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Abstract— There can be none. In this paper, we address the
problem of a set of discrete-time networked agents reaching
average consensus privately and resiliently in the presence of a
subset of attacked agents. Existing approaches to the problem
rely on trade-offs between accuracy, privacy, and resilience,
sacrificing one for the others. We show that a separation-
like principle for privacy-preserving and resilient discrete-time
average consensus is possible. Specifically, we propose a scheme
that combines strategies from resilient average consensus and
private average consensus, which yields both desired properties.
The proposed scheme has polynomial time-complexity on the
number of agents and the maximum number of attacked agents.
In other words, each agent that is not under attack is able to
detect and discard the values of the attacked agents, reaching
the average consensus of non-attacked agents while keeping
each agent’s initial state private. Finally, we demonstrate the
effectiveness of the proposed method with numerical results.

I. INTRODUCTION

The consensus problem is a prominent circumstance in
numerous networked multi-agent systems. Therefore, this
problem emerges in a multitude of applications. For instance,
it is a central problem in optimization [1], [2], motion
coordination tasks [3], [4], rendezvous problems [5]–[7],
resource allocation in computer networks [8], and healthcare
and medical applications [9]–[11].

The problem challenge is to design an iterative algorithm
allowing a set of agents to agree upon a value via local
interactions in a communication network. That is, the solu-
tion of a consensus problem is the design of a distributed
procedure, where each agent has low computational power
and its communication with other agents is limited by the
network topology [12].

Due to its ubiquity in diverse applications, there is the need
to ensure beyond-accuracy properties in consensus methods,
such as resilience and privacy. Specifically, a resilient con-
sensus algorithm should enable each agent to effectively
and efficiently identify neighbors disseminating erroneous
information. Thus, by screening out incorrect state values,
the non-attacked agents seek to converge to a common value,
which would ideally be the correct one. Additionally, the
agents’ state should only be accessible to the agent itself, i.e.,
it should be private. In this context, the consensus protocol
should guarantee the privacy of all agents so that they may
safeguard their initial values as confidential, but still reach
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the desired consensus. Both resilient and private discrete-
time consensus protocols are active research subjects as we
overview next.

Resilient average consensus: The work in [13], [14]
tackles the general problem of reaching discrete-time re-
silient consensus in the presence of faulty agents. The authors
devised a general strategy that requires, as input, a consensus
algorithm and the resilience parameter f . The trustworthy
agents identify the attacked ones and rectify the consensus
value by discarding erroneous information, reaching accu-
rately the consensus value, but having additional computation
and communication costs. The attackers may even determine
and choose the set of agents to tamper with and to achieve
a desired goal [15].

In [16], the authors present a resilient leader-follower con-
sensus to arbitrary reference values, where an agent ignores
a number of the largest and the smallest received values.
This work guarantees a consensus value in the convex hull
of initial agents’ states, scarifying the accuracy for resilience.
Following the same line, [17] creates a resilient consensus
method for time-varying networks of dynamic agents.

The authors of [18] propose a reputation-based switching
mechanism to select the network topology that prevents
attacked agents from communicating, where the non-attacked
agents converge to a value close to the original steady-state.
Again, it is achieved by sacrificing accuracy for resiliency.

Private average consensus: Privacy also plays a key
role in consensus methods [19]–[21]. The typical approaches
aiming to achieve privacy in consensus methods can be clas-
sified into the following classes: homomorphic encryption-
based (HE-based); differential privacy-based (DP-based);
and observability-based (O-based.)

Briefly, HE-based average consensus methods require
costly computations and communications, yielding a poten-
tially prohibitive limitation in real applications with restricted
computation and communication power [22]–[25]. DP-based
approaches aim to attain privacy by introducing uncertainty
via noise addition to shared information [26]–[31]. In this
case, the consensus is guaranteed in expected value, which
may not be suitable for accurate decision-making. Moreover,
noise generation is commonly performed via a pseudo-
random generator relying on the initial seed. Thus, we need
to use a secret seed or expensive true random number
generator devices [32].

