approaches still make strong assumptions
about the noise, which can lead to poor performance if they
are not verified. A more flexible method is Moving Horizon
Estimation (MHE). It can model not only non-stochastic
profiles by penalizing combinations of errors at different
time steps, but also non-Gaussian noise distributions using
non-quadratic cost functions1 [6]. However, MHE requires
significant computing power and can be sensitive to modeling
errors in both the noise statistics and the system itself [7].

Distributionally Robust Optimization (DRO) is a powerful
mathematical tool to mitigate errors in the statistical mod-
eling of the noise, by considering the worst probability dis-
tribution within an uncertainty set around the empirical one
[8]. Recent advances in this field have significantly simplified
the computation of robust optimizers, by showing the equiv-
alence between distributional robustness and regularization
[9], [10]. DRO has recently been applied to Model Predictive
Control (MPC) and Data-enabled Predictive Control (DeePC)
to provide a direct method from noise samples to controller
design [11], [12], [13]. This approach has only been applied
to the field of state estimation under the assumption that the
worst case distribution is Gaussian [14], [15], [16].

In this paper, we attempt to fill the gap and introduce
a robust unconstrained MHE method that uses DRO to
incorporate samples of the noise profile directly in the
estimation process, hence eliminating the need for statistical
modeling. To do so, we prove that the regularization-based
relaxation proposed in [10] can be exact for ℓ1 norm-based
loss functions, which are relevant for MHE. This extends

1Although we focus on the unconstrained case in this paper, MHE can
also implement constraints [5].
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the results obtained for vector-valued parameters in [8], [9].
We show that our approach is capable of providing both
predictions and filtered state estimates for discrete-time linear
time-varying systems. Moreover, the final estimation problem
is a combination of several small Linear Programs (LPs),
which can be efficiently solved in real time. Finally, we
provide a simulation example illustrating the performance
of this new method for the observation of a linearized Van
der Pol oscillator under challenging noise profiles.

A. Preliminaries and Notation

Time indices are denoted by the subscript t, and boldface
letters denote the stacked vectors at all times in a window.
Similarly, calligraphic letters denote linear operators apply-
ing to such stacked vectors. Underlined bold symbols are
trajectory matrices, whose columns are bold symbol vectors.
For example, for a state xt ∈ Rn, the trajectory over the
window [t−T, t] is x = [x⊤

t−T , . . . , x
⊤
t ]

⊤ ∈ Rn(T+1), which
can be affected by the operator C such that y = Cx. If N of
these trajectories are available, they can be included in the
matrix x = [x0, . . . ,xN ] ∈ Rn(T+1)×N .

The subscript i is used to denote the ith row of a matrix.
The matrix I denotes the identity and Ii is the ith unit
vector. The function blkdiag([X0, . . . , XN ]) constructs a
block-diagonal matrix from the blocks X0, . . . , XN .

The ℓ2-norm of a vector is denoted by ∥ · ∥2, which also
denotes the spectral norm of a matrix (its largest singular
value). The ℓ1 norm of a vector is denoted by ∥ · ∥1, and
∥ · ∥F1

is the ℓ1 Frobenius norm of a matrix, i.e. the sum of
the ℓ1 norms of its rows.

II. SYSTEM MODEL

A. LTV dynamics and observer

We model a dynamical system using a discrete-time state-
space representation, where the state xt ∈ Rn is hidden, and
only the output yt ∈ Rp is observed. The state dynamics and
output map are fully described by the equations

xt+1 = Atxt + wt, (1a)
yt = Ctxt + vt, (1b)

where wt and vt are generic process and measurement noises.

Assumption 1. The system (1) is observable for all t.

This assumption in very common and often necessary to
estimate the states of a system [17].

