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Abstract— Drawing samples from a given target probability
distribution is a fundamental task in many science and
engineering applications. A commonly used method for sampling
is the Markov chain Monte Carlo (MCMC) which simulates
a Markov chain whose stationary distribution coincides with
the target one. In this work, we study the convergence and
complexity of MCMC algorithms from a dynamic system point
of view. We focus on the special cases with Gaussian target
distributions and provide a Lyapunov perspective to them using
tools from linear control theory. In particular, we systematically
analyze two popular MCMC algorithms: Langevin Monte Carlo
(LMC) and kinetic Langevin Monte Carlo (KLMC). By applying
Lyapunov theory we derive impressive complexity bounds to
these algorithms: for LMC, our result is better than all existing
results, and for KLMC, ours matches the best known bound.
Our analysis also highlights subtle differences between sampling
and optimization that could inform the more challenging task
to sample from general distributions. Overall, our findings offer
valuable insights for improving MCMC algorithms.

Index Terms— Linear systems, Lyapunov methods, Filtering.

I. INTRODUCTION

The task to draw random samples from an (unnormalized)
distribution ν ∝ exp(−f(x)) with potential f : Rd → R,
plays a crucial role in many areas of science and engineering,
including Bayesian inference, filtering/estimation, uncertainty
quantification, inverse problems, etc [1], [2], [3], [4]. For
instance, particle filtering algorithms recursively sample
from the posterior distributions of the state after each new
measurement arrives. In inference problems, in contrast
to optimization approaches that give point estimates, the
sampling methods have the advantage of being able to quantify
the uncertainties of such estimates.

A popular paradigm for sampling is Markov chain Monte
Carlo (MCMC), and chief among them are those based on
the Langevin dynamics, either overdamped or underdamped
[5], [6], [7]. In practice, the Langevin dynamics are (time)
discretized and integrated over a given stepsize. A metric
that is commonly used for quantifying the performance of
sampling algorithms is the number of steps required to achieve
a given level of accuracy in some statistical divergence or
metric, known as mixing time [8], akin to the number of
iterations in optimization to achieve certain accuracy.
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Both the overdamped and underdamped Langevin dynamics
(continuous in time) and algorithms (discrete in time) have
been extensively studied with a variety of assumptions on
the target distribution ν. A standard setting is when the
potential energy f(x) defined on Rd is strongly convex and
smooth (i.e. having a global Lipschitz gradient). In this case,
the complexity (i.e. mixing time for reaching ϵ statistical
error) of Langevin Monte Carlo (LMC) can be Õ(dϵ−2)
[9], [10], [11], [12], where the Õ notation means Landau’s
big O additionally with constant and logarithm terms in ϵ
ignored. Under the same assumption, the complexity of an
underdamped/kinetic Langevin Monte Carlo (KLMC) was
however shown to be Õ(

√
dϵ−1) [13], [14], which gives an

order of Õ(
√
dϵ−1) improvement over the overdamped one.

These existing works adopted different proof techniques to
analyze the convergence rates of standard LMC or KLMC for
general strongly-convex and smooth potentials. It is not clear
whether these complexity bounds can be further improved,
even just for the LMC or KLMc algorithms.

In this work, we make inroads toward better non-asymptotic
complexity bounds for sampling by examining the sampling
problems with Gaussian target distributions. Any nonde-
generate Gaussian distributions satisfy the standard setting
considered in the prementioned existing works: the potential
is strong-convex and smooth. In particular, we make the
following assumption:

Assumption 1: The target distribution is Gaussian ν ∝
exp(−f) = exp(− 1

2 (· − mg)
TΣ−1

g (· − mg)) (namely ν =
N (mg,Σg)) defined on Rd and the potential f is α-strongly
convex and β-smooth, i.e., αI ⪯ Σ−1

g ⪯ βI. The initial
distribution for the MCMC algorithm is also Gaussian.

We study Langevin sampling algorithms in the Gaussian
setting from a linear control perspective and present a
new complexity analysis for these algorithms by leveraging
tools from linear Lyapunov theory. More specifically, under
Assumption 1, it is sufficient to analyze the convergence
behaviors of the mean and covariance matrix separately. Since
the dynamics of the mean and covariance matrix can be
expressed by linear systems, we can apply the Lyapunov
theory in linear control to compute the complexity bound.