The O-based strategies focus on curious agents trying to
recover other agents’ states via the dynamics evolution. In
other words, when agents estimate states considered to be
private. Hence, observability (in dynamical systems) renders
necessary and sufficient conditions to get an estimator able
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to retrieve agents’ initial states, meant to be private [20],
[33], [34]. A possible way to attain the O-based privacy is
by doing a network augmentation [34], where each agent
augments its state, xi(k) ∈ R, with a minimum additional
states (in this case 3), x̃i(k) ∈ R4, to distribute its initial
value and achieve privacy.

Main contributions: It has been established that the
use of differential privacy is not compatible with resilience
guarantees in average consensus [35], [36]. Surprisingly,
hereafter, we show it is possible to devise a novel average
consensus method with accuracy, resilience and privacy
guarantees, without trade-offs among these properties.

Specifically, we show how to combine two independent
protocols for resilient average consensus and privacy in
discrete-time consensus. To the best of the authors knowl-
edge, it is the first time that such an approach is pro-
posed. Thus, it is possible to attain a sort of privacy and
resilience “separation-principle”, by merging two approaches
that individually ensure each of the properties – with the
necessary changes.

Remarkably, we show that few additional computational
resources are necessary at each agent, and each agent broad-
casts more information (a vector state instead of a scalar
one.) Hence, it entails a computational efficient protocol,
contrasting with encryption methods that may not be viable
in several engineering contexts. Further, the proposed scheme
does not sacrifice accuracy, in contrast with previously
proposed approaches to ensure privacy and resilient.

II. PRELIMINARIES AND NOTATION

We denote by N the set of positive integers and by N0 the
set of non-negative ones. Further, we denote the set with the
first n positive integers as [n], where [n] = {1, . . . , n}. Next,
we revise graph theory concepts [37]. A digraph G is a pair
G = (V, E), where V is a set of n > 1 nodes, and E ⊆ V×V
is a set of edges. Edges are ordered pairs representing an
accessibility relationship between nodes. If u, v ∈ V and
(u, v) ∈ E , then node v directly accesses information shared
by node u. We also call the digraph by network and the nodes
by agents. A digraph is a complete digraph when each agent
can directly access information of all the other agents. Let
v ∈ V , we define the neighbors of v as Nv = {v} ∪ {u :
(u, v) ∈ E}, and they are the set of agents from which v can
directly access information. Given a digraph G, we define a
path as a sequence of agents (v1, v2, . . . vk) with (vi, vi+1) ∈
E , for all i ∈ [k − 1]. A digraph G is strongly connected if
for any agents u, v ∈ V there is a path from u to v. A
helpful way to describe a digraph is by its adjacency matrix,
A ∈ Rn×n. For a digraph G = (V, E), Au,v = 1 if (u, v) ∈
E , and Au,v = 0, otherwise. A subgraph, H = (V ′, E ′), of
G = (V, E) is a digraph with V ′ ⊂ V and E ′ ⊂ E . Let A ⊂ V ,
to ease notation, we define H = G \ A as a subgraph of G,
with H = (V \ A, E ′), and E ′ = {(u, v) ∈ E : u, v /∈ A}.

Given a square matrix A ∈ Rn×n and a set U ⊂
[n], we define minor(A,U) as the square matrix A′ ∈
R(n−|U|)×(n−|U|) that consists of dropping the rows and
columns of A with indices in U . Additionally, we define
m̂inor(A,U) as the matrix obtain from minor(A,U) when
we normalize each of its rows to sum up to 1. We denote by
In the n × n identity matrix and by 0n×m the n ×m zero

matrix. We denote by span(A) the row space of the matrix
A. We use vectors as column vectors, we denote by 1n the
n-dimensional vector of ones, and we denote by eiN the i-th
canonical N -dimensional column vector.

