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Abstract— Distributed MPC schemes for control of vehicle
platoons typically employ a p-norms-based cost function to
achieve stability and string stability. Quadratic cost functions
yield smoother trajectories, but they are not aligned with string
stability conditions. Hence, in this paper, we develop distributed
MPC controllers for vehicle platoons based on a hybrid cost
function, which combines infinity norms and quadratic forms.
Sufficient conditions for global platoon stability and leader-
follower string stability are derived for the developed hybrid
cost function and applied to lateral dynamics control. Simu-
lation results show that the hybrid cost function yields lateral
position errors that are 10 times smaller (for the maximum
error) compared with an infinity norms-based cost function.

I. INTRODUCTION

The vehicle platooning strategy ensures more efficient use
of roads, improves the operational quality of traffic flow,
and, most importantly, targets people’s safety [1]. A critical
demand for a vehicle platoon is the string stability property,
which ensures that the platoon does not amplify disturbances
along the platoon. There are two main types of string stability
[2]: i) leader-follower string stability, which requires that the
maximum deviation from the reference of the leader vehicle
is above the maximum deviation of the follower vehicles and
ii) predecessor-follower string stability, which requires that
the maximum deviation of a follower vehicle is under the
maximum deviation of the vehicle in front.

The longitudinal dynamics describes the velocity of vehi-
cles and the distance between them. The longitudinal control
has as a target to minimise the velocity and distance errors
and mitigate them along the platoon [3], [4]. The direction
of the vehicles is described by lateral dynamics. The leader
vehicle determines the path of the platoon using information
from sensors (radar, camera), and the follower vehicles track
it so that the lateral deviation is minimised [5]. Classical
string stable control design for linear dynamics may yield
high-gain aggressive controllers that violate the saturation of
actuators. Due to this, distributed model predictive control
(MPC) is a method of interest for achieving string stability
in platoons. Among the advantages of distributed MPC are
the guarantee of constraints, anticipative control actions,
and optimal control. A fundamental work that developed
a solution for vehicle platoon string stability based on
distributed MPC is [2]. In this paper, the authors propose an
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MPC controller for the longitudinal dynamics of a platoon.
The method uses a cost function based on p-norms and
gives the conditions required for global stability, predecessor-
follower string stability, and leader-follower string stability.
The disadvantage of this method is that the same proof of
stability does not apply to quadratic cost functions. Also, p-
norms-based cost functions yield aggressive control actions
and are not ideal for platooning. For the lateral dynamics,
[6] developed a distributed MPC scheme based on quadratic
cost functions, without providing a global stability analysis.
Therein, a constraint that promotes string stability inspired
by [2] was added to the MPC optimization problem.

This paper proposes a new, hybrid cost function for dis-
tributed MPC for vehicle platoons, which combines infinity
norms and quadratic forms. First, the conditions required by
a hybrid cost function to be a Lyapunov function are es-
tablished. Second, starting from [2], the conditions required
for leader-follower string stability are derived. With respect
to [2], [6], the contributions of this paper are: i) sufficient
conditions for closed-loop global stability of an intercon-
nected system with a chain architecture and distributed MPC
with hybrid cost function; (iii) the constraint imposed for the
terminal cost of the cost function is less restrictive compared
to the constraints imposed in [2]; (iv) application of the
developed string stable distributed MPC scheme to lateral
vehicle dynamics. It is also worth mentioning that all results
in [2] are for continuous-time dynamics, while we provide
the corresponding results in the discrete-time setting. With
respect to more recent works in the transportation field, the
novelty of this paper is given by the development of the
distributed MPC algorithm for a large class of interconnected
systems compared to the works from [7]–[9] where the
algorithm and stability profs are focused on a specific system,
i.e., longitudinal dynamics of a platoon. Simulation results
illustrate significant improvement in the lateral position error
for the developed hybrid cost function compared to an
infinity norms cost function.

II. PRELIMINARIES

This section introduces notation, the interconnected system
dynamics in a chain architecture, and the definition of string
stability. The infinity norm of a real vector is defined as
||X||∞ = maxi∈{1,...,n} |xi|, X = [x1, ..., xn]

T , xi ∈ R,
n ∈ Z≥1. The symbol Q ≻ 0 denotes that the matrix Q
is positive definite and the symbol Q ⪰ 0 denotes that the
matrix Q is semi-positive definite, Q ∈ Rn×n. The identity
matrix of dimensions n×n is represented by In, the square
matrix with all elements equal to zero is represented by On,
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and the symbol diag{x1, ..., xn} represents a diagonal matrix
with x1, .., xn on the main diagonal.

