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Abstract— In this letter, we propose a multivariable distur-
bance observer-based finite-time sliding mode attitude control
(MDOB-FT-SM-AC) for fixed-wing UAVs in the presence of
both matched and mismatched disturbances. Compared with
existing sliding mode attitude controllers, the significant im-
provements of the proposed MDOB-FT-SM-AC are the multi-
variable control structure, strong robustness, and high precision
performance with continuous control input signal. In the pro-
posed MDOB-FT-SM-AC, we first develop multivariable finite-
time disturbance observers such that the precise estimation of
both matched and mismatched disturbances is ensured. Next, a
nonsingular terminal sliding manifold is designed such that the
fixed-wing UAV is driven to track its desired attitude command
in finite time. We finally present a multivariable super-twisting
reaching law such that the finite-time convergence of the sliding
variable and its derivative to zero is guaranteed. Attentive finite-
time convergence analysis is derived based on the Lyapunov and
homogeneity theories. Simulation results are given to illustrate
the superiority of the proposed MDOB-FT-SM-AC.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
received an increasing interest in both control algorithm
developments and practical applications [1]. Among various
UAV configurations, the fixed-wing UAV has acquired a
considerable attention due to its attractive properties such
as simple structure, low design cost, long flight range, and
high airspeed [1]. Currently, the applications of fixed-wing
UAVs can be found in different fields including agriculture
mapping, environmental monitoring, and target localization.
Under most of these missions, the attitude control is crucial
to safe and successful operations. Note that the rotational
motions of fixed-wing UAVs are thoroughly influenced by
several types of internal and external disturbances (e.g.,
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model perturbations, wind conditions) [1]. Thus, it is essen-
tial to design the robust algorithm for the attitude control of
fixed-wing UAVs under such disturbed environments.

Over the years, numerous robust solutions were developed
for attitude control of fixed-wing UAVs. Among them, the
sliding mode control (SMC) in [2]–[8] offers the good
robustness (i.e., insensitivity feature) against different kinds
of disturbances. Although the effectiveness of the aforemen-
tioned SMC for fixed-wing UAVs had been examined in both
practical and theoretical aspects, there are still three major
technical challenges that require further investigation:

(i) In [2]–[8], the multiple single-channel attitude control
laws were designed based on the single-variable sliding
mode reaching law. In view of the design perspec-
tive, compared with the single-variable scheme, the
multivariable scheme is more preferable. In fact, as
shown in [1], the fixed-wing UAV attitude dynam-
ics is strongly nonlinear and coupled. Therefore, the
multivariable technique might be more appropriate for
the fixed-wing UAV because it does not require any
decoupling operations during the control design and/or
convergence analysis. In view of the implementation
perspective, compared with the single-variable scheme,
the multivariable scheme is much simpler. In fact,
under the same mission, the number of parameters of
the multivariable approach is considerably smaller than
that of the single-variable one. This implies that the
multivariable control scheme is easy to implement;

(ii) The sliding mode attitude controllers in [2]–[8] were
developed without the consideration of the influences
of mismatched disturbances on the fixed-wing system.
As regards of [9], we note that mismatched distur-
bances refer to disturbances that appear in the different
channel with the control input. Meanwhile, matched
disturbances mean that disturbances remain in the same
channel with the control input. On the one hand,
as shown in [1], under several missions, the fixed-
wing UAV has to operate in a highly disturbed en-
vironment that includes different types of internal and
external disturbances (e.g., model perturbations, wind
conditions). Note that some of these disturbances (i.e.,
mismatched disturbances) might directly affect the
states rather than through the control input channels.
On the other hand, the SMC is insensitive to matched
disturbances but sensitive to mismatched disturbances.
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In other words, in the presence of mismatched distur-
bances, the sliding mode attitude controllers in [2]–[8]
might not ensure the desirable flight performance; and

(iii) The attitude controllers in [2]–[6] only guaranteed
the asymptotic stability of the closed-loop system and
the attitude controllers in [2], [4]–[6], [8] induced
the serious chattering phenomenon owing to the uti-
lization of the discontinuous control component. The
asymptotic stability is not preferable as the attitude
tracking error only converges to zero when time goes to
infinity. The chattering phenomenon is also undesirable
for implementation as it might damage the system
actuators and degrade the performance of the system.

We here address all aforementioned challenges by propos-
ing the MDOB-FT-SM-AC. We now state the contributions
of this work in both practical and theoretical aspects.