From this point on, we use the discrete-time variable k ∈
N0. Given a sequence of values {s(k)}k∈N0 or a function
f : R → R, if the sequence or the function has limit, i.e.,
lim
k→∞

s(k) = a or lim
k→∞

f(k) = b, then we write compactly

that s(k) → a or f(k) → b. For a set S ⊂ N, we define its
subsets by ℘(S). For example, if S = {1, 2, 3}, then ℘(S) =
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. We denote
the subsets of S of size i ≤ |S| by ℘(S, i) = {w ∈ ℘(S) :
|w| = i}. For v ∈ Rn, we denote its i-th entry by v[i] for
i ∈ [n]. When useful, we index vector positions by keys (as
to define dictionaries in computer science), e.g. for v ∈ R8

and for the above ℘(S), we may index the entries of v by
the elements of ℘(S), e.g. v[∅] or v[{2, 3}].

Finally, we use the standard universal (i.e., ∀) and exis-
tential quantifier (i.e., ∃.) Also, we use the “exists one and
only one” quantifier ∃!x.φ(x) ≡ ∃x.φ(x) ∧ ∀y ̸=x.¬φ(y).

III. PROBLEM STATEMENT

In this work, we are interested in designing an average
consensus method with accuracy, resilience and privacy
guarantees, without trade-offs among these properties.

Towards attaining the resilience aspect, we consider the
case where an attacker (malicious entity) has a particular
goal (not just preventing consensus convergence.) To this
end, an attacker wants to deviate the consensus of a network
to a specific value a that may be harmful to the system.

Let the unknown set of attacked agents of network G =
(V, E) be denoted by A, with A ⊂ V . The resilience goal is
to create an average consensus protocol of the form x(k+1) =
Ax(k), with x(0) = x0, and with x(k) a vector that collects
the agents’ states, as a result of a design mechanism that
consists of creating an algorithm that receives a network of
agents, G, a dynamics matrix A, and the maximum number
of attacked agents, f , and allows the non-attacked agents to
identify the attacked agents, and subsequently, ignore their
values in the final average consensus.

To attain privacy, we aim to develop an average consensus
method where each agent cannot recover the initial state of
any other agent. That is, the goal is to keep the agents’ initial
states private and to prevent the values shared during the
consensus method execution from leaking information that
allows an agent to recover the initial state of another agent.

Assumption 1: Let G = (V, E) be a digraph, A a set of
attacked agents and x(N) be the consensus value of agents V\
A resulting from applying the consensus method C for N ∈
N time steps. Let ε > 0 denote the precision utilized for com-
putations. For all v ∈ V \A and for all u ∈ V it follows that

limk→∞

∣∣∣∣(m̂inor(A, {u})
)k

minor(x(0), {u})− x
(k)
v

∣∣∣∣ > ε,

where A is the consensus dynamics matrix, and x(0) is the
initial state vector of all the agents. ⋄

Simply speaking, Assumption 1 only requires that no agent
has a state equal to the consensus of the subgraph excluding
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that agent, which is required for the well-posedeness of the
resilience property.

Assumption 2: Let G = (V, E) be a digraph and A ⊂ V a
set of attacked agents. Each subgraph H of G with H = G \
V ′, where |V ′| ≤ |A| is a network that reaches consensus. ⋄

In contrast, Assumption 2 is a more general assumption.
Essentially, we require the network without attacked agents
to be connected in order to reach consensus.

Overall, we can formally state the problem we aim to
address as follows.

P Given N agents with a communication digraph G = (V, E) and
a maximum number of attacked agents f , is there a distributed
algorithm of the form

– Dynamics –

x
(k+1)
i = m(G, x(k)

i ), (1)

such that the following holds:

– Specifications –
Privacy: Agent i cannot recover the initial state, x(0)

j , of any
agent, j ̸= i.

(2a)
Resilient average consensus: If an unknown set of agents
are attacked, A, and |A| ≤ f then, for i ∈ V \ A

lim
k→∞

x
(k)
i =

1

|V \ A|
∑

j∈V\A

x
(0)
j .