Interconnected systems in a chain architecture can be
described by the following equations:{

xj(k + 1) = fj(xj(k), uj(k), dj(k)),
yj(k) = hj(xj(k)),

(1)

where xj ∈ Rn, yj ∈ Rp, uj ∈ Rm are the states, outputs
and inputs of the subsystem j, fj and hj are nonlinear
functions, n, p,m ∈ Z≥1, k ∈ Z≥1 is the discrete time,
d1(k) = dref (k), dj+1(k) = xj(k), j = 1, ...,M − 1, M is
the number of subsystems and dref represents the imposed
reference.

The string stability property ensures that the output error
eyj is attenuated along the upstream direction, as formally
defined next.

Definition 1: The interconnected system (1) is leader-
follower string stable if for each system j = 2, ...,M there
exists a constant αj ∈ (0, 1) such that:

max
k≥0

|eyj(k)| ≤ αj max
k≥0

|ey1(k)|. (2)

Next, the distributed MPC problem with a hybrid cost
function is introduced along with sufficient conditions for
global stability of the interconnected system (1).

III. MAIN RESULTS

For each system and MPC controller j, the cost function
is defined as:
Jj(xj(k), Uj(k)) = FP (xj(N |k)) + FG(xj(N |k), x̃j(N |k))

+ FH(xj(N |k), x̃j−1(N |k))

+

N−1∑
i=0

[lQ(xj(i|k)) + lR(uj(i|k))]+

+

N−1∑
i=1

[lG(xj(i|k), x̃j(i|k))

+ lH(xj(i|k), x̃j−1(i|k))],
(3)

where

FP (xj(N |k)) = xTj (N |k)Pjxj(N |k);
FG(xj(N |k), x̃j(N |k)) = ||Gj(xj(N |k)− x̃j(N |k))||∞;
FH(xj(N |k), x̃j−1(N |k)) =

||Hj(xj(N |k)− x̃j−1(N |k))||∞;
lQ(xj(i|k)) = xTj (i|k)Qjxj(i|k);
lR(uj(i|k)) = uTj (i|k)Rjuj(i|k);
lG(xj(i|k), x̃j(i|k)) = ||Gj(xj(i|k)− x̃j(i|k))||∞;
lH(xj(i|k), x̃j−1(i|k)) = ||Hj(xj(i|k)− x̃j−1(i|k))||∞.

(4)
Notice that, by definition of the terminal costs

FG(·), HG(·) and stage costs lG(·), lH(·) we have
lG(x

∗
j (N |k), x̃j(N |k)) = FG(x

∗
j (N |k), x̃j(N |k)) and

lH(x∗j (N |k), x̃j−1(N |k)) = FH(x∗j (N |k), x̃j−1(N |k)).
Moreover, for the cost function of each MPC controller,
different weighting matrices Pj , Gj , Hj , Qj , Rj , are
allowed, which should satisfy:

• Q1 ≻ 0, P1 ≻ 0, G1 ⪰ 0, H1 = 0, R1 ≻ 0 for system
j = 1, i.e., the leader;

• Qj ⪰ 0, Pj ≻ 0, Gj ⪰ 0, Hj ⪰ 0, Rj ≻ 0 for systems
j = 2, ...,M , i.e., the followers.

With respect to [2] where the cost function contains only
infinity norms (or p-norms), in this paper, the cost function
(3) is a hybrid one, i.e., it contains both quadratic terms and
terms based on infinity norms. The quadratic terms minimise
the tracking error and the infinity norm terms penalise
deviation of predicted state trajectories from the previous
own and predecessor’s state trajectories, respectively. This
new way of building the cost function ensures a smooth
variation of the system states (via the quadratic terms), while
still promoting string stability (via the infinity norm terms).

Problem 1: For each subsystem j ∈ {1, ...,M}, at each
discrete step k, given xj(k), X̃j(k), X̃j−1(k) solve:

min
Uj(k)

Jj(xj(k), Uj(k)) (5)

subject to constraints:

xj(i+ 1|k) = fj(xj(i|k), uj(i|k), dj(i|k)),
i = 0, ..., N − 1;

(6)

uj(i|k) ∈ Uj , i = 0, ..., N − 1; (7)

xj(i|k) ∈ Xj , i = 1, ..., N, (8)
where Uj(k) = [uj(i|k)T , ..., uj(N − 1|k)T ]T .