Practical contributions: (i) The proposed MDOB-FT-SM-
AC generalizes the single-variable SMC structure for the
fixed-wing UAV to the case of multivariable structure. Under
the proposed MDOB-FT-SM-AC, the control design and
convergence analysis are performed without any decoupling
operations. This generalization is of important as the fixed-
wing UAV attitude dynamics is strongly coupled. Also, com-
pared with the single-variable structure, this multivariable
generalization introduces a simpler solution for implemen-
tation as the number of control parameters is significantly
reduced; (ii) The proposed MDOB-FT-SM-AC ensures the
strong robustness of the overall closed-loop system against
disturbances. In particular, under the MDOB-FT-SM-AC, the
overall closed-loop system is insensitive to both matched
and mismatched disturbances. This feature is of important
since under some control missions, the fixed-wing system
has to perform safe and successful operations in a highly
disturbed environment; and (iii) The proposed MDOB-FT-
SM-AC generates the continuous control input signal. This
feature is of important as the system actuators are protected
and smooth movement of the fixed-wing UAV is achieved.

Theoretical contributions: (i) The proposed MDOB-FT-
SM-AC belongs to a class of multivariable finite time control.
This feature is of important as the proposed MDOB-FT-SM-
AC ensures that the fixed-wing UAV is driven to track its
desired command in finite time; and (ii) Rigorous conver-
gence finite-time analysis of the closed-loop system is given
based on the Lyapunov and homogeneity theories.1

Notations: For a vector x ∈ Rn, ‖x‖ is the Euclidean norm
of x. For a positive definite matrix P ∈ Rn×n, λmax{P} and
λmin{P} denote the largest and smallest eigenvalues of P.

II. PROBLEM FORMULATION
In view of [1]–[8], the attitude dynamics of the disturbed

fixed-wing UAV can be described as follows:

Θ̇ = Rω + d1, Iω̇ = −ω × (Iω) + M + d2, (1)

where Θ = [φ θ ψ]> ∈ R3 denotes the Euler angle vector,
ω = [p q r]> ∈ R3 represents the angular rate vector,

1Note that an additional theoretical contribution of this work can be found
in the discussions provided in Remarks 5 and 6.

M ∈ R3 is the control input vector, d1 ∈ R3 and d2 ∈ R3

stand for the mismatched and matched disturbance vectors,
respectively, and R, I ∈ R3×3 denote the transformation and
inertia matrices, respectively, that are defined as

R =

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)


I =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 , (2)

with Ix, Iy, Iz, Ixy, Ixz, and Iyz are rotational inertias. Here,
Θ and ω are assumed to be available for the control design.

Assumption 1: For system (1), the Euler angles (i.e., φ, θ,
and ψ) satisfy φ, θ ∈ (−π/2, π/2) and ψ ∈ (−π, π].

Assumption 2: The time-varying mismatched and matched
disturbances in (1) fulfill the following circumstances: (i) d1

is second-order differentiable and ‖d1‖, ‖ḋ1‖, ‖d̈1‖ ≤ L1;
and (ii) d2 is differentiable and ‖d2‖, ‖ḋ2‖ ≤ L2, where L1

and L2 are known positive constants.

Remark 1: Taking into consideration of mechanical con-
straints, Assumption 1 is mild and sensible for the (practical)
fixed-wing UAV. Also, Assumption 2 is weak and reasonable
as disturbances acting on the fixed-wing UAV generally have
finite energy with bounded changing rates (see also [1]–[8]).

Remark 2: Compared with the corresponding rotational
equations of the fixed-wing UAV in [2]–[8], the considered
dynamics in (1) are more reasonable for a practical system.
In fact, the mismatched disturbance d1 is used to describe
the influences of internal perturbations due to model simplifi-
cation, actuator failure, and measurement bias as well as the
effects of discretization in practical implementation. Mean-
while, the matched disturbance d2 is included to illustrate
the effects of wind conditions and model uncertainties.

Control objective: For the system (1) with Assumption 1
and 2, we design a new attitude control structure, without any
decoupling operations to the original rotational dynamics,
which ensures the fixed-wing UAV to converge to its desired
command in finite time under continuous control signal.

III. MAIN RESULTS

A. Tracking error dynamics

We first introduce the auxiliary variable as ω = Rω. The
time derivative of ω along the dynamics in (1) is as

ω̇ = Ṙω −RI−1
[
ω × (Iω)

]
+ RI−1M + RI−1d2. (3)

From (1) and (3), the following equivalent dynamics is given:

Θ̇ = ω + d1, ω̇ = F + RI−1M + d2, (4)

where F and d2 are described as follows:

F = −RI−1
{

(R−1ω)×
[
I(R−1ω)

]}
d2 = Ṙ(R−1ω) + RI−1d2. (5)
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Now, for the equivalent system in (4), we define the
following tracking errors: e1 = Θ −Θref , e2 = ω − Θ̇ref ,
where e1 denotes the attitude tracking error vector, e2

represents auxiliary (angular speed) tracking error vector, and
Θref and Θ̇ref represent the desired command vector and its
corresponding derivative. Here, we suppose that Θref and its
(consecutive) derivatives are bounded. Then, by taking the
derivative of e1 and e2 along the system dynamics in (4),
we acquire the following (attitude) tracking error dynamics:

ė1 = e2 + d1, ė2 = F− Θ̈ref + RI−1M + d2. (6)

Remark 3: (i) In view of Eq. (2) with Assumption 1,
the matrix R is invertible. Besides, the matrix I is
generally invertible with the proper mechanical design.
Hence, the dynamics in (6) are well-defined; and

(ii) In view of Assumptions 1 and 2 with examination
of mechanical constraints of the (practical) fixed-wing
UAV, it is reasonable to consider that the matched dis-
turbances d2 in (6) is differentiable and ‖d2‖, ‖ḋ2‖ ≤
L2, where L2 is known positive constant.

B. Control design

1) Multivariable finite-time disturbance observers design:
We introduce the following multivariable finite-time mis-
matched disturbance observer:

ż01 = v01 + e2, ż11 = v11, ż21 = v21

v01 = λ01‖e1 − z01‖2/3
(e1 − z01)

‖e1 − z01‖
+ z11

v11 = λ11‖e1 − z01‖1/3
(e1 − z01)

‖e1 − z01‖
+ z21

v21 = λ21
(e1 − z01)

‖e1 − z01‖
, (7)

and multivariable finite-time matched disturbance observer:

ż02 = v02 + F− Θ̈ref + RI−1M, ż12 = v12

v02 = λ02‖e2 − z02‖1/2
(e2 − z02)

‖e2 − z02‖
+ z12

v12 = λ12
(e2 − z02)

‖e2 − z02‖
, (8)

where λ01, λ11, λ21, λ02, and λ12 > 0 are observer coeffi-
cients. Note that these coefficients are selected appropriately
based on the bounds of d̈1 and ḋ2, which are defined in As-
sumption 2 and Remark 3 (see [10] for relevant discussions).
For the disturbance observer (7), z01, z11, and z21 denote the
estimates of e1,d1, and ḋ1, respectively. For the disturbance
observer (8), z02 and z12 represent the estimates of e2 and
d2, respectively.

2) MDOB-FT-SM-AC design: The nonsingular terminal
sliding manifold is now developed with the sliding variable
defined as

s = e2 + z11 +

∫ t

0

[
k1‖e1‖r1

e1

‖e1‖

+ k2‖e2 + z11‖r2
(e2 + z11)

‖e2 + z11‖

]
dτ, (9)

where k1 and k2 are positive constants, r1 = r2/(2−r2) with
r2 ∈ (0, 1), and z11 is given from (7). Next, by utilizing
the multivariable super-twisting reaching law, the MDOB-
FT-SM-AC is designed as

M = IR−1
{
− F + Θ̈ref − v11 − z12 −

[
k1‖e1‖r1

e1

‖e1‖

+ k2‖e2 + z11‖r2
(e2 + z11)

‖e2 + z11‖

]
+ ur

}
, (10)

where v11 is given from (7), z12 is provided in (8), and the
multivariable super-twisting reaching law ur is defined as

ur = −β1‖s‖1/2
s

‖s‖
− β2s + z, ż = −β3

s

‖s‖
− β4s,

(11)

where β1, β2, β3 and β4 are positive constants, which satisfy
the following condition: 4β3β4 > (8β3 + 9β2

1)β2
2 . Note that,

as shown in Remark 3, the matrix R is invertible, and thus,
the MDOB-FT-SM-AC in (10) is well-defined. Besides, for
implementation, R and F can be calculated at each timestep
in view of their definitions in (2) and (5), respectively.

C. Convergence analysis

Theorem 1: For the (attitude) tracking error dynamics in (6)
with Assumptions 1 and 2, the proposed MDOB-FT-SM-
AC renders the following properties: (i) the multivariable
disturbance observers in (7) and (8) ensure the finite-time
accurate estimation of disturbances and its derivative. In
other words, under the disturbance observers in (7) and (8),
z01 = e1, z11 = d1, z21 = ḋ1 and z02 = e2, z12 = d2 are
established in finite time, respectively; (ii) the multivariable
super-twisting reaching law ur in (11) guarantees that the
sliding variable s and its derivative ṡ converge to zero in
finite time during the reaching phase; and (iii) the nonsingu-
lar terminal sliding manifold in (9) ensures that the attitude
tracking error e1 converges to zero during the sliding phase.

Proof. The proof of Theorem 1 is divided into three parts.
We first show the convergence of the disturbance observers
in (7) and (8). Then, in the second and third parts, attentive
examination are provided to show the finite-time convergence
feature of sliding variable s and attitude tracking error e1

during the reaching and sliding phases, respectively. We now
begin with the first part of the proof.

