
Local convergence of multi-agent systems towards rigid lattices

Andrea Giusti1, Marco Coraggio2, and Mario di Bernardo1,2

Abstract— Geometric pattern formation is an important
emergent behavior in many applications involving large-scale
multi-agent systems, such as sensor networks deployment and
collective transportation. Attraction/repulsion virtual forces are
the most common control approach to achieve such behavior
in a distributed and scalable manner. Nevertheless, for most
existing solutions only numerical and/or experimental evidence
of their convergence is available. Here, we revisit the problem
of achieving pattern formation in spaces of any dimension,
giving sufficient conditions to prove analytically that under
the influence of appropriate virtual forces, a large-scale multi-
agent swarming system locally converges towards a stable and
robust rigid lattice configuration. Our theoretical results are
complemented by exhaustive numerical simulations confirming
their effectiveness and estimating the region of asymptotic
stability of the rigid lattice configuration.

I. INTRODUCTION

Many natural and artificial systems consist of multiple
interacting agents; their behavior being determined by both
the individual agent dynamics and their interaction. In some
applications the number of agents can be extremely large
(large-scale multi-agent systems) and the role played by
their interconnections becomes predominant over their in-
dividual dynamics [1]. Examples include cell populations
[2], swarming multi-robot systems [3], social networks [4]
among many others. Some of the most relevant emerging
behavior exhibited by these systems involve their spatial
organization, coordination, and cooperation [5]. A notable
case is geometric pattern formation [6] where the agents
are required to self-organize into some desired pattern, such
as, for example, triangular lattices consisting of repeating
adjacent triangles. Applications of pattern formation include
sensor networks deployment [7], collective transportation and
construction [8], [9], and exploration and mapping [10].

Most of the existing distributed control algorithms for
geometric pattern formation rely on the use of virtual forces
(or virtual potentials), [7], [11]–[18]. Within this framework,
agents move under the effect of forces generated by the
presence of their neighboring agents and the environment,
causing attraction, repulsion, alignment, etc.
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Interestingly, most strategies are validated only numeri-
cally or experimentally [7], [11]–[13]. Among the excep-
tions, in [19], a geometric control approach based on trigono-
metric functions is proposed to build triangular lattices,
and its global convergence is proved. The extension to 3D
spaces is validated analytically in [20]. Moreover, harmonic
approximation [21] provides necessary conditions for the
local stability of a lattice. These conditions are used in [14]
to numerically design a virtual force that locally stabilizes
a hexagonal lattice. A general analysis of the effects of
attraction/repulsion virtual forces is carried out in [22], where
the authors prove that the agents converge inside a bounded
region, even though the specific equilibrium configuration is
not characterized. We wish to remark here that formation
control [15]–[17] differs from geometric pattern formation
because of a typically smaller number of agents (order
of tens) with, possibly, unique identifiers, numerous roles
for the agents and often some coordinated motion of the
agents. Similarly, when solving flocking control problems,
the emergence of coordinated motion is the crucial concern
[18], [23], [24].

In this paper, we revisit the problem of geometric pattern
formation using attraction/repulsion virtual forces with the
aim of bridging a gap in the existing literature and deriving a
general proof of convergence when considering the formation
of rigid lattice configurations. When compared to previous
work, e.g. [18]–[22], our stability results (i) can be applied
to most control laws based on virtual forces (or potentials),
rather than only to a specific algorithm [19], (ii) are sufficient
rather than necessary conditions, as, e.g., in [21], (iii) char-
acterize the asymptotic configuration of the agents, rather
than just proving its boundedness [22], and (iv) guarantee the
emergence of rigid lattices rather than less regular ones, e.g.,
the α-lattices studied in [18], which allow for disconnected
graphs and the coexistence of heterogeneous patterns (e.g.,
triangular and square).