Over a prediction interval [k, k+N ], the following trajec-
tories are defined:

• Xj(k)− the predicted state trajectory;
• X∗

j (k)− the optimal predicted state trajectory;
• X̃j(k)− the assumed state trajectory;
• U∗

j (k)− the optimal sequence of control inputs;
• Ũj(k)− the assumed input trajectory;
• Xj(k)− the state trajectory obtained considering

as input Ũj(k − 1).
The distributed MPC scheme requires that subsystem j sends
to subsystem j + 1 assumed state trajectories. The assumed
state trajectory is constructed as a shifted sequence based on
the optimal sequence X∗

j computed at time k − 1:

X̃j(k) = [x∗j (2|k− 1)T , ..., x∗j (N |k− 1)T , x∗j (N |k− 1)T ]T .
(9)

The assumed input trajectory, Ũj(k), is similarly constructed
based on the optimal sequence U∗

j computed at time k − 1:

Ũj(k) =

[u∗j (1|k − 1)T , ..., u∗j (N − 1|k − 1)T , κj(x
∗
j (N |k − 1))T ]T .

Notice that, the state trajectory obtained using Ũj(k − 1) is
Xj(k) = [x∗j (2|k− 1)T , ..., x∗j (N |k− 1)T , xj(N |k− 1)T ]T .

A. System global stability

First, we denote the concatenated arrays x = [x1, ..., xM ],
x∗ = [x∗1, ..., x

∗
M ], x̃ = [x̃1, ..., x̃M ], u = [u1, ..., uM ], ũ =

[ũ1, ..., ũM ]. Then, the global optimal cost of system (1) can
be defined as:

J∗
Σ(x(k)) =

M∑
j=1

J∗
j (xj(k), U

∗
j (k)). (10)
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Let us define the following terms:

L1
∆
=

M∑
j=1

[FP (xj(N |k + 1))− (lQ(x
∗
j (0|k)) + lR(u

∗
j (0|k)))

+(lQ(x
∗
j (N |k)) + lR(κj(x

∗
j (N |k))))− FP (x

∗
j (N |k))];

(11)

L2
∆
=

M∑
j=1

[L2aj + L2bj ]; (12)

L2aj
∆
= FG(xj(N |k + 1), x̃j(N |k + 1))

+ FH(xj(N |k + 1), x̃j−1(N |k + 1))

− [lG(x
∗
j (1|k), x̃j(1|k)) + lH(x∗j (1|k), x̃j−1(1|k))];

(13)
L2bj

∆
= FH(x∗j (N |k), x∗j−1(N |k))
− [FG(x

∗
j (N |k), x̃j(N |k)) + FH(x∗j (N |k), x̃j−1(N |k))]

+

N−1∑
i=2

[lH(x∗j (i|k), x∗j−1(i|k))

− lG(x
∗
j (i|k), x̃j(i|k))− lH(x∗j (i|k), x̃j−1(i|k))].

(14)
Assumption 1: (Terminal cost property) The terminal

costs FP (·) and the auxiliary control laws κj(·), for j =
1, ...,M , are such that L1 ≤ −x(k)T diag{Q1, ..., QM}x(k).

Assumption 2: The weighting matrices, Gj and Hj , and
prediction horizon N are chosen such that L2aj ≤ 0, for all
j = 1, ...,M .

In what follows, we will show that the cost function (10)
is a Lyapunov function for the global dynamics of system
(1). Since it is a positive definite function and zero at zero
by construction, we only need to prove the decrease along
closed-loop trajectories.

Lemma 1: Supposes that Assumptions 1 and 2 hold, and

Gj ≥ Hj+1, ∀j = 1, ...,M − 1. (15)

Then it holds that

J∗
Σ(x(k+1))−J∗

Σ(x(k)) ≤ −x(k)T diag{Q1, ..., QM}x(k),
(16)

for all k ∈ Z≥0.
Proof: From (10) we have that:

J∗
Σ(x(k)) = FΣ(x

∗(N |k), x̃(N |k), x̃(N |k))+

+

N−1∑
i=0

LΣQR(x
∗(i|k), x̃(i|k), u∗(i|k))+

+

N−1∑
i=1

LΣGH(x∗(i|k), x̃(i|k)),

(17)

where

FΣ(x
∗(N |k), x̃(N |k), x̃(N |k)) ∆

=
∑M

j=1[FP (x
∗
j (N |k))+

+FG(x
∗
j (N |k), x̃j(N |k)) + FH(x∗j (N |k), x̃j−1(N |k))];

LΣQR(x
∗(i|k), x̃(i|k), u∗(i|k)) ∆

=∑M
j=1[lQ(x

∗
j (i|k)) + lR(uj(i|k))];

LΣGH(x∗(i|k), x̃(i|k)) ∆
=

∑M
j=1 lG(x

∗
j (i|k), x̃j(i|k))

+lH(x∗j (i|k), x̃j−1(i|k))].
(18)

At the discrete time k+1, a feasible solution for Problem 1
is Ũ(k + 1).

Applying Ũ(k + 1) yields:

J∗
Σ(x(k + 1)) ≤FΣ(x(N |k + 1), x̃(N |k + 1), x̃(N |k + 1))

+

N−1∑
i=0

LΣQR(x(i|k + 1), x̃(i|k + 1), u)

+

N−1∑
i=1

LΣGH(x(i|k), x̃(i|k))

(19)
where x is the state trajectory of the global system consid-
ering as input Ũ . From (17)-(19) it results that:

J∗
Σ(x(k + 1))− J∗

Σ(x(k)) ≤

≤
M∑
j=1

[FP (xj(N |k + 1))− (lQ(x
∗
j (0|k))

+ lR(u
∗
j (0|k))) + (lQ(x

∗
j (N |k)) + lR(Kjx

∗
j (N |k)))

− FP (x
∗
j (N |k))] +

M∑
j=1

[FG(xj(N |k + 1), x̃j(N |k + 1))

+ FH(xj(N |k + 1), x̃j−1(N |k + 1))

+

N∑
i=2

lH(x∗j (i|k), x∗j−1(i|k))

− FG(x
∗
j (N |k), x̃j(N |k))− FH(x∗j (N |k), x̃j−1(N |k))

−
N−1∑
i=1

[lG(x
∗
j (i|k), x̃j(i|k)) + lH(x∗j (i|k), x̃j−1(i|k))]] =

= L1 + L2.
(20)

Since L1 ≤ −x(k)T diag{Q1, ..., QM}x(k) by Assump-
tion 1, it suffices to prove that L2 ≤ 0. By Assumption 2,
for L2 ≤ 0 to hold, it suffices that L2bj ≤ 0, i.e.,

||Hj(x
∗
j (i|k)− x∗j−1(i|k))||∞ − ||Gj(x

∗
j (i|k)− x̃j(i|k))||∞

− ||Hj(x
∗
j (i|k)− x̃j−1(i|k))||∞ ≤ 0, ∀j = 1, ...M.

(21)
Adding and substracting Hj x̃j−1(i|k) inside the norm
||Hj(x

∗
j (i|k) − x∗j−1(i|k))||∞ and applying the triangle in-

equality gives:

||Hj(x
∗
j (i|k)−x∗j−1(i|k))||∞ ≤

≤ ||Hj(x
∗
j (i|k)− x̃j−1(i|k))||∞+

+ ||Hj(x
∗
j−1(i|k)− x̃j−1(i|k))||∞.

(22)
Combining (21), (22) and considering H1 = 0 gives [2]:

M−1∑
j=1

||Hj+1(x
∗
j (i|k)− x̃j(i|k))||∞−

−||Gj(x
∗
j (i|k)− x̃j(i|k))||∞ ≤ 0,

(23)

which holds due to Hj+1 ≤ Gj .
Remark 1: The terminal costs FP (·) can be computed

using a linearization of the dynamics and a local linear
LQR control law κj(·) as done in linear MPC if the inter-
connection term dj is neglected. Future work will consider
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more advanced methods for terminal cost computation for
interconnected systems, as in, e.g., [10].

Remark 2: The condition of Assumption 2 will be im-
posed as a constraint in the MPC Problem 1:

L2aj = FG(x
∗
j (N |k + 1), x̃j(N |k + 1))

+ FH(x∗j (N |k + 1), x̃j−1(N |k + 1))

− [lG(x
∗
j (1|k), x̃j(1|k))

+ lH(x∗j (1|k), x̃j−1(1|k))] ≤ 0, j = 1, ...,M.