Main Contributions: By comparing the results for con-
tinuous dynamics and discrete algorithms, our analysis
underscores the fact that the complexity of sampling is
from time discretization; the continuous-time dynamics of
mean and covariance of Langevin dynamics have exactly
the same convergence rate. Our technique reveals that the
time-discretization of the mean dynamics does not induce
bias, but that of the covariance dynamics does. We conclude
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that the size of the bias relies on dimension d, resulting
in dimension-dependent complexity bounds for sampling, in
contrast to dimension-free complexity bounds for optimization.
More quantitatively, our analysis yields a complexity bound
Õ(κ

√
d/ϵ) for LMC, better than all the existing results [9],

[10], [11], [12], [15], albeit for Gaussian cases. For KLMC,
we establish complexity bound Õ(κ

√
d/ϵ) by Theorem 4, the

same as the best existing results [13], [14].
Notation: For any complex diagonal matrix Λ, |Λ| and

ℜ(Λ) stand for the magnitude and real part of each element,
respectively, and ΛH is the Hermitian transpose of Λ. We
use the weighted norm induced by a matrix P , i.e., for any
vector x, ∥x∥2P = xTPx and for any matrix M , ∥M∥2P =
∥PM∥2F . Denote the eigenvalues of a matrix M by σ(M).
Θ is Landau’s big theta meaning asymptotical equality. We
also use the standard convention of diagonal matrices: the
blank space stands for zero elements.

II. SAMPLING VIA OVERDAMPED LANGEVIN

In this section, we analyze the convergence behavior of
overdamped Langevin dynamics and the LMC algorithm in
the special case with Gaussian target distribution.

A. Overdamped Langevin dynamics

For a given target distribution ν ∝ exp(−f) on Rd, the
associated Langevin dynamics [9] reads

dXt = −∇f(Xt)dt+
√
2dWt,

where Wt is a standard Wiener process. Note this is a
stochastic process and Xt is a random vector for any t.
Under mild assumptions, the distribution of Xt converges
to its stationary distribution that coincides with the target
distribution ν. Thus, one can in principle simulate the
Langevin dynamics for a sufficiently long time to draw
samples from ν.

When ν = N (mg,Σg), the Langevin dynamics becomes
a linear stochastic differential equation (SDE) [16]. More
specifically, invoking the quadratic expression of f(x) =
1
2 (x − mg)

TΣ−1
g (x − mg), it corresponds to the multi-

dimensional version of the Ornstein–Uhlenbeck process [17]

dXt = −Σ−1
g (Xt −mg)dt+

√
2dWt. (1)

By solving the linear stochastic differential equation (1),
one has Xt also follows a Gaussian distribution as long as
X0 follows a Gaussian distribution. Thus, the evolution of
the random vector Xt can be fully captured by that of its
mean and covariance. Denote the mean of Xt as mt and the
covariance as Σt, then following standard stochastic calculus
we obtain

ṁt = −Σ−1
g (mt −mg) (2a)

Σ̇t = −Σ−1
g Σt − ΣtΣ

−1
g + 2I. (2b)

Specifically, (2a) follows by taking the expectation of (1). To
get (2b), we first apply stochastic calculus to get d(XtX

T
t )

and then take expectation [16].
Both (2a) and (2b) are linear systems. Clearly, the equi-

librium point of (2) is (mg, Σg). Applying linear system

theory, we can establish linear convergence of (mt,Σt) to
the equilibrium point, as follows.

Theorem 1 (Convergence rate of overdamped Langevin
dynamics for Gaussian distributions) Under Assumption 1,
the mean mt and covariance Σt of Xt evolving according
to the Langevin dynamics (1) satisfy

∥mt −mg∥22 ≤ exp(−2αt)∥m0 −mg∥22 (3a)
∥Σt − Σg∥F ≤ exp(−2αt)∥Σ0 − Σg∥F . (3b)

Proof: Denote mt −mg and Σt −Σg by δmt and δΣt

respectively, then the linear system (2) is equivalent to

˙δmt = −Σ−1
g δmt (4a)

˙δΣt = −Σ−1
g δΣt − δΣtΣ

−1
g . (4b)

Under Assumption 1, specifically −Σ−1
g ⪯ −αI , we obtain

∥δmt∥22 ≤ exp(−2αt)∥δm0∥22.