II. MATHEMATICAL PRELIMINARIES

Given a vector v ∈ Rd , [v]i is its i-th element, ∥v∥ its
Euclidean norm, and v̂ := v

∥v∥ its direction. 0 denotes a
column vector of appropriate dimension with all elements
equal to 0. Given a matrix A, [A]i j is its (i, j)-th element.
Definition 1 (Incidence matrix): Given a digraph with n
vertices and m edges, its incidence matrix B ∈ Rn×m has
elements defined as

[B]i j :=


+1, if edge j starts from vertex i,

−1, if edge j ends in vertex i,

0, otherwise.
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Definition 2 (Framework [16, p. 120]): Consider a
(di-)graph G = (V,E) with n vertices, and a set of positions
p1, . . . ,pn ∈Rd associated to its vertices, with pi ̸= p j ∀i, j ∈
{1, . . . ,n}. A d-dimensional framework is the pair (G, p̄),
where p̄ := [pT

1 · · · pT
n ]

T ∈ Rdn. Moreover, the length of an
edge, say (i, j) ∈ E , is

∥∥pi −p j
∥∥.

Definition 3 (Congruent frameworks [25, p. 3]): Given
a graph G = (V,E) and two frameworks (G, p̄) and (G, q̄),
these are congruent if

∥∥pi −p j
∥∥=

∥∥qi −q j
∥∥ ∀i, j ∈ V .

Definition 4 (Rigidity matrix [25, p. 5]): Given a d-
dimensional framework with n ≥ 2 vertices and m edges,
its rigidity matrix M ∈ Rm×dn has elements defined as

[M]e,( jd−d+k) :=


[p j −pi]k, if edge e starts from vertex

i and ends in vertex j,
[pi −p j]k, if edge e starts from vertex

j and ends in vertex i,
0, otherwise.

with k ∈ {1, . . . ,d}.
Definition 5 (Infinitesimal rigidity [16, p. 122]): A frame-
work with rigidity matrix M is infinitesimally rigid if, for
any infinitesimal motion, say u,1 of its vertices, such that the
length of the edges is preserved, it holds that Mu = 0.

To give a geometrical intuition of the concept of infinites-
imal rigidity, we note that an infinitesimally rigid framework
is also rigid [16, p. 122], according to the definition below.2

Definition 6 (Rigidity [25, p. 3]): A framework is rigid if
every continuous motion of the vertices, that preserves the
length of the edges, also preserves the distances between all
pairs of vertices.

Consequently, in a rigid framework, a continuous motion
that does not preserve the distance between any two vertices
also does not preserve the length of at least one edge.
Theorem 1 ([26, Theorem 2.2]): A d-dimensional frame-
work with n ≥ d vertices and rigidity matrix M is infinitesi-
mally rigid if and only if rank(M) = dn−d(d +1)/2.

We denote by swarm a set of n ∈ N>0 identical agents,
say S := {1,2, . . . ,n}, that can move in Rd and interact with
their neighbors to generate emergent behavior [5]. For each
agent i ∈ S, xi(t) ∈ Rd denotes its position at time t ∈ R≥0.
Moreover, we call x̄(t) := [xT

1 (t) · · · xT
n (t)]

T ∈ Rdn the
configuration of the swarm, define xc(t) := 1

n ∑
n
i=1 xi(t) ∈Rd

as its center, and denote by ri j(t) := xi(t)− x j(t) ∈ Rd the
relative position of agent i with respect to agent j.
Definition 7 (Adjacency set): Given a swarm S, the ad-
jacency set of agent i at time t is Ai(t) := { j ∈ S \ {i} :
∥ri j(t)∥ ≤ Ra}, where Ra ∈R>0 is the maximum link length.

In practice, we will say that two agents are connected if
and only if their distance is at most Ra; see Fig. 1a.
Definition 8 (Links): A link is a pair (i, j)∈S×S such that
j ∈ Ai(t);

∥∥ri j(t)
∥∥ is its length. The set of all links existing

in a certain configuration x̄ is denoted by E(x̄).
Notice that (i, j) ∈ E(x̄)⇔ ( j, i) ∈ E(x̄).