(2b)

IV. DESIGN PRIVACY-PRESERVING AND RESILIENT
DETERMINISTIC DISCRETE-TIME AVERAGE CONSENSUS

In this section, we build up on two existing consensus
protocols (one ensuring resilience and the other privacy) to
achieve the desired objective. In Section IV-A, we revisit
the resilient consensus method proposed in [13], [14]. In
Section IV-B, we overview an average consensus method
with privacy guarantees [34]. Finally, in Section IV-C, we
show how the two previous approaches can be combined
with some necessary changes to build an average consensus
method with both resilience and privacy guarantees.

In particular, we are going to consider an augmentation of
the state space,

x̃
(0)
i = g(x

(0)
i ) and x̃

(k+1)
i = h(Wi)x̃

(k)
i , (3)

where we are going to ensure both resilience and privacy,
Sections IV-A and IV-B, respectively. This strategy is then
followed by a projection on the original state space dimen-
sion (i.e., the agents’ state.) Thus, fulfilling the resiliency
and privacy specifications.

A. Resilient average consensus

We consider attacked agents broadcasting values to
drive the final consensus to a desired state, where
their states converge accordingly, i.e., limk→∞ x

(k)
i =

1di+1

(
1

|V\A|
∑

j∈V\A p(x̃
(0)
j )

)
.

Intuitively, each agent scalar state is going to be aug-
mented by a vector with |℘([f ])| entries, where f is the
maximum number of allowed attacked agents. Each entry

corresponds to the scalar state of the agent where the consen-
sus protocol consists on a normalization of the interactions
of the agents except those in the set ℘([f ])[j], with j =
0, . . . , |℘([f ])|. In particular, the first entry corresponds to
the case where the consensus protocol runs without attacked
agents. The remaining ones correspond to different com-
binations of possible attacked agents, and the last entries
correspond to the worst case where f agents are discarded
in the consensus protocol. At each time, each agent verifies
if there is an entry corresponding to the smallest possible set
of agents, V ′ ⊂ V , with a value different from the entries
corresponding to sets with size less or equal to V ′.

The first result concerns the identification of attacked
agents and the convergence to the correct consensus value.

Theorem 1 ( [13]): Let G = (V, E) be a digraph with n
agents, C be a consensus algorithm, and A = {v1, . . . , vs} ⊂
V be a set of s agents attacked by a malicious entity which
makes these agents share values converging to a (x(k)

vi →
a, for i ∈ [s].) Let ε > 0 be the precision utilized to do
comparisons between values. In this scenario, Algorithm 2
of [13] with robustness f ≥ s identifies, after a number of
time steps, the attacked agents in A, and the agents v ∈ V\A
converge to the consensus value of G \ A from the input
consensus algorithm C. ◦

By Theorem 1, any non-attacked agent identifies and
corrects its state. The next results shows that the detection
cannot yield false positives.

Proposition 1 ( [13]): Consider the digraph of n agents
G = (V, E) and a consensus algorithm C. By using Algo-
rithm 2 of [13] with f ≥ s = |A| if, after some time steps,
an agent v ∈ V finds s ≤ f attacked agents, then there exist
s attacked agents. ◦

Finally, the next result details the computational complex-
ity of the method proposed in Algorithm 2 of [13].

Proposition 2 ( [13]): If the computational complexity of
the consensus algorithm C to run for T ∈ N time steps
is C(T ), then Algorithm 2 of [13] has time complexity of
O(nfC(T )). ◦

The results above demonstrate that the resilience assur-
ances remain unaffected by the choice of the privacy con-
sensus protocol, provided that the protocol is deterministic.

B. Private average consensus

We consider an O-based approach to achieve privacy in
average consensus, as defined in property (2b) of P. Specif-
ically, we consider the state augmentation approach using the
architecture in Fig. 1, and described in Algorithm 1 [34].

The intuition behind this approach is to augment each
agent’s dynamics with a local network (W̃i), and distribute
the agent’s initial state across the augmented network nodes
(x̃(0)

i ). By doing so with an appropriate augmentation and
initial state distribution, the original initial state cannot be
observed by other agents. From now on, we denote W̃ by
AP and x̃ by xP to emphasize privacy.

The augmentation in Algorithm 1 implements the function
h of (3) and, for a suitable function g, (3) with the dynamics
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Fig. 1: The original agent is agent xi (in white) and the remaining agents
and edges define the augmentation (gray agents and dashed edges.)