Vectorizing (4b) with Kronecker products yields

vec( ˙δΣt) = (I⊗−Σ−1
g )vec(δΣt) + (−Σ−1

g ⊗ I)vec(δΣt)

= (−Σ−1
g ⊕−Σ−1

g )vec(δΣt).

It is a standard result that the largest eigenvalues of (−Σ−1
g ⊕

−Σ−1
g ) is −2α < 0. Since for any matrix A, ∥vec(A)∥2 is

the Frobenius norm of A, we arrive at

∥δΣt∥F ≤ exp(−2αt)∥δΣ0∥F . (5)

B. Overdamped Langevin Monte Carlo

One popular way to discretize overdamped Langevin
dynamics (1), thus turning it into a practical sampling
algorithm, is the (overdamped) Langevin Monte Carlo (a.k.a.
Unadjusted Langevin Algorithm). For a target distribution
ν ∝ exp(−f), it runs as

Xk+1 = Xk − η∇f(Xk) +
√
2ηξk, ξk

iid∼ N (0, I)

where η > 0 is the stepsize. In the Gaussian case where
ν = N (mg,Σg), it becomes

Xk+1 = Xk−ηΣ−1
g (Xk−mg)+

√
2ηξk, ξk

iid∼ N (0, I). (6)

Again, this linear dynamics is fully captured by the mean
mk and covariance Σk of Xk, which evolves according to

mk+1 −mg = (I− ηΣ−1
g )(mk −mg) (7a)

Σk+1 = (I− ηΣ−1
g )Σk(I− ηΣ−1

g ) + 2ηI.(7b)

The convergence of mk,Σk is characterized by the following
result.

Theorem 2 (Convergence rate of Langevin Monte Carlo
for Gaussian distributions) Under Assumption 1, the mean
mk and covariance Σk of Xk evolving according to the
Langevin Monte Carlo (6) satisfy

∥mk −mg∥22 ≤ (1− ηα)2k∥m0 −mg∥22

∥Σk − Σg∥F ≤ (1− ηα)2k∥Σ0 − Σs∥F +

√
dη

2− ηβ
.
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Moreover, if η = Θ(ϵ/β
√
d), then for any ϵ ∈ [0,

√
d], we have

α∥Σk − Σg∥F ≤ ϵ after

N = Õ(
κ
√
d

ϵ
)

iterations, where κ = β/α is the condition number.
Proof: Under Assumption 1, by linear dynamics theory,

the linear system (7) is globally asymptotically stable when
η < 1/β. Moreover, since the stationary point of (7a) is
mk = mg , we have

∥mk −mg∥22 ≤ (1− ηα)2k∥m0 −mg∥22.

In contrast, the stationary point of (7b) is not Σg due to the
discretization error. We denote the true equilibrium point of
(7b) by Σs. By definition of equilibrium point, it satisfies

Σs = (I− ηΣ−1
g )Σs(I− ηΣ−1

g ) + 2ηI. (8)

Combining (7b) and (8), we obtain

Σk+1 − Σs = (I− ηΣ−1
g )(Σk − Σs)(I− ηΣ−1

g ).

It follows that

vec(Σk+1−Σs) =
(
(I− ηΣ−1

g )⊗ (I− ηΣ−1
g )
)

vec(Σk−Σs).

The operator norm of
(
(I− ηΣ−1

g )⊗ (I− ηΣ−1
g )
)

is (1 −
ηα)2, implying

∥Σk − Σs∥F ≤ (1− ηα)2k∥Σ0 − Σs∥F . (9)

The above inequality characterizes the convergence rate of Σk

to the stationary state of (7b). We next bound the deviation
of Σs from Σg , i.e., the Frobenius norm of Σk−Σg . Solving
the Lyapunov equation (8) yields that the explicit expression
of Σs is

Σs = 2η(I− (I− ηΣ−1
g )2)−1.

As Σ−1
g is positive definite, we write its eigendecomposition

as Σ−1
g = UΛUT with UUT = I and Λ being diagonal. It

follows that

∥Σs − Σg∥2F = Tr((Σs − Σg)
2)

=
η2

4
Tr
(
(I− ηΛ/2)

−2
)

≤ dη2

(2− ηβ)2

(10)

where the second equality comes from the fact that Σs and
Σg share the same eigenspace, and the last inequality is from
αI ⪯ Λ ⪯ βI following the assumption that αI ⪯ Σ−1

g ⪯ βI.
By (9), (10) and the assumption η < 1/β, we conclude

∥Σk − Σg∥F ≤ ∥Σk − Σs∥F + ∥Σs − Σg∥F

≤ (1− ηα)2k∥Σ0 − Σs∥F +

√
dη

2− ηβ
.