1u can be interpreted as either a velocity or a small displacement.
2Rarely, a rigid framework is not infinitesimally rigid; e.g. [25, p. 7].

Ra

R

(a) (b) (c)

Fig. 1. (a) Adjacency set (red) of an agent (black). (b) A rigid lattice
with d = 2, n = 100. (c) A rigid lattice with d = 3, n = 8.

Definition 9 (Swarm graph and framework): The swarm
graph is the digraph G(x̄) := (S,E(x̄)). The swarm frame-
work is F(x̄) := (G(x̄), x̄).
Definition 10 (Rigid lattice): Given a swarm with frame-
work F(x̄∗), we call x̄∗ a rigid lattice configuration if

(A) F(x̄∗) is infinitesimally rigid, and
(B)

∥∥ri j
∥∥= R, ∀(i, j) ∈ E(x̄∗),

where R ∈ R>0 denotes the desired link length.
Figs. 1b, 1c portray examples of rigid lattices, for d = 2

and d = 3: a tessellation of triangles, and one of tetrahedra
and octahedra, respectively. It is immediate to verify that
rigid lattices are characterized by connected graphs where
each agent has at least d links, yielding robustness to link
failure. A similar structure is the α-lattice from [18], which
requires (B) but not (A) (hence, a rigid lattice is an α-
lattice, but the converse is false). Thus, α-lattices can display
more heterogeneous structures, containing different poly-
topes (e.g., squares, cubes), or even be disconnected, which
can be unsuited for applications such as region coverage or
distributed sensing. Note however that vacancies, i.e. holes
in the lattice, can be present in both rigid and α-lattices.

In a rigid lattice, we denote by Rnext the minimum distance
between two not directly connected agents (e.g., Rnext =R

√
3

if d = 2 and Rnext = R
√

2 if d = 3). Here, we assume that
Ra ∈ ]R;Rnext[, so that, when the swarm is in a rigid lattice
configuration, the adjacency set (Definition 7) of any agent
includes only the agents in its immediate surroundings, and
all the links (Definition 8) have length R (see Fig. 1). More-
over, T ⊂Rdn is the set of all rigid lattice configurations; it is
immediate to verify that T is unbounded and disconnected.
Definition 11 (Congruent configurations): Given a config-
uration x̄⋄, we define the set of its congruent configurations
Γ(x̄⋄) as the set of configurations with congruent associated
frameworks (see Definition 3), that is Γ(x̄⋄) := {x̄ ∈ Rdn :∥∥xi −x j

∥∥=
∥∥∥x⋄i −x⋄j

∥∥∥ ,∀i, j ∈ S}.

These configurations are obtained by translations and
rotations of the framework F(x̄⋄); thus, it is immediate to
verify that Γ(x̄⋄) is connected and unbounded for any x̄⋄ (see
Fig. 2a). Also, note that x̄∗ ∈ T ⇔ Γ(x̄∗)⊂ T , and

T =
⋃

x̄∗∈T
Γ(x̄∗). (1)

In the following, we omit the dependence on time when
clear from the context.
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R𝑑𝑛

x̄∗1

Γ(x̄∗1)

x̄∗2

Γ(x̄∗2)
x̄∗3

Γ(x̄∗3)

(a)

R𝑑𝑛

B Ω

x̄∗

Γ(x̄∗)

(b)

Fig. 2. (a): Sets of rigid lattices configurations. (b): Sets used in the proof
of Theorem 2.

III. PROBLEM STATEMENT

Consider a swarm S of n agents, with agents’ dynamics

ẋi(t) = ui(t), ∀i ∈ S, (2)

where ui(t) ∈ Rd is a distributed control law. We aim to
select and validate such a law to let the swarm achieve a
rigid lattice configuration. Then, let Rs ∈ R>0 be a sensing
radius and define the interaction set of agent i at time t as

Ii(t) := { j ∈ S \{i} : ∥ri j(t)∥ ≤ Rs}.