We aim to compute the estimates x̂τ of the states in the
window [t−Ts, . . . , t+Tf ] around the current time t. To do
so, we use the following state estimator

x̂τ+1 = Aτ x̂τ −
t∑

k=t−Ts

Lτ,k(Ckx̂k − yk), (2)

which uses the observations yk for k = t − Ts, . . . , t, and
design the gains Lτ,k for τ = t − Ts, . . . , t + Tf − 1. The
observer gains must stabilize the dynamics of the error eτ =
x̂τ − xτ , given by

eτ+1 = Aτeτ − wτ −
t∑

k=t−Ts

Lτ,k(Ckek − vk). (3)

There are two main differences between (2) and the
classical MHE problem [18]: (i) the presence of a forecasting
horizon [t+ 1, t+ Tf ] after the standard smoothing horizon
[t−Ts, t] and (ii) the optimization variables are matrix gains
Lτ,k, rather than the point estimates x̂τ . This policy-based
problem, similar to dynamic programming for control [6,
Chapter 3.3], improves the estimate’s robustness, while giv-
ing the same results as classic MHE in nominal conditions.

Remark 1. Known system inputs are not included in the
observer design since they cancel out when computing the
error eτ = x̂τ − xτ . If present, they can be added to (2)
when computing the state estimate.

Remark 2. There are no assumptions on both vt and wt,
which can also include modelling errors. For example, if (1)
representes the linearization of the system xt+1 = f(xt, t)+
w̃t, yt = h(xt, t)+ ṽt around a state trajectory, the variables
vt and wt can embed worst-case linearization errors.

In the sequel, we consider the estimation problem for
a single horizon with a fixed t. Hence, for simplicity t is
omitted in the notation.

B. Error dynamics over the entire horizon

To design the LTV observer policy based on the gains Lτ,k

for τ ∈ [t−Ts, t+Tf ], k ∈ [t−Ts, t], we stack the dynamics
of the state estimation error (3) as

e = ZAe− LCZe+ Lv +w, (4)

where Z =


0n×n

I
. . .
. . . . . .

I 0n×n

, (5a)

A =


At−Ts. . .

At+Tf−1

0n×n

, C =


0n×p

Ct−Ts. . .
Ct+Tf−1

, (5b)

v =

 0p×1
vt−Ts...

vt+Tf−1

, w =

 et−Ts

−wt−Ts...
−wt+Tf−1

, e =


et−Ts...

et+Tf−1

et+Tf

, (5c)

and L is the observer policy to be designed, written as

L =


0n×p 0n×p . . . 0n×p 0n×p(Tf−1)

0n×p Lt−Ts,t−Ts
. . . Lt−Ts,t 0n×p(Tf−1)

...
...

...
...

...
0n×p Lt+Tf−1,t−Ts

. . . Lt+Tf−1,t 0n×p(Tf−1)

. (5d)

The last block-columns in L are zero to ensure causality,
meaning that the last p(Tf −1) measurements in the window
[t − Ts, t + Tf ], which are in the future, can not be used.
The zero first block-column and -row allow one to ensure
the equivalence between (2) and (4), as the first n equations
of (4) only ensure that the initial error et−Ts

is correctly
propagated over time.
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Note that A and C are block-diagonal matrices and that
v and w include both the noise and the modelling errors.
Moreover, the error on the initial state is embedded in the
first block of the disturbance vector, i.e. [w1, . . . ,wn]

⊤ =
xt−Ts

− x̂t−Ts
. In the sequel, we note the dimensions of v

and w as p = p(Ts + Tf + 1) and n = n(Ts + Tf + 1),
respectively.

III. PROBLEM STATEMENT

We aim to design an optimal data-driven observer L from
N noise samples ṽi and w̃i for i = 1, . . . , N collected
offline, e.g. during tests prior to the deployment of the
observer in the field. A naive approach is to maximize the
likelihood based on the empirical distributions P̃v(v) =
1
N

∑N
i=1 δ(v−ṽi) and P̃w(w) = 1

N

∑N
i=1 δ(w−w̃i), where

δ(·) is the Dirac distribution. This nominal method gives
minimal errors for realizations of the noise that were in
the training set, but can lead to a brittle estimator with
poor out-of-sample performance. We introduce distributional
robustness with respect to the worst case empirical risk in
order to mitigate the impact of unforeseen noise realizations.

The worst-case empirical risk is given by the expected
cost given by the worst possible probability distribution.
For probability distributions in the sets V and W (i.e.,
v ∼ Pv ∈ V and w ∼ Pw ∈ W), the worst-case empirical
risk is defined by

R(e(L,v,w)) := sup
Pv∈V
Pw∈W

E v∼Pv
w∼Pw

cost(e(L,v,w)). (6)

Assumption 2. The estimation cost is cost(e) = ∥Qe∥1,
where Q ∈ Rn×n.