Finally, by choosing η = Θ(ϵ/β
√
d), the discretization error√

dη
2−ηβ is upper bounded by ϵ/2. Then after Õ(κ

√
d

ϵ ) iterations,
with the same η, the other term (1 − ηα)2k∥Σ0 − Σs∥F is
also upper bounded by ϵ/2.

Remark 1: We use the metric α∥Σk − Σg∥F instead of
∥Σk − Σg∥F because the former is invariant with respect to
rescaling of the coordinate.

Compared with the bound Õ(dϵ−2) obtained in [9],
[10], [11], [12] for LMC with strongly-convex and smooth
potentials, the mixing time complexity shows an order
of Õ(

√
dϵ−1) improvement. In [15], the complexity is

Õ(κ2
√
dϵ−1). Compared with these two bounds, our bound

for Gaussian distributions are tighter, which may indicate the
theoretically tightest mixing time complexity of sampling for
strongly-convex and smooth potentials is not achieved yet.

The complexity bound with respect to the Wasserstein-
2 distance W2, a popular metric used to measure the
convergence of MCMC, in the Gaussian setting can be
analyzed as follows.

Proposition 1: Under Assumption 1, consider Xk evolv-
ing according to the Langevin Monte Carlo (6). If
η = Θ(ϵ/β

√
d), then for any ϵ ∈ [0,

√
d], we have

αW2(N (mk,Σk),N (mg,Σg)) ≤ ϵ after

N = Õ(
κ
√
d

ϵ
)

iterations.
Proof: By equation (3) and (11) in [18],

∥Σ1/2
k − Σ1/2

g ∥2F ≥ Tr(Σg +Σk − 2(Σ1/2
g ΣkΣ

1/2
g )1/2).

Since [19]

W 2
2 (N (mk,Σk),N (mg,Σg))

= ∥mk −mg∥22 +Tr(Σg +Σk − 2(Σ1/2
g ΣkΣ

1/2
g )1/2),

we have

∥Σ1/2
k −Σ1/2

g ∥2F+∥mk−mg∥22 ≥W 2
2 (N (mk,Σk),N (mg,Σg)).

To bound ∥Σ1/2
k − Σ

1/2
g ∥2F , we just need to bound ∥Σ1/2

s −
Σ

1/2
g ∥2F . This is achieved following a similar calculation as

in (10), which is O( dη2β
2−ηβ ). The same η = Θ(ϵ/β

√
d) can then

give the same complexity bound Õ(κ
√
d

ϵ ) with respect to W2.

III. SAMPLING VIA UNDERDAMPED LANGEVIN

In this section, we extend the analysis in the previous
section to underdamped Langevin dynamics as well as the
KLMC algorithm based on it. For the ease of presentation, we
do not give general explicit expressions of the convergence
rate in Theorem 3 and 4. Instead, in Section III-C we consider
one specific case that is widely used in existing works.

A. Underdamped Langevin dynamics

The underdamped Langevin dynamics for target distribution
ν ∝ exp(−f) is

dXt = Vtdt (11a)
dVt = −γVtdt− u∇f(Xt)dt+

√
2γudWt (11b)

where Xt, Vt ∈ Rd. The invariant distribution of (11) in the
phase space is exp(−f(x)− ∥v∥2

/2u) [20]. Here γ and u are
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both positive parameters. We further adopt the following mild
assumption to solely simplify the proof.

Assumption 2: det(γ2I− 4uΣ−1
g ) ̸= 0.

Under Assumption 1, let Zt be
(
Xt −mg

Vt

)
, then (11)

reduces to

dZt =

(
0 I

−uΣ−1
g −γI

)
Ztdt+

(
0√
2γuI

)
dWt.

Again, Zt is Gaussian as long as Z0 is Gaussian. Denote(
0 I

−uΣ−1
g −γI

)
and

(
0√
2γuI

)
by A and B, respectively.