Given an interaction function f : R>0 → R, we select ui(t)
in (2) as the distributed virtual forces control law

ui(t) := ∑
j∈Ii(t)

f
(∥∥ri j(t)

∥∥) r̂i j(t), (3)

Note that in general there is no specific relation between
Ii and Ai (see Definition 7); however, we reasonably assume
that Rs ≥ Ra, so that

Ai ⊆ Ii, ∀i ∈ S. (4)

The following result slightly extends [22, Lemma 1].
Lemma 1: The position of the center of the swarm, say xc,
under the control law (3) is invariant, that is ẋc = 0 ∀x̄∈Rdn.

Proof. Exploiting (2) and (3), the dynamics of the center
of the swarm is given by ẋc := 1

n ∑
n
i=1 ẋi =

1
n ∑

n
i=1 ui =

1
n ∑

n
i=1 ∑ j∈Ii f (

∥∥ri j
∥∥) r̂i j. Since the existence of any link

(i, j) implies the existence of link ( j, i) (see Definition 7),
for any term f (

∥∥ri j
∥∥) r̂i j there exists a term f (

∥∥r ji
∥∥) r̂ ji =

− f (
∥∥ri j

∥∥) r̂i j (because
∥∥ri j

∥∥=
∥∥r ji

∥∥ and r̂i j =−r̂ ji). There-
fore, the sum of the two is zero, yielding the thesis.

IV. CONVERGENCE TO A RIGID LATTICE CONFIGURATION

We can now state our main result, i.e., that, given an in-
teraction function f (in (3)) generating short range repulsion
and long range attraction, the set of rigid lattice configura-
tions is locally asymptotically stable ([27, Definition 1.8]).
Assumption 1: f (in (3)) is such that:
(a1) f (R) = 0,
(a2) f (z)> 0 for z ∈]0;R[ and f (z)< 0 for z ∈]R;Ra[,
(a3) f (z) is continuous in ]0;Ra],
(a4) f (z) = 0 for any z > Ra.

An exemplary interaction function fulfilling the assump-
tion above is portrayed in Fig. 3a.

𝑓 (𝑧)

𝑅 𝑅a
0

𝑃(𝑧)

𝑅 𝑅a
0

𝑧

𝑧

(a)

0  0.5 1  R
a

1.5

0

1

(b)

Fig. 3. (a): An interaction function f satisfying Assumption 1 and its
potential P. (b): Interaction functions in (12) and (13) in the case d = 2.
The red dot highlights the zero of the functions in z = R.

Without loss of generality, we further assume that, under
Assumption 1, in a sufficiently small neighborhood of a
rigid lattice configuration, all other equilibria are also rigid
lattice configurations (supporting evidence showing that this
assumption is not restrictive is reported in the Appendix).
Theorem 2: [Stability of rigid lattices] Let Assumption 1
hold. Then, for any rigid lattice configuration x̄∗, Γ(x̄∗) is a
locally asymptotically stable equilibrium set. Consequently,
T is also a locally asymptotically stable equilibrium set.

Proof. Let us consider any rigid lattice configuration x̄∗ ∈
T , with center x∗c := 1

n ∑
n
i=1 x∗i and relative positions r∗i j,

and the set Γ(x̄∗) of its congruent configurations. Recalling
Definition 10.(B) and (a1), we have that x̄∗ is an equilibrium
point of (2)–(3); thus, Γ(x̄∗) and T are equilibrium sets.
Next, we will prove local asymptotic stability of Γ(x̄∗)⊂ T ,
which implies local asymptotic stability of T through (1).