Algorithm 1 Privacy dynamics matrix AP for consensus

1: input: dynamics matrix A ∈ RN×N

2: output: dynamics matrix AP ∈ R4N×4N

3: set A ∈ RN×N as the adjacency matrix of G
4: fill the entries of AP with zeros
5: set ▷ Copy the matrix A to the first n rows and n columns

AP
ij = Aij , ∀i, j ∈ {1, . . . , N} and i ̸= j

6: for i = 1, . . . , N ▷ Set additional entries values

AP
i,N+3i−2 = 1, AP

N+3i−2,i = 2, AP
i,N+3i−1 = 1,

AP
N+3i−1,N+3i−0 = 1, AP

N+3i−0,i = 1

7: normalize the rows of AP dividing by their sum

matrix from Algorithm 1 achieves consensus with privacy, as
stated in the next theorem.

Theorem 2 ( [34]): Let A ∈ RN×N be a matrix such
that G(A) is a strongly connected graph. Then, the sys-
tem x̃P(k+1) = APx̃P(k) and y[k] = Cx̃P(k) , where
the matrix AP ∈ R4N×4N results from Algorithm 1 and
C =

[
IN 0N×3N

03×N Hi

]
, where [IN 0N×3N ]x̃P(k) = x

(k)
i

and [03×N Hi]x̃P(k) = z
(k)
i (i.e., the internal states of

agent i.) So, w.l.o.g., assume the states are permuted so
that Hi = [I3 03×(N−3)] and C = [IN+3 0(N+3)×(3N−3)].
Then, the next properties hold:

1) it is not observable; and

2)

ej4N +

N+3j∑
k=N+3j−2

ek4N

 /∈ span
(
Pλ
O(AP,C)

)
, for all j ̸=

i, where Pλ
O(A,C) ≡

[
C

λIN−A

]
, ∀λ ∈ C.

Moreover, if
(

1
(vL)j

ej4N +
∑N+3j

k=N+3j−2
1

(vL)k
ek4N

)
/∈

span
(
Pλ
O(AP,C)

)
, for all j ̸= i, where vL is the left-eigenvector

of AP obtained with Algorithm 1, associated with the
eigenvalue 1, then the initial state of agent j (distributed
among its augmented states agents) is private as per
property (2a). Since i is an arbitrary node, we conclude that
j is private w.r.t. all other nodes. ◦

In the next subsection, we build up on the two previous
approaches to design an average consensus method that is
both resilience and privacy while preserving accuracy.

C. Private and resilient average consensus

Intuitively, the aforementioned approaches that deal with
resilience and privacy independently can be combined with
some adaptations, such that the resilience property can be
achieved on top of the privacy property.

First, we are going to consider the augmented network
for the resilient case presented in Section IV-A. Without
loss of generality, when an agent is attacked, it means
the original agent. Moreover, if any of the virtual agents
is attacked, then it would be seen as only the original

agent is under attack. Therefore, we consider the augmented
state where we use subgraphs of removing agents together
with their virtual agents. Finally, we need to guarantee that
regardless of the subgraphs considered for the augmented
vector dynamics, which entries discard the possibly attacked
agents, the consensus protocol is private. Additionally, the
privacy is ensured under the assumption that the network
without attacked agents has strictly more than 2 agents.

In Algorithm 2, we detail how to design the initial setup,
before executing the consensus protocol, resorting to Algo-
rithm 1. Observe that Algorithm 2 implements the functions

Algorithm 2 Private and resilient average consensus method
initialization
1: input: dynamics matrix A ∈ RN×N , with N agents, and initial states

x(0) ∈ RN

2: output:
{
AF[i]