Let δmt and Σt be the mean and covariance matrix of Zt,
respectively, and δΣt be Σt − Σ̃g where

Σ̃g =

(
Σg

uI

)
(12)

is the covariance of the stationary distribution of Zt, then

˙δmt = Aδmt (13a)
˙δΣt = AδΣt + δΣtA

T . (13b)

This is a linear system and its convergence property is
determined by the eigenvalues of A. Standard computation
for the eigenvalues of blocked matrices gives

σ(A) = {−γ ±
√
γ2 − 4uλ

2
, λ ∈ σ(Σ−1

g )}. (14)

Clearly, the linear system (13) is stable as γ, u, λ are all
positive. Moreover, (14) implies that each eigenvalue of Σ−1

g

corresponds to two eigenvalues of A. Thus, we define two
diagonal matrices Λ+ and Λ− as follows. Let λi represent
the i-th eigenvalue of Σ−1

g , then the i-th elements of Λ+

and Λ− are −γ+
√

γ2−4uλi

2 and −γ−
√

γ2−4uλi

2 , respectively.
Furthermore, let the eigendecomposition of Σ−1

g be UΛUT

with UUT = I. By Assumption 2, one can express the
eigenvectors of A by Λ+, Λ− and U , which follows that the
eigendecomposition of A is

A = V

(
Λ+

Λ−

)
V −1 (15)

where

V =

(
U U

UΛ+ UΛ−

)
. (16)

It is worth mentioning that the decomposition (16) does
not hold when γ2 − 4uλ = 0 for some λ, namely, when
Assumption 2 does not hold. In that case, we can consider
the Jordan decomposition instead of the eigendecomposition.

By linear control theory, the convergence rate of (13) is
characterized by

rc = −maxℜ(σ(A)) (17)

and the associated Lyapunov inequality is

ATP + PA ⪯ −2rcP.

It turns out one such choice is P = V −HV −1. Indeed,

ATP + PA = 2V −H

(
ℜ(Λ+)

ℜ(Λ−)

)
V −1 ⪯ −2rcP.

(18)

By Lyapunov theory, it follows that

∥δmt∥2P ≤ exp(−2rct)∥δm0∥2P .

Similarly, for the dynamics of the covariance matrix (13b),
we have

d

dt
∥δΣt∥2P =

d

dt
Tr (δΣtPδΣtP )

= Tr( ˙δΣtPδΣtP + δΣtP ˙δΣtP )

= 2Tr((ATP + PA)δΣtPδΣt)

≤ −4rc Tr(PδΣtPδΣt))

= −4rc∥δΣt∥2P ,

which follows that

∥δΣt∥P ≤ exp(−2rct)∥δΣ0∥P .

Thus, we have established the following convergence results.

Theorem 3 (Convergence rate of underdamped Langevin
dynamics for Gaussian distributions) Under Assumption
1 and 2, for (Xt, Vt) evolving according to the Langevin
dynamics (11), one has

∥mt −mg∥2P ≤ exp(−2rct)∥m0 −mg∥2P (19a)

∥Σt − Σ̃g∥P ≤ exp(−2rct)∥Σ0 − Σ̃g∥P . (19b)

where mt and Σt are the mean and covariance matrix of
(Xt, Vt), respectively, and Σ̃g is as in (12). Here ∥ · ∥P is
the weighted norm induced by P = V −HV −1 with V given
by (16), and the convergence rate rc > 0 is defined in (17).

B. Kinetic Langevin Monte Carlo

In [5], the implementation of underdamped Langevin
dynamics is obtained by one discretization of underdamped
Langevin dynamics (11) with step size η, which uses(

Xk+1 −mg

Vk+1

)
= Ad

(
Xk −mg

Vk

)
+ ξk, ξk

iid∼ N (0, Q)

(20)
where

Ad =

(
I− u

γ

(
η − 1

γ (1− e−γη)
)
Σ−1

g
1
γ (1− e−γη)I

−u
γ (1− e−γη)Σ−1

g e−γηI

)
.

Here Q is a 2-by-2 block matrix with

Q11 =
2u

γ

(
η − 3

2γ
+

2

γ
exp(−γη)− 1

2γ
exp(−2γη)

)
I

Q12 =
u

γ
(1 + exp(−2γη)− 2 exp(−γη)) I

Q21 =
u

γ
(1 + exp(−2γη)− 2 exp(−γη)) I

Q22 = u(1− exp(−2γη))I

700



where each block is a d-by-d matrix. To see more clearly the
effects of time discretization, in what follows, we consider
the first-order approximation of Ad and Q,

Âd =

(
I ηI

−uηΣ−1
g I− γη

)
(21a)

Q̂ =

(
0 0
0 2uγηI

)
. (21b)

Hence, (20) reduces to(
X̂k+1 −mg

V̂k+1

)
= Âd

(
X̂k −mg

V̂k

)
+ ξ̂k (22)

with ξ̂k ∼ N (0, Q̂). It is worth mentioning that (22) is also
one way to discretize (11). The following result characterizes
the convergence of the mean mk and covariance Σk of (22).