Step 1 (Lyapunov function): Given a configuration x̄ ∈
Rdn with center xc and inducing the links in E(x̄) according
to Definition 8, let m := |E(x̄)| and order the links in E(x̄)
arbitrarily, so that r1, . . . ,rm refer to the relative positions ri j
for (i, j) ∈ E(x̄). Recalling (a3), we can define the potential
function P : ]0,Ra] → R given by P(z) = −

∫ z
R f (y)dy (see

Fig. 3a). Note that P(R) = 0, dP
dz (z) =− f (z), and, from (a2),

P(z)> 0 ∀z ∈ R>0 \{R}. (5)

Then, let us consider the candidate Lyapunov function

V (x̄) := ∥x∗c −xc∥2 + ∑
k∈E(x̄)

P(∥rk∥). (6)

By (5), it holds that V (x̄) ≥ 0 ∀x̄ ∈ Rdn, and V = 0 if and
only if both xc = x∗c and Definition 10.(B) holds.

Step 2 (Properties of V ): V (x̄) is discontinuous over
Rdn (because E(x̄) changes when links (dis-)appear). How-
ever, V (x̄) is continuous and differentiable in any subset of
Rdn where the set E(x̄) of links is constant. To find such
a set, we seek conditions on x̄ such that E(x̄) = E(x̄∗) (see
Definitions 7 and 8), i.e.,∥∥ri j

∥∥< Ra, ∀(i, j) ∈ E(x̄∗), (7a)∥∥ri j
∥∥> Ra, ∀(i, j) ̸∈ E(x̄∗). (7b)

(7a) means that all links in E(x̄∗) are preserved in E(x̄),
while (7b) means that no new links are created in E(x̄) with
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respect to E(x̄∗). With simple algebraic manipulations it is
possible to show that (7a) and (7b) hold if x̄ ∈ B, where

B := {x̄ ∈ Rdn :
∣∣∥∥ri j

∥∥−∥∥r∗i j
∥∥∣∣< β , ∀i, j ∈ S}, (8)

and β < mini, j∈S

∣∣∣Ra −
∥∥∥r∗i j

∥∥∥∣∣∣; B can be intended as a
“neighborhood” of Γ(x̄∗) with “width” β (see Fig. 2b). Thus,
E(x̄) = E(x̄∗) in B and V is continuously differentiable in B.

Step 3 (Analysis of V̇ ): Now, we restrict our analysis
to the set B to study the attractivity of Γ(x̄∗). We start
by studying the dynamics of the agents. From (2)–(3), we
have ẋi = ∑ j∈Ii f (∥ri j∥)r̂i j. Hypothesis (a4) and (4) imply
that ∑ j∈Ii f (

∥∥ri j
∥∥)r̂i j = ∑ j∈Ai f (

∥∥ri j
∥∥)r̂i j. Hence, using the

incidence matrix B (Definition 1) of the swarm graph, we get

ẋi = ∑
j∈Ai

f (∥ri j∥)r̂i j =
m

∑
k=1

[B]ik f (∥rk∥)r̂k. (9)

Moreover we can write the dynamics of the relative positions
along a link k as ṙk = ∑

n
i=1[B]ikẋi. Therefore, exploiting (6),

Lemma 1, and (9), we get

V̇ (x̄) =
m

∑
k=1

∂V
∂ ∥rk∥

∂ ∥rk∥
∂rk

ṙk =
m

∑
k=1

P′(∥rk∥) r̂Tk
n

∑
i=1

[B]ikẋi

=−
n

∑
i=1

m

∑
k=1

f (∥rk∥) [BT]ki r̂Tk ẋi =−
n

∑
i=1

ẋTi ẋi =− ˙̄xT ˙̄x ≤ 0,

(10)

where we also used that P′ = − f and that ∂∥rk∥
∂rk

= r̂Tk . We
can hence conclude that V̇ (x̄) = 0 if and only if ˙̄x = 0, i.e.,
in correspondence of equilibrium configurations.

Choosing β in (8) small enough, we exclude the presence
of equilibrium configurations not belonging to Γ(x̄∗), and
hence {

V̇ (x̄) = 0, if x̄ ∈ Γ(x̄∗),
V̇ (x̄)< 0, if x̄ ∈ B\Γ(x̄∗).