Although quadratic costs are more common in engineering
applications, ℓ1 costs are often used for their robustness to
non-Gaussian noise [19].

The sets V and W are infinite-dimensional. In order to
define them in a meaningful way, we introduce the following
definition and assumption.

Definition 1. The Wasserstein metric W1 based on the ℓ∞
norm is defined as

W1(P1,P2) = inf
Π

∫
Ξ2

∥ξ1 − ξ2∥∞Π(dξ1, dξ2),

where Ξ is the support of P1 and P2 and Π is a joint
distribution of ξ1 and ξ2 with marginal distributions P1 and
P2, respectively.

Assumption 3. The sets V and W are Wasserstein-1 balls
Bεv (P̃v) and Bεw(P̃w) given by

V = Bεv (P̃v) = {Pv|W1(Pv, P̃v) ≤ εv},
W = Bεw(P̃w) = {Pw|W1(Pw, P̃w) ≤ εw}.

The support Ξ of the Wasserstein metric W1 is the entire
space Rp or Rn for Pv and Pw, respectively.

In Definition 1, Wasserstein-1 balls2 only require a norm, a
center, and a radius to define a set in the infinite-dimensional
space of probability distributions. We chose the ℓ∞ norm
because it treats each entry of the noise vectors separately3,
making it easier for a user to determine the radii εv and
εw. These radii are given by the expected amount of noise
in the worst sensor and the expected disturbance in the
most perturbed state. The center is a distribution, which is a
function with an unbounded support, and thus much harder
to determine. We do away with this difficulty by centering
the balls on empirical distributions.

Remark 3. Robustness against worst-case bounded noise
is more common and avoids infinite-dimensional problems.
However, this often means one must choose between over-
conservatism or lack of robustness if rare noise realiza-
tions are very large. Distributional robustness allows one to
consider unbounded disturbances, while weighting them in
accordance with their probability. This approach is therefore
better suited to generic disturbance patterns.

Under the assumptions 3 and 2, the worst-case empirical
risk (6) becomes

R(e(L,v,w)) = sup
Pv∈Bεv (P̃v)

Pw∈Bεw (P̃w)

E v∼Pv
w∼Pw

∥Qe(L,v,w)∥1, (8a)

and an optimal policy can be computed as

L⋆ = arg inf
L causal

inf
e
R(e(L,v,w)) s.t. (4), (8b)

which is coupled to (8a) through the constraint (4), and where
the constraint ”L causal” enforces the sparsity pattern given
by the zero blocks in (5d).

IV. TRACTABLE REFORMULATION

At first glance, the problem (8) seems very challenging to
solve. It is a non-convex, infinite-dimensional, and inf-sup
problem. In this section, we first address the non-convexity,
and then provide a closed-form solution for the risk R(e).
In the end, the problem (8) is reduced to a simple LP.

A. Convexification

The first challenge is addressed by proposing a convex
reformulation using a System Level Synthesis (SLS) repre-
sentation of the estimation problem [20], which decouples
(8a) and (8b). To do so, we use the disturbance-to-error and
noise-to-error maps Φw ∈ Rn×n and Φv ∈ Rn×p defined
in [21], i.e.,

Φw = (I −Z(A− LC))−1,

Φv = (I −Z(A− LC))−1L.

The estimation error is given by e = Φvv + Φww and the
risk (8a) can be rewritten as a function of Φv and Φw as

2The first order Wasserstein metric is the most common in the literature
because it is one of the easiest to interpret and reformulate in a tractable
way [8], [9].

3Other norms could be less conservative but the problem must be relaxed
as in [10, Theorem 2.1] to become tractable.
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R(Φv,Φw)= sup
Pv∈Bεv (P̃v)

Pw∈Bεw (P̃w)

E v∼Pv
w∼Pw

∥Q(Φv,iv +Φw,iw)∥1. (10)

Using (10), the problem (8) becomes

arg inf
Φv causal
Φw causal

R(Φv,Φw) (11)

s.t. [Φv,Φw]

[
CZ

I −ZA

]
= I. (12)

According to [20], (11) is convex in Φv and Φw if and only if
R is convex. Moreover, because (12) must be satisfied, there
exist a L = Φ−1

w Φv solving (8)4. The causality constraints
here need to result in a causal policy L (see Section II-B).
On the one hand, the noise-to-error map Φv must have the
same zero columns as L given in (5d), because this sparsity
will be conserved in the multiplication with Φ−1. On the
other hand, Φw has the following structure.