Theorem 4 (Convergence rate of kinetic Langevin Monte
Carlo for Gaussian distributions) Under Assumption 1 and
2, for (X̂k, V̂k) evolving according to the kinetic Langevin
Monte Carlo (22), one has

∥mk −mg∥2P ≤ r2kd ∥m0 −mg∥2P
∥Σk − Σ̃g∥P ≤ r2kd ∥Σ0 − Σs∥P + ∥Σs − Σ̃g∥P

where mk and Σk are the mean and covariance matrix of
(X̂k, V̂k), respectively, and Σ̃g is as in (12). Here ∥ · ∥P is
the weighted norm induced by P = V −HV −1 with V given
by (16), and the convergence rate rd < 1 is as in (25).

Proof: Denote the mean and covariance matrix of(
X̂k −mg

V̂k

)
by δmk and Σk, respectively, then

δmk+1 = Âdδmk (23a)
Σk+1 = ÂdΣkÂ

T
d + Q̂. (23b)

We next compute the eigendecomposition of Âd. Notice
that

Âd = I+ η

(
0 I

−uΣ−1
g −γI

)
.

Hence, by the decomposition in (15) and (16), we have

Âd = V

(
1 + ηΛ+

1 + ηΛ−

)
V −1 (24)

where V , Λ+ and Λ− coincide with the ones used in
the decomposition (16). Adopting the same weighted norm
induced by P = V −HV −1, one has the Lyapunov inequality
for discrete systems as

ÂT
d PÂd = ÂH

d PÂd

= V −H

(
|1 + ηΛ+|2

|1 + ηΛ−|2
)
V −1

⪯ r2dP.

(25)

Here r2d is the largest value of the elements in |1 + ηΛ+|2
and |1 + ηΛ−|2. It follows that

∥δmk∥2P ≤ r2kd ∥δm0∥2P . (26)

Since the stationary point of (23) is not Σ̃g, we denote the
true one as Σs which solves

Σs = ÂΣsÂ
T + Q̂. (27)

Then Σk converges to Σs based on the following identity

Σk+1 − Σs = Âd(Σk − Σs)Â
T
d .

By (25), it implies that

∥Σk+1 −Σs∥2P = ∥ÂH
d PÂd(Σk −Σs)∥2F ≤ r4d∥Σk −Σs∥2P .

Hence,
∥Σk − Σs∥P ≤ r2kd ∥Σ0 − Σs∥P .

The conclusion follows the triangle inequality of the weighted
norm ∥ · ∥P .

The non-asymptotic bound of Σk−Σ̃g in terms of standard
Frobenius norm can then be achieved by noticing that

∥Σk − Σ̃g∥F ≤ ∥P−1∥O∥Σk − Σ̃g∥P
≤ ∥P−1∥O(r2kd ∥Σ0 − Σs∥P + ∥Σs − Σ̃g∥P )
≤ C(P )(r2kd ∥Σ0 − Σs∥F + ∥Σs − Σ̃g∥F )

(28)

where C(P ) := ∥P∥O∥P−1∥O is the condition number of
P induced by the operator norm.

We next consider the bound of ∥Σs − Σ̃g∥P . With (27),
one has

Σs − Σ̃g = Âd(Σs − Σ̃g)Â
T
d +K, (29)

where

K = Q̂− Σ̃g + ÂdΣ̃gÂ
T
d = uη2

(
I −γI

−γI uΣ−1
g + γ2I

)
.

(30)
Let D := V −1(Σs − Σ̃g)V

−H . Plugging the decomposition
of Âd into (29) yields that

D =

(
1 + ηΛ+

1 + ηΛ−

)
D

(
1 + ηΛ+

1 + ηΛ−

)H

+ V −1KV −H .