(11)

Step 4 (Applying LaSalle’s invariance principle): To
complete the proof, we define a forward invariant neighbor-
hood of x̄∗ and then apply LaSalle’s invariance principle.
Given some ω ∈ R>0, let Ω be the largest connected set
containing x̄∗ such that V (x̄) ≤ ω ∀x̄ ∈ Ω (see Fig. 2b). In
particular, we select ω small enough that Ω ⊆ B.3 Since
V (x̄) ≤ ω and V̇ (x̄) ≤ 0 for all x̄ ∈ Ω, then Ω is forward
invariant. Moreover, Ω is closed, because V is continuous in
Ω, and Ω is the inverse image of the closed set [0,ω]. Ω is
also bounded because (i) translations too far from x̄∗ cause
V to increase beyond ω (see (6)), and (ii) Ω ⊆B implies that
the deformations of the framework are bounded (see (8)).

As Ω is closed, bounded (thus compact) and forward
invariant, we can apply LaSalle’s invariance principle [28,
Theorem 4.4], and noting that, in Ω, V̇ (x̄) = 0 if and only if
x̄ ∈ Γ(x̄∗) (see (11)), we get that all the trajectories starting
in Ω converge to Γ(x̄∗)∩Ω. This and the forward invariance

3 Such ω exists because B is a “neighborhood” of Γ(x̄∗) (in the sense of
(8)) and, by the rigidity of framework F(x̄∗) (Definition 6), any continuous
motion of the vertices that changes the distance between any two vertices
also changes the length of at least one link, causing V to increase.

of Ω imply that Γ(x̄∗) is locally asymptotically stable, and
so is T because of (1).

Proposition 1: [Collision avoidance] Let P0 := limz↘0 P(z).
(i) No collisions between agents occur if P0 =∞. (ii) In a suf-
ficiently small neighborhood of a rigid lattice configuration,
no collisions occur if x̄(0) is such that ∑k∈E(x̄) P(∥rk∥)< P0.

A proof of Proposition 1 can be found in the Appendix.
Remark 1: [Path tracking] Path tracking can be obtained
by adding a velocity term w(t) on the r.h.s. of (2). Theorem
2 still holds, as the analysis can be carried out on new states
yi, with yi(t) = xi(t)−

∫ t
0 w(τ)dτ and ẏi = ui.

Remark 1 only aims to show feasibility of path tracking;
clearly, more sophisticated strategies can be designed.
Remark 2: [Second order dynamics] It is possible to show
that the results in Theorem 2 also hold in the case of second
order nonlinear dynamics, that is ẋi = vi, v̇i = g(∥vi∥)v̂i+ui,
where xi and vi are the position and velocity of agent i,
and g : R≥0 → R≤0 is a friction term with g(z) = 0 ⇔
z = 0 and such that vc(t) := ∑

n
i=1 vi(t) → 0. Namely, the

proof of Theorem 2 can be adapted by using the function
V = ∑k∈E(x̄) P(∥rk∥)+ 1

2 ∑
n
i=1 vTi vi in (6) and exploiting that

xc(t) := ∑
n
i=1 xi(t) remains bounded, to apply LaSalle’s in-

variance principle.

V. NUMERICAL VALIDATION

In this section, we validate numerically the result presented
in Section IV and estimate the basin of attraction of T .

A. Simulation setup

We set n = 100, R = 1, Rs = 3, Ra = (1+Rnext)/2 (i.e.
Ra ≈ 1.37 if d = 2; Ra ≈ 1.21 if d = 3). We validate our
strategy using two interaction functions, depicted in Fig. 3b.
The first one is

f1(z) =


g
( 1

z −
1
R

)
πR2

Ra−R if z ∈ ]0;R],

−gsin
(
(z−R) π

Ra−R

)
if z ∈ ]R;Ra],

0 if z > Ra;