Φw =

 0n×n 0n×n(Ts+1) 0n×n(Tf−1)

0n(Ts+1)×n Φw,11 0n(Ts+1)×n(Tf−1)

0n(Tf−1)×n Φw,21 Φw,22

,
where Φw,22 is lower-triangular to capture that future dis-
turbances affect the prediction error in a causal way. In the
sequel, we will only write ”Φv causal” and ”Φw causal” to
refer to these sparsity patterns.

In the next section, we explain how to handle the challenge
that (8) includes an infinite-dimensional inf-sup problem.

B. Risk closed-form solution

One of the most impactful results of DRO is its equiv-
alence with regularization in regression problems [8]. The
SLS reformulation allows us to use the DRO theory directly
and express the risk in closed form.

Theorem 1. The worst-case empirical risk (10) can be
written in closed form as

R(Φv,Φw) =

∥∥∥∥Q[Φv,Φw]

[
ṽ
w̃

]∥∥∥∥
F1

+ ∥Q[εvΦv, εwΦw]∥F1
,

(13)
where the N empirical measurements are stacked as

[ṽ1, . . . , ṽN ] = ṽ ∈ Rp×N ,

[w̃1, . . . , w̃N ] = w̃ ∈ Rn×N ,

Proof. Let κ = εv
εw

be the ratio between the Wasserstein balls
radii, and let P̃′

w be the rescaled P̃w distribution defined by

P̃′
w(κw) =

1

N

N∑
i=1

δ(κ(w − w̃i)).

Hence, with w′ = κw, we have

4By contradiction, assume that Φ−1
w = (I−Z(A−LC)) is not invertible.

Under Assumption 3, the Wasserstein ball Bεw is supported by Rn. Hence,
V and W always contain realizations of the noises satisfying w + Lv /∈
span(I − Z(A − LC)) ⊂ Rn, which would invalidate the dynamics (4).
This contradiction proves that Φw must have maximal rank.

R(Φv,Φw) = sup
Pv∈Bεv (P̃v)

Pw∈Bεv (P̃
′
w)

E v∼Pv

w′∼Pw

∥Q(Φvv +Φwκ
−1w′)∥1.

Theorem 10 in [8] states that with a Lipschitz cost
ℓ(z) = ∥Q[Φv, κ

−1Φw]z∥1 and an unbounded support Ξ in
Definition 1, we have

R(Φv,Φw) = E v∼P̃v

w′∼P̃′
w

∥Q(Φvv + κ−1Φww
′)∥1

+ εv sup
z|ℓ⋆(z)<+∞

∥z∥⋆, (15)

where ℓ⋆ is the convex conjugate function of ℓ and ∥ · ∥⋆ =
∥ · ∥1 is the dual to the ℓ∞ norm used in Definition 1. The
function ℓ⋆ is given by

ℓ⋆(z) = sup
x∈Rn+p

z⊤x− ℓ(x),

=

n+p∑
i

sup
xi

zixi − |xi|
∥∥([Φv, κ

−1Φw]
⊤Q⊤)

i

∥∥
1
.

Each of the supremums is either zero or infinite, depending
on which of the two terms is larger in absolute value. This
means that to obtain ℓ⋆(z) < +∞, each |zi| must not
be greater than

∥∥([Φv, κ
−1Φw]

⊤Q⊤)
i

∥∥
1
. Hence, the supre-

mum in (15) is given by ∥Q[Φv, κ
−1Φw]∥F1. To conclude

the proof, we substitute this closed-form solution in (15)
and compute explicitly the empirical expectation to obtain
(13).

Theorem 1 gives a closed-form solution for the worst-case
empirical risk R. This removes the inner supremum in (11).
Moreover, the resulting regularized cost is convex, which
means that the infimum (11) is equal to a unique, global,
and achievable minimum of the risk (13).