(24)

Notice that, condition (24) is less restrictive compared to
the condition from [2] where the terminal cost is constrained
to be equal to zero.

B. Leader-follower string stability

In this section, the leader-follower string stability condi-
tions for the discrete-time case are derived based on the
solution from [2] for the continuous-time case. Over a
prediction interval [k, k +N ], the following trajectories are
defined:

• Yj(k)− the predicted output trajectory;
• Y ∗

j (k)− the optimal predicted output trajectory;
• Ỹj(k)− the assumed output trajectory.
Definition 2: For a step change in x1 at time k = 0, the

interconnected system (1) in closed-loop with the distributed
MPC controller is string stable if for all j = 2, ...,M :

||Y ∗
j (k)||∞ ≤ αj max

l∈{0,...,k}
||Y ∗

1 (k)||∞,∀k ≥ 0, (25)

where Y ∗
j (k) = [y∗j (1|k), ..., y∗j (N |k)]T , αj ∈ (0, 1).

Algorithm 1: Distributed MPC + string stability condition
Initialisation:

• Subsystem j = 1 solves Problem 1 setting G1 = H1 =
0 and then sends Y1(0) to all systems;

• Each subystem, j = 2, ...,M , receives Y1(0) and solves
Problem 1 with the additional constraint:

||Y ∗
j (0)||∞ ≤ γj ||Y ∗

1 (0)||∞, (26)

where γj ∈ (0, 1), Gj = Hj = 0.

Controller: At each discrete time k ∈ Z≥1 :

• Compute Ỹj(k);
• Send Ỹj(k) to subsystem j + 1 and for j ≥ 2 receive
Ỹj−1(k) from subsystem j − 1;

• All subsystems j ≥ 2, receive Ỹ1(k);
• Solve Problem 1 with the additional constraint:

||Yj(k)− Ỹj(k)||∞ ≤ ϵj(k)||Ỹ1(k)||∞, (27)

where ϵj(k) ∈ (0, 1).
Lemma 2: The string stability condition (25) is satisfied

for the interconnected system (1) in closed-loop with the
distributed MPC controllers if the following condition holds:

γj +

∞∑
k=1

ϵj(k)(1 + ϵ1(k)) < 1, (28)

where γ, ϵ ∈ (0, 1).

Proof: From (26) at k = 0 it results:

||Y ∗
j (0)||∞ ≤ γj ||Y ∗

1 (0)||∞. (29)

From the triangle inequality, (27) and using the inequality
||Y ∗

j (k − 1)||∞ ≥ ||Ỹj(k)||∞ (from (9)) and it results:

||Y ∗
j (k)||∞ ≤ ϵj(k)||Ỹ1(k)||∞ + ||Y ∗

j (k − 1)||∞. (30)

Moreover, from the triangle inequality, (27) and using the
inequality ||Y ∗

1 (k − 1)||∞ ≥ ||Ỹ1(k)||∞ for j = 1 it results:

||Ỹ1(k)||∞ ≤ ϵ1(k)||Y ∗
1 (k − 1)||∞ + ||Y ∗

1 (k)||∞. (31)

Combining (30) with (31) it gives:

||Y ∗
j (k)||∞ ≤ ϵj(k)(1 + ϵ1(k)) max

l=k−1,k
||Y ∗

1 (l)||∞

+||Y ∗
j (k − 1)||∞.

(32)

For k = 1 and from (29) and (32) it results:

||Y ∗
j (1)||∞ ≤ [ϵj(1)(1 + ϵ1(1)) + γj ] max

l=0,1
||Y ∗

1 (l)||∞.
(33)

For k = 2 and from (32) and (33) it results:

||Y ∗
j (2)||∞ ≤

[ϵj(2)(1 + ϵ1(2)) + ϵj(1)(1 + ϵ1(1)) + γj ] max
l=0,1,2

||Y ∗
1 (l)||∞.

(34)
Doing this recursively, for k = n we obtain:

||Y ∗
j (n)||∞ ≤ [γj +

n∑
i=1

ϵj(i)(1 + ϵ1(i))] max
l=0,...,n

||Y ∗
1 (l)||∞,

(35)

where γj = γ ∈ (0, 1), ϵj(i) = ϵi, ϵ ∈ (0, 1), ∀ j = 1, ...,M
and n ≥ 1. From (35), when n tends to infinity, it holds that

αj = [γj +

n∑
i=1

ϵj(i)(1 + ϵ1(i))] < 1 ⇔

⇔ γ +
1

1− ϵ
+

1

1− ϵ2
< 3,

(36)

where γ, ϵ ∈ (0, 1). Hence, if (28) holds, there exists an
αj ∈ (0, 1) such that (25) holds, which completes the proof.