(12)

with g = 0.5. f1 satisfies Assumption 1, is smooth in ]0;Ra[
and limz↘0 f1(z) = ∞. The second interaction function f2 is
the Physics-inspired Lennard-Jones function [5], [11], i.e.,

f2(z) = min
{(

a
z2c −

b
zc

)
, 1

}
, (13)

where we select a = b = 0.5 and c = 12 when d = 2 and
c = 24 when d = 3; see Fig. 3b. f2 saturates to 1 as z ↘ 0
to comply with possible actuator saturation. Moreover, f2
satisfies (a1), (a2) and (a3) in Assumption 1 exactly, but
(a4) only approximately. This is intentional as it allows to
account for long range attraction between the agents, which
is frequently required in swarm robotics applications [22].

To assess if the swarm is in a rigid lattice configuration,
we check conditions (A), (B) in Definition 10. To evaluate
(A) we use Theorem 1. To evaluate (B), we define the error
e(t) :=maxk∈E(t) |∥rk(t)∥−R|, which is zero when (B) holds.
Also, as long as e(t) stays strictly lower than Ra−R, links in
the configuration of interest are neither created nor destroyed.
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Fig. 4. Time evolution of e for various interaction functions and values of
d. In each panel, 10 simulations with random initial conditions are showed;
the solid line is the mean; the shaded area is the minimum and maximum.

For each simulation, the initial positions of the agents are
obtained by picking a random rigid lattice configuration and
then applying, to each agent, a different random displacement
drawn from a uniform distribution over a disk (when d = 2)
or a sphere (when d = 3), having radius δ ∈ R≥0.

All simulation are run in MATLAB;4 the agents’ dynamics
(2)–(3) are integrated using the forward Euler method with
a fixed time step equal to 0.01s.

B. Numerical results

To validate Theorem 2, in Fig. 4 we report the time
evolution of the error e(t) for 10 simulations where the
swarm starts from a perturbed rigid lattice configuration.
Simulations are presented for d ∈ {2,3} and for both interac-
tion functions f1 and f2. In all cases, infinitesimal rigidity is
preserved and e(t) converges to zero, denoting local stability
of the lattice.

To estimate the basin of attraction of the set of rigid
lattice configurations, we performed extensive simulations
for various values of δ , and characterize the steady state
configurations in Fig. 5. Namely, for δ smaller than 0.25 for
d = 2 and 0.2 for d = 3 all simulations converge to a rigid
lattice configuration. Then, as δ increases, fewer simulations
converge to rigid lattices, until none does. Note that e(0)≤
2δ , therefore δ = 0.25 (resp. δ = 0.2) corresponds to a
perturbation of up to 50% (resp. 40%) of the initial link
length, giving an estimation of the basin of attraction of T .

VI. CONCLUSIONS

We proved analytically local asymptotic stability of rigid
lattices for swarms under the action of a distributed control
law based on virtual attraction/repulsion forces. The theoret-
ical derivations were supported by exhaustive numerical sim-
ulations, providing also an estimate of the basin of attraction.

4Simulations are performed using SwarmSim V2. The code is available
at https://github.com/diBernardoGroup/SwarmSimPublic.
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(b) Terminal values for d = 3

δ = 0.2 δ = 0.4 δ = 0.6

(c) Initial configurations (d = 2)

δ = 0.2 δ = 0.4 δ = 0.6

(d) Final configurations (d = 2)

Fig. 5. Simulations for different values of δ and interaction function f2. (a),
(b): Terminal values of e and ρ , respectively for d = 2 and d = 3. ρ is the
fraction of simulations converging to an infinitesimally rigid configuration.
For e, the solid line is the mean; the shaded area is the minimum and
maximum. 20 simulations with random initial conditions are performed for
each value of δ , and last 20 s. (c), (d): Initial and final configurations of
representative simulations for specific values of δ in the case that d = 2.

The mild hypotheses required on the interaction function
allow for wide applicability of the theoretical results.