}|F|
i=1

and initial states
{(

x̃F[i]
)(0)}|F|

i=1

3: set F =
⋃f

i=0 ℘(V, i) as the set of all subsets of agents with sizes
from 0 to f

4: for i = 1, . . . , f do
5: AF[i] = AP, where AP is the output of Algorithm 1 with input

m̂inor(A,F [i])
6: compute the left-eigenvector v0 of AF[i] associated with the

eigenvalue 1
7: for u ∈ (V \ F [i]) \ A) do
8: ▷ distribute the initial condition of each agent

across its augmented states (setting as 0 for the original state),
the distribution can be tailored by each agent, and scaling it to
make the new average of initial states equal to the original one

9: select αu, βu, γu ̸= 0 such that αu + βu + γu ̸= 0
10: set[ (

x̃
F[i]
u

)(0) (
x̃
F[i]
N+3u−2

)(0) (
x̃
F[i]
N+3u−1

)(0) (
x̃
F[i]
N+3u

)(0)
]
=

4
(
x
F[i]
u

)(0)

αu + βu + γu
[ 0 αu βu γu ]

11: end for
12: for u ∈ (V \ F [i]) \ A) do
13: for l ∈ {u,N + 3u− 2, N + 3u− 1, N + 3u} do

14: set
(
x̃
F[i]
l

)(0)
=

(
x
F[i]
l

)(0)

4(N−|F[i]|)v0
l

.

15: end for
16: end for
17: end for

g and p (steps 10–14) of (3), whereas h is implemented
by Algorithm 1. Now that we have detailed how the initial
setup of the consensus method must be designed, we have
the ingredients to present the main algorithm (Algorithm 3.)

Next, we show that Algorithm 3 reaches resilient average
consensus whenever |A| ≤ f , i.e., the property (2b) of P.

Theorem 3: Let G = (V, E) be a digraph with n agents,
and A = {v1, . . . , vk} ⊂ V be a set of k agents attacked
by a malicious entity which makes these agents share values
converging to a. Let ε > 0 be the precision utilized to do
comparisons between values. In this scenario, Algorithm 3
with robustness f ≥ k identifies, after a number of time
steps, the attacked agents in A, and the agents v ∈ V \ A
converge to the average of their initial states. ◦

Proof: From Theorem 1 and Proposition 1, the non-
attacked agents correctly identify and correct their states.
Also, the non-attacked agents follow the dynamics of the
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Algorithm 3 Private and resilient average consensus method

1: input: dynamics matrix A ∈ RN×N , corresponding to the network
G = (V = [N ], E) of N agents, initial states x(0) ∈ RN , number
of iterations T , the resilience parameter f ∈ N0 and the precision
parameter ε > 0

2: output: final consensus x(T ) ∈ RN

3: set F =
⋃f

i=0 ℘(V, i) as the set of all subsets of agents with sizes
from 0 to f

4: compute
{
AF[i]

}|F|
i=1

and initial states
{(

x̃F[i]
)(0)}|F|

i=1
with Algo-

rithm 2
5: for u ∈ [4N ] \ A do
6: ▷ the attacked agents may not follow the protocol
7: for i = 1, . . . , |F| do

8: set c(0)u [F [i]] =
(
x̃
F[i]
u

)(0)

9: end for
10: end for
11: compute x̃(T ) as the output of Algorithm 2 of [13] using the dynamics

of
{
AF[i]

}|F|
i=1

, the computed vector c, the set of subsets of agents F ,
the number of iterations T and precision parameter ε

12: set x(T ) as the first N values of x̃(T )

subgraph without attacked agents, which by design (Algo-

rithm 2) converges to
∑|v0|

k=1 v
0
k

(
x̃
F [i]
k

)(0)

, where F [i] =

A is the correct attacked agents’ set and v0 is the left-
eigenvector of AF [i] associated with eigenvalue 1. Now, let
N = V \A and note that |V \A| = N −|F [i]|, we have that
|v0|∑
k=1

v0k

(
x̃
F[i]
k

)(0)
=

|v0|∑
k=1

v0k

(
x
F[i]
k

)(0)

4 (N − |F [i]|) v0k
=

∑|v0|
k=1

(
x
F[i]
k

)(0)

4|N |

=
∑

j∈N 4x
(0)
j

/
(4|N |) =

∑
j∈N x

(0)
j

/
|N |.