The constraints imposed for leader-follower string stability
will be imposed as soft constraints as follows:{

||Y ∗
j (0)||∞ − γj ||Y ∗

1 (0)||∞ ≤ ρ(0);

||Yj(k)− Ỹj(k)||∞ − ϵj(k)||Ỹ1(k)||∞ ≤ ρ(k), k ≥ 1.
(37)

Thus, we can formulate next the complete distributed
MPC problem with stability and string stability constraints
included.

Problem 2: For each subsystem j ∈ {1, ...,M}, at each
discrete step k, given xj(k), X̃j(k), X̃j−1(k) solve:

min
[Uj(k),ρ(k)]

Jj(xj(k), Uj(k)) + λρ(k)2 (38)

subject to constraints: (6), (7), (8), (15), (24), (37).
Remark 3: The stability proof considers the cost functions

Jj(· ) without the term λρ(k). When the variable ρ(k) is non-
zero, only practical global stability is obtained. However, as
ρ(k) is minimized, the output error converges to very small
values, as observed in the simulations.
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TABLE I: Parameters of vehicles

Symbol Name Value
m Vehicle mass 1094 Kg

Cf
Front tire cornering stiffness
coefficient 63291 N/rad

Cr Rear tire cornering stiffness coefficient 50041 N/rad

lf
Longitudinal distance from the
center of gravity to the front tires 1.108 m

lr
Longitudinal distance from the
center of gravity to the rear tires 1.392 m

I Vehicle’s rotational inertia 1608 Kg ·m2

vx Longitudinal velocity 13.89 m/s

IV. SIMULATION RESULTS

A. Platoon lateral dynamics

This subsection presents the model used to describe the
lateral dynamics of the platoon. A vehicle platoon is formed
by a leader vehicle, j = 1, followed by follower vehicles,
j = 2, 3, 4. Assuming that the vehicles are moving with
constant velocity, the lateral model can be described as [6]:

ẋj(t) = Axj(t) +Buj(t) + Edj(t), (39)

where xj = [βj , ψ̇j , eyj ]
T , uj = δj , d1 = βref , dj+1 = βj ,

j = 1, ...,M , B = [2Cf/mvx, 2lfCf/I, 0]
T , A = −2(Cf + Cr)/mvx −1− 2(lfCf − lrCr)/mv

2
x 0

−2(lfCf − lrCr)/I −2(l2fCf + l2rCr)/Ivx 0

vx 0 0

,

E = [0, 0,−vx]T , and where m and I denote the vehicle
mass and inertia, lf and lr are the distances from the centre
of gravity of the vehicle to the front and rear axles, ψ̇
denotes the yaw rate, eyj represents the lateral position
error, vx is the longitudinal velocity, β is car slip angle
and δ is the steering angle of the front tire. The model
(39) is discretised using the zero-order hold method with
the sample time Ts = 0.1s. The output is considered the
lateral error (i.e., yj(t) = eyj(t)). The constraints imposed
for the inputs and vehicle states are represented by: −0.78
rad ≤ δj ≤ 0.78 rad, −0.2 rad ≤ βj ≤ 0.2 rad, −0.1
m ≤ eyj ≤ 0.1 m.

Remark 3.4 regarding the terminal cost FP (·) applies also
to the lateral dynamics due to the interconnection term, i.e.,
the slip angle, which is relatively small compared to the
position error, which makes this approach feasible.

Remark 4: In the case of lateral dynamics, the position
error, even if it is related to the lateral position of the vehicle
in front, it represents the distance of the vehicle to the centre
of the line or the error to the imposed trajectory. Therefore,
it suffices that the lateral position error of the followers is
smaller than the error of the leader. Based on this fact the
solution considers leader-follower string stability, which is
less restrictive than predecessor-follower string stability.

B. Vehicle platoon lane changing manoeuvre

The study supposes that the leader obtains the target slip
angle βref . Moreover, the followers receive from the vehicle
in front the assumed trajectory state, X̃j−1(k), at each
sample time. This information also contains the prediction
of the slip angle of the vehicle in front βj−1.