Future work will focus on an analytical characterization
of the basin of attraction of T , the study of the effect of
measurement errors on the lattice configuration, anisotropic
virtual forces, interaction with the environment (e.g. obstacle
avoidance), and the extension of the results to other geomet-
ric lattices, such as squares and hexagons.

APPENDIX

To confirm the effectiveness of our theoretical results, we
provide below further semi-analytical evidence that the set of
rigid lattice configurations T is locally asymptotically stable,
which also excludes the presence of other equilibria in an
arbitrarily small neighborhood of it. To do so, we linearize
system (2)–(3) around a rigid lattice configuration, say x̄∗,
obtaining ˙̄x ≈ J(x̄∗)(x̄− x̄∗), with J(x̄∗) ∈Rdn×dn derived as
follows.
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Jacobian of (2)–(3): System (2)–(3) can be recast as

˙̄x = ((BFG−1BT)⊗ Id)x̄ = ((BHBT)⊗ Id)x̄, (14)

where F,G,H∈Rm×m are diagonal matrices; [F]ii := f (∥ri∥),
[G]ii := ∥ri∥, and H := FG−1. The Jacobian of (14) is

J =

(
B

∂H
∂ x̄

BT⊗ Id

)
x̄+(BHBT)⊗ Id =: J1 +J2, (15)

where ∂H
∂ x̄ ∈ Rm×m×dn is a tensor, and

[
∂H
∂ x̄ BT

]
:,:,k

=[
∂H
∂ x̄

]
:,:,k

BT ∈ Rm×n, with notation [ · ]:,:,k denoting the

matrix obtained by fixing the third index of the tensor.
From (a1), for all rigid lattice configurations we have J2 =

(BHBT)⊗ Id = 0. Then, [J1]:,k =

(
B
[

∂H
∂ x̄

]
:,:,k

BT⊗ Id

)
x̄.

From [25, p. 20] we have ∂∥ri∥2

∂ [x̄]k
= 2[M]i,k (see Definition

4), that is ∂∥ri∥
∂ [x̄]k

= 1
∥ri∥ [M]i,k, and thus[

∂H
∂ x̄

]
i,i,k

=
∂ [ f (∥ri∥)/∥ri∥]

∂ ∥ri∥
∂ ∥ri∥
∂ [x̄]k

= [ f ′(∥ri∥)∥ri∥− f (∥ri∥)]∥ri∥−3 [M]i,k, (16a)[
∂H
∂ x̄

]
i, j,k

= 0, if i ̸= j. (16b)

Numerical analysis: We set R = 1 and generated
1520 random rigid lattice configurations (10 per each n ∈
{25,26, . . . ,100}, and each d ∈ {2,3}). For each of these
configurations, assuming f (in (3)) is in the form (13), we
computed J using (15)–(16) and found that in all cases J
has d(d + 1)/2 zero eigenvalues with eigenvectors {w0

i }i,
and dn−d(d +1)/2 negative eigenvalues with eigenvectors
{w±

j } j. Moreover, Mw0
i = 0 and Mw±

j ̸= 0; thus, from Def-
inition 5, the span of {w0

i } corresponds to roto-translations
and is a hyperplane locally tangent to Γ(x̄∗) (see Definition
11), while {w±

j } correspond to other motions. Therefore,
the center manifold theorem [27, Theorem 5.1] yields that
Γ(x̄∗) is a center manifold of system (2)–(3). Moreover,
as expected from Theorem 2, the reduction principle [27,
Theorem 5.2] confirms that the dynamics locally converge
onto the equilibrium set Γ(x̄∗), and excludes the presence of
other equilibria in an arbitrarily small neighborhood of it.

Proof of Proposition 1. When a collision occurs, at least one
rk becomes zero and thus, from (5), ∑k∈E(x̄) P(∥rk∥) ≥ P0.
Equations (6) and (10) yield the first statement. The second
statement is obtained by recalling that Ω ⊆ B and that Ω is
forward invariant (see Step 4 of the proof of Theorem 2).
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