Corollary 2. If Q is diagonal, then the problem (11) can
be split into n separate optimization problems. The final
solution of the full problem is given by

Φv = Q−1


0, . . . , 0, 0, . . . , 0

(argminϕ ∥Ψϕ− µ2∥1)⊤, 0, . . . , 0
...

...
(argminϕ ∥Ψϕ− µn∥1)⊤, 0, . . . , 0︸ ︷︷ ︸

p0 times

, (16)

Φw = (I −ZA)−1 − ΦvCZ(I −ZA)−1, (17)
where p0 = p(Tf − 1),
µi =

([
Q(I −ZA)−1

]
i

[
0 · C⊤, εwI, w̃])⊤ ∀i = 2, . . . ,n,

and Ψ is the matrix formed by the p− p0 first columns of

Ψnc =

 −εvI
εw(I −ZA)−⊤Z⊤C⊤

w̃⊤(I −ZA)−⊤Z⊤C⊤ − ṽ⊤

 .

Proof. First, we note that the constraint (12) is equivalent to
(17). Moreover, if Φv is causal, then so is Φw because both
(I −ZA) and CZ are block lower-triangular. Plugging (17)
into (11) yields

argmin
Φv causal

∥∥∥∥Q[Φv, IZA − ΦvCZIZA]

[
ṽ
w̃

]∥∥∥∥
F1

+ ∥Q[εvΦv, εwIZA − εwΦvCZIZA]∥F1
,
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where IZA = (I − ZA)−1. Rearranging the terms and
inverting the sign inside the norm gives

argmin
Φv causal

∥QΦv(CZIZAw̃ − ṽ)−QIZAw̃∥F1

+ ∥QΦv[−εvI, εwCZIZA]−Q[0 · C⊤, εwIZA]∥F1
,

where 0 · C⊤ is used to construct a zero matrix of the same
shape as Φv . By replacing the sum of norms by the norm of
an augmented matrix, we obtain

argmin
Φv causal

∥Q Φv[−εvI, εwCZIZA, CZIZAw̃ − ṽ] (18)

−QIZA[0 · C⊤, εwI, w̃]∥F1
.

Let Q = diag([q1, . . . , qn]), for i = 1, . . . ,n the ith term of
the Frobenius norm in (18) is written as∥∥∥∥∥∥
 −εvI

εwI
⊤
ZAZ⊤C⊤

w̃⊤I⊤ZAZ⊤C⊤−ṽ⊤

(qiΦv,i)
⊤−

0 · CεwI

w̃⊤

(QIZA)
⊤
i

∥∥∥∥∥∥
1

. (19)

Note that each term only depends on the corresponding row
of Φv . Hence, the minimization problem can be separated
into n independent sub-problems. Finally, one can solve for
ϕ = qiΦv,i and plugging the constraint that Φv is causal
simply removes the columns corresponding to the desired
zeros in the matrix that pre-multiplies (qiΦv,i)

⊤ in (19). Due
to the sparisty pattern of Z⊤ in (19), the first p entries of
the optimizer ϕ are zero for all i = 1, . . . ,n, so we do not
need to remove the first p columns of Φv .

Theorem 1 and Corollary 2 are the main results of this
paper, as they allows to write (11) as several small LPs.
This allows one to first compute Φv row by row, and then
obtain the observer policy L using

L = Φ−1
w Φv = (I −ZA)(I − ΦvCZ)−1Φv,

which is implemented using (2).

V. NUMERICAL RESULTS

To highlight the ability of our method to handle time-
varying and even nonlinear systems, we will perform exper-
iments on a Van der Pol oscillator under complex disturbance
patterns. The dynamics are given by

ẋ(t) =
[
x2(t),

(
1− x1(t)

2
)
x2(t)− x1(t)

]⊤
+ w(t),

y = x1(t) + v(t).

Note that this system is both continuous and non linear, so
we cannot use (16) directly. Hence, we discretize the system
with a sampling frequency of 10Hz using the forward Euler
method, and linearize it at each point of its trajectory (see
Remark 2 in Section II-A) resulting in an LTV system. The
time horizon considered is 1s (or 10 samples) and we are
interested in the one step ahead prediction (i.e., Ts = 8 and
Tf = 1). Additional details can be found in [22].