TABLE II: Parameters of controllers

Symbol Hybrid cost MPC Infinity norm cost MPC [2]
N 50 50
Q diag{0.002,0.002,250} diag{0.01,0.01, 2.5}
ϵ 0.25 0.25
γ 0.4 0.4
Gj I3 2I3
Hj O3 O3
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Fig. 1: Hybrid cost MPC: lateral position, slip angles, steer-
ing angles.

The lateral dynamics of the platoon are controlled by the
MPC solution proposed in Section III (referred to as Hybrid
cost MPC). Also, the solution is compared with the MPC
controller proposed in [2] (referred to as Infinity norm cost
MPC). The second method uses a cost function that differs
from the cost function (3) because the latter uses only infinity
norm terms. The parameters of the vehicles are contained in
Table I, and the parameters of the controller for both methods
are contained in Table II. The weighting matrices Pj , Qj ,
and Rj have the same values for all vehicles. The weighting
matrices for the terminal cost are computed as a solution of

a Riccati equation Pj =

 1.0829 −0.048 1.457
−0.048 0.0048 −0.058
1.457 −0.058 252.069

,

for the method based on hybrid cost and Pj = 10Qj for the
method based on infinity norms, Rj = 0.1, λ = 1000.

The manoeuvre used to test the proposed control solution
represents a double-lane change. The obtained trajectory,
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Fig. 2: Infinity norm cost MPC [2]: lateral position, slip
angles, steering angles.
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Fig. 3: Lateral position error: a) Hybrid cost MPC - top plot;
b) Infinity norm cost MPC [2] - bottom plot (the dashed black
line in this plot represents the maximum error for the hybrid
cost).

the slip angles of the vehicles, and the commands (steering
angles) are illustrated in Figs. 1 and 2. From these figures, it
results that the controllers, designed using the method based
on hybrid cost MPC or the method based on infinity norm
cost MPC, succeeded in steering the platoon so that each
vehicle follows its trajectory. Analysing the lateral errors (see
Fig. 3) and slip angle errors (see Fig. 4), it can be seen that
the vehicles are moving with small errors. Still, improved
results (10 times better for the maximum error) are obtained
by the solution based on the hybrid cost function. More-
over, all errors are decreasing along the upstream direction.
However, for the lateral dynamics, these errors have to be
as small as possible and without oscillations to ensure the
safety and comfort of passengers. So, the solution based on
hybrid cost accomplished these requirements better than the
solution based on infinity norm. The constraints that imply
the leader-follower string stability required by the method
based on hybrid cost (24), (37), are illustrated in Fig. 5.
These conditions were successfully respected, which implies
that the proposed control solution attains the leader-follower
string stability for the lateral dynamics of the platoon. For the
method based on the infinity norm, the maximum values of
the constraints (37) are 10−8 · [−0.95,−5.46,−4.34,−4.59]
for leader and follower vehicles. The maximum values of
ρ(k) are [0.026, 0.022, 0.02, 0.018]. As seen in Fig. 5, ρ(k)
is smaller for the method based on the hybrid cost compared
to the method based on infinity norms.

V. CONCLUSIONS

This paper derived a new hybrid cost function for dis-
tributed MPC of vehicle platoons that guarantees global
platoon stability and, in combination with an explicit con-
straint, leader-follower string stability. The solution was
tested in simulation to control the lateral dynamics of a
vehicle platoon. The results show that the vehicles using the
hybrid cost function MPC controller succeeded in following
the imposed reference trajectory, also respecting the stability
conditions, with significantly smaller lateral errors compared
to an infinity norm cost function MPC scheme.
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Fig. 4: Slip angle error: a) Hybrid cost MPC - top plot; b)
Infinity norm cost MPC [2] - bottom plot.

5 10 15 20 25 30 35 40 45

t [s]

-4

-2

S
ta

b
.c

o
n

d
. 
(3

7
) 

[m
]

10
-4

L

F1

F2

F3

0 5 10 15 20 25 30 35 40 45 50 55

t [s]

-0.08
-0.06
-0.04
-0.02

0

S
ta

b
. 
c
o

n
d

. 
(2

4
) 

[m
]

L

F1

F2

F3

5 10 15 20 25 30 35 40 45 50

t [s]

2

4

6

10
-3

L

F1

F2

F3

Fig. 5: Hybrid cost MPC: stability conditions and ρ(k)
5695