Finally, in the next result, we show that Algorithm 3
achieves privacy, entailing the property (2a) of P.

Theorem 4: Under the setting of Theorem 3, the non-
attacked agents’ initial states, agents in V \ A, are kept
private, if more than 2 agents are non-attacked. ◦

Proof: By considering the construction for the resilient
component in Algorithm 1 for each of the sugraphs, and
initial setup of Algorithm 2, then we can ensure privacy in
each subgraph, under the assumption that there are more
than 2 non-attacked agents. Thus, we use Theorem 2 in each
subgraph of agents excluding at most f agents.

Proposition 3: Algorithm 3 has polynomial time com-
plexity of O(max{Nf+2, Nf+1T}). ◦

Proof: The proof follows from using Proposition 2
and replacing the term C(T ) by the cost of an agent: (i)
computing the initial steps 3–10, with cost O(Nf ×N2) =
O(Nf+2) to compute the dynamics matrix of each subset
in F ; (ii) running step 12 with cost O(Nf × NT ) =
O(Nf+1T ) to update T times each entry of its vector state.
Thus, the total cost is O(max{Nf+2, Nf+1T}).

V. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the proposed average con-
sensus method that has resilience and privacy guarantees
with examples. In the plots, we omit the augmented agents
evolution to ease the relevant agents’ evolution (which initial
states are 0 by the augmentation design.)

Consider five agents, V = [5], with initial states x0 =
x(0) = [ 0.1 0.3 0.35 0.6 0.55 ]. In the first example, we consider
the network of agents G1, depicted in Fig. 2 (a), and the set of

attacked agents A1 = {2}. In this case, the attacked agent
behaves as a stubborn agents that always shares the value
0.3. In Fig. 2 (d), we present the agent’s state evolution using
Algorithm 3. We can see that the non-attacked agents, agents
in V \A1, identify correctly the attacked agent and reach the
average of the non-attacked agents’ initial state.
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(d) Agents’ consensus evolution with network G1, initial state x0, and
set of attacked agents A1, using Algorithm 3.
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(e) Agents’ consensus evolution with network G3, initial state x0, and
set of attacked agents A3, using Algorithm 3.
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(f) Agents’ consensus evolution with network G2, initial state x0, and set
of attacked agents A2, using Algorithm 3.

Fig. 2: Numerical results.
Next, consider the same setup as the first example, but

now the network of agents in G2, depicted in Fig. 2 (b),
and the set of attacked agents is A2 = {2, 3}. This time,
agent 2 shares values according to the function f2(k) =
0.3 − 0.5

1+k2 and agent 3 according to the function f3(k) =

0.3+ 0.6
1+k2 . In Fig. 2 (e), we show the agent’s state evolution

using Algorithm 3. We can see that the non-attacked agents,
agents in V \ A2, identify correctly the attacked agent and
reach the average of the non-attacked agents’ initial state.

Finally, consider the same setup as the first example,
but now the network of agents is directed, G3, depicted in
Fig. 2 (c), and the set of attacked agents is A3 = A1 = {2}.
In Fig. 2 (f), we present the agent’s state evolution using
Algorithm 3. We can see that the non-attacked agents, agents
in V \A3, identify correctly the attacked agent and reach the
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average of the non-attacked agents’ initial states.

VI. CONCLUSIONS & FUTURE RESEARCH

In this paper, we addressed the problem of a set of network
agents reaching resilient and private average consensus in
the presence of a subset of attacked agents. The results we
proposed demonstrate that the resilience assurances remain
unaffected by the choice of the privacy consensus protocol,
provided that the protocol is deterministic. Additionally,
we proposed a privacy protocol that relies on state-space
augmentation and with compromising the resilience spec-
ification. The method has polynomial time complexity on
the number of agents and the maximum number of attacked
agents. The proposed method enables each non-attacked
agent to detect and discard the values of the attacked agents,
reaching the average consensus of non-attacked agents while
keeping each agent initial state private.

Future research includes exploring if it is possible to
consider resilience protocols with lower computational com-
plexity which can be intertwined with privacy protocols.
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