A. Noise profiles
We consider two different cases. First, we apply a noise

profile following a sinusoidal pattern plus uniformly dis-
tributed noise of the same amplitude as the sine wave (see
Fig. 1a). Second, we apply noise following a bi-modal noise
distribution based on a mixture of two Gaussians. The precise
distributions are:

[w⊤
t,s, vt,s] ∼ U(sin(10t)[0.1, 0.1,−0.1], 0.1), (20)

[w⊤
t,b, vt,b] ∼ 0.25N (0.05[1, 1,−1], diag(0.025[1, 1, 2])) (21)

+ 0.75N (0.05[−1,−1, 2], diag(0.025[1, 1, 2])),

where U(µ, σ) is the uniform density supported by [µ−σ, µ+
σ] and N (µ,Σ) is the Gaussian density with mean µ and
variance Σ. In the sequel, we refer to (20) and (21) as the sine
and bimodal noises, respectively. We generate 70 realizations
at each time step and (i) use 20 of them as training data
(shown in Fig. 1) to build ṽ and w̃ and (ii) the other 50 to
validate the methods.
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Fig. 1: First two seconds of the 20 measurement noise realizations
used to build the empirical distribution P̃v .

The non-stochastic components in (20) and (21) are a
sine wave and a bias, respectively. Although the noise is
bounded in (20), the linearization error may exceed the
bound measured on the training samples. Hence, distribu-
tional robustness is well motivated for both types of noises.
B. Results

This section shows the prediction error (i.e. the last n
elements of e) given by The EKF [1], unconstrained MHE
with a quadratic cost [6], and distributionally robust MHE
(16) with Q = εI and εw = εv = ε = 0.2 (corresponding to
the upper bound or the 95th percentile of the error), denoted
in what follows by DRO5. The error is ∥x̂t+1−xt+1∥1, where
x̂t+1 is the prediction made by each method and xt+1 is the
exact state of the oscillator at time t+ 1.

Figures 2 and 3 show a significantly better estimation per-
formance provided by distributionally robust MHE compared
to classical MHE and the EKF. In particular, one can see
in the error plot that the use of the empirical distribution
mitigates the oscillations caused by the sine wave (Fig. 2)
and the drift cause by the swings between the modes of the
bimodal distribution (Fig. 3). Indeed, one can observe that
in both cases, both MHE and EKF generate around 25% to
60% more error than our method.
C. Wasserstein radius

In Section V-B, we tuned the Wasserstein radius to be
approximately equal to the sum of the magnitudes of the
linearization error and the stochastic component in the noise.
Fig. 4 also analyzes the performance of the naive data-driven
estimator (i.e., when ε = 0) and shows that in both cases,

5Solving MHE and DRO at each timestep takes about 0.04s and 0.1s,
respectively, using Python on one core of a RaspberryPi.
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while this approach still outperforms methods relying on the
assumption of Gaussian noise, the mean and the variance of
the error are much larger than with distributional robustness.
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(a) Phase diagram of the perturbed Van der Pol oscillator and its three state
estimates.
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(b) Average error of three estimator at each time step and over all 50 test
realizations. The legend shows the total relative error increments.

Fig. 2: Performance analysis of the EKF, MHE and distributionally
robust MHE (DRO) under sine noise.
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Fig. 3: Average error of the EKF, MHE and distributionally robust
MHE (DRO) at each time step and over all 50 test realizations of
bimodal noise. The legend shows the total relative error increments.
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Fig. 4: Statistics of the error of the EKF, MHE and distributionally
robust MHE (DRO), and DRO with zero-radii Wasserstein balls
over all 50 test realizations. The mean is shown with a dot marker.
The total error is the sum of the errors at each time step.

VI. CONCLUSIONS

In this paper, we present a novel MHE method based on
the empirical distribution of a system’s noise and distribu-
tional robustness theory. We prove that our approach can be
implemented as computationally-inexpensive LPs.

Future work will focus on studying quadratic costs, as they
relate to energy or covariance. Moreover, we will study how
to include constraints in our formulation, as it is frequently
done in MHE.
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