Plugging into the expressions of V and K in (16) and (30)
yields that V −1KV −H is a 2-by-2 blocked matrix, where
each block ∈ Rd×d is diagonal, namely,

V −1KV −H =

(
E11 E12

EH
12 E22

)
, (31)

with

E11 = ϕ
(
|Λ−|2 + uΛ + γ2 + 2γℜ(Λ−)

)
E22 = ϕ

(
|Λ+|2 + uΛ + γ2 + 2γℜ(Λ+)

)
E12 = −ϕ

(
uΛ + γ2 + r(ΛH

+ + Λ−) + ΛH
+Λ−

)
,

where ϕ = uη2|Λ+ − Λ−|−2. It follows that

D =

(
E11

1−|1+ηΛ+|2
E12

1−(1+ηΛ+)(1+ηΛ−)H

EH
12

1−(1+ηΛ+)H(1+ηΛ−)
E22

1−|1+ηΛ−|2

)
.
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Lastly, with the definition of D and the decomposition of Âd

in (24).

∥Σs − Σ̃g∥2P = ∥P (Σs − Σ̃g)∥2F = ∥D∥2F

=

∥∥∥∥ E11

1− |1 + ηΛ+|2

∥∥∥∥2
F

+

∥∥∥∥ E22

1− |1 + ηΛ−|2

∥∥∥∥2
F

+ 2

∥∥∥∥ E12

1− (1 + ηΛ+)(1 + ηΛ−)H

∥∥∥∥2
F

(32)

where the last equation is from the definition of Λ+ and Λ−.
Further analysis on the bound of ∥Σs − Σ̃g∥2P depends on
the sign of γ2 − 4uλ for each λ ∈ σ(Σ−1

g ).

C. Example

In this subsection, we present one implementation of
KLMC. We assume γ = 2, u = 1/(2β). This set of
parameters is obtained from [5]. In this scenario, the sign
of each γ2 − 4uλ is nonnegative. Hence, by definition, the
convergence rate of the continuous dynamics rc in Theorem
3 is 1−

√
1− α

2β ≈ 1
4κ . Moreover, assuming η < 1

1+
√

1− 1
2κ

,

the convergence rate of the discrete implementation rd in
Theorem 4 is 1 + η(−1 +

√
1− 1

2κ ) ≈ 1− η
4κ . The bound

of each block of D in (32) can be computed as follows.∥∥∥∥ E11

1− |1 + ηΛ+|2

∥∥∥∥
F

=

∥∥∥∥∥ η22β 1

4− 2
βΛ

Λ
2β + (Λ+)

2

(ηΛ+)(2 + ηΛ+)

∥∥∥∥∥
F

.

(33)

Notice that each element in 1
|(4− 2

βΛ)(2+ηΛ+)| is bounded.
Hence, ∥∥∥∥ E11

1− |1 + ηΛ+|2

∥∥∥∥
F

= O(

√
dη

α
).

With the same procedure, one can show∥∥∥∥ E22

1− |1 + ηΛ−|2

∥∥∥∥
P

= O(

√
dη

α
)

and ∥∥∥∥ E12

1− (1 + ηΛ+)(1 + ηΛ−)H

∥∥∥∥
F

= O(

√
dη

α
).

It follows that for (32), we have

∥Σs − Σ̃g∥P = O(

√
dη

α
). (34)

Hence, in particular, if we take η = Θ( ϵ√
d
), then for any

ϵ ∈ [0, 1], we obtain α∥Σk − Σ̃g∥P ≤ ϵ after

N = Õ(
κ
√
d

ϵ
) (35)

iterations. Moreover, one can show

P−1 =

(
2I −2I
−2I 4I− Λ/β

)
.

Hence, the condition number of P is a bounded constant that
is independent of κ and d, and by (28), we have the same
mixed time complexity for the standard Frobenius norm. Our
result match the best existing bound for KLMC [14].

IV. CONCLUSION

In this work, we present a linear control perspective to
certain MCMC sampling algorithms for Gaussian target
distributions. We focus on two classical algorithms: LMC and
KLMC, one based on the overdamped Langevin dynamics
and one based on the underdamped Langevin dynamics. Our
results are better than the existing bounds in the Gaussian
setting. More importantly, our analysis may shed light on
complexity analysis for Langevin-based algorithms for general
distributions. In the future, we plan to further investigate the
KLMC algorithms with different choices of parameters γ, u
as well as other algorithms such as HMC.
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