Part 1: The estimation error variables of the disturbance
observer in (7) are first introduced as σ01 = e1−z01,σ11 =
d1 − z11,σ21 = ḋ1 − z21. Then, from (6) and (7), the
estimation error dynamics of the disturbance observer in (7)
are given as

σ̇01 = −λ01‖σ01‖2/3
σ01

‖σ01‖
+ σ11

σ̇11 = −λ11‖σ01‖1/3
σ01

‖σ01‖
+ σ21

σ̇21 = −λ21
σ01

‖σ01‖
+ d̈1. (12)

We now introduce the estimation error variables of the dis-
turbance observer in (8) as σ02 = e2−z02,σ12 = d2−z12.

7864



Then, from (6) and (8), the estimation error dynamics of the
disturbance observer in (8) are expressed as

σ̇02 = −λ02‖σ02‖1/2
σ02

‖σ02‖
+ σ12

σ̇12 = −λ12
σ02

‖σ02‖
+ ḋ2. (13)

In view of [10], [11], the dynamics in (12) and (13) are finite-
time stable with proper observer coefficients. In other words,
z01 = e1, z11 = d1, z21 = ḋ1 and z02 = e2, z12 = d2 are
exhibited in some finite time T1 and T2, respectively. This
completes the first part of the proof.

Part 2: First, the time derivative of s in (9) along the
tracking error dynamics in (6) can be obtained as

ṡ = F− Θ̈ref + RI−1M + d2 + ż11

+ k1‖e1‖r1
e1

‖e1‖
+ k2‖e2 + z11‖r2

(e2 + z11)

‖e2 + z11‖
. (14)

Then, by substituting the proposed MDOB-FT-SM-AC in
(10) and (11) into (14), the sliding variable dynamics are
given as follows:

ṡ = −β1‖s‖1/2
s

‖s‖
− β2s + z + σ12, ż = −β3

s

‖s‖
− β4s.

(15)

Note that as represented in (15), the sliding variable dynam-
ics are suffered from the estimation error dynamics (13).
Hence, before investigating the convergence property of the
dynamics in (15), it is crucial to show that the estimation
error dynamics in (13) do not drive the sliding variable
dynamics in (15) to infinity in a finite-time interval. In that
context, we consider the following positive definite function:

V1 =
1

2
s>s +

1

2
z>z. (16)

By taking the time derivative of V1 in (16) along the sliding
variable dynamics in (15), we obtain

V̇1 = s>
(
− β1‖s‖1/2

s

‖s‖
− β2s + z + σ12

)
+ z>

(
− β3

s

‖s‖
− β4s

)
≤ −β1‖s‖3/2 − β2‖s‖2 + ‖s‖‖z‖+ ‖s‖‖σ12‖

+ β3‖z‖+ β4‖s‖‖z‖
≤ ‖s‖‖z‖+ ‖s‖‖σ12‖+ β3‖z‖+ β4‖s‖‖z‖

≤ (1 + β4)
‖s‖2 + ‖z‖2

2
+ σ
‖s‖2 + 1

2
+ β3

‖z‖2 + 1

2
≤ K1V1 + L1, (17)

where σ is a positive constant such that ‖σ12‖ ≤ σ in view
of the first part of the proof and K1 = β3 + β4 + σ+ 1 and
L1 = 1

2 (β3 +σ) are bounded (positive) constants. Therefore,
in view of (17), we can conclude that V1, and thus, s and z,
remain bounded for a finite-time interval. We now investigate
the finite-time convergence feature of the sliding variable
dynamics in (15). As shown in the first part of the proof,
σ12 converges to zero in some finite time T2. Besides, as
we discussed above, s and z remain bounded for a finite-time

interval. In that context, when t ≥ T2, the sliding variable
dynamics in (15) are further expressed as

ṡ = −β1
s

‖s‖1/2
− β2s + z, ż = −β3

s

‖s‖
− β4s. (18)

For system (18), by utilizing the ideas in [12], we consider
the following Lyapunov function candidate:

V2 =

(
2β3 +

β2
1

2

)
‖s‖+

(
β4 +

β2
2

2

)
s>s + z>z

+ β1β2
s>s

‖s‖1/2
− β2s>z− β1

z>s

‖s‖1/2
. (19)

Then, by taking the time derivative of V2, we obtain

V̇2 =

(
2β3 +

β2
1

2

)
s>ṡ

‖s‖
+
(
2β4 + β2

2

)
s>ṡ

+ 2z>ż +
3

2
β1β2

s>ṡ

‖s‖1/2
− β2

(
ṡ>z + s>ż

)
− β1

(
− 1

2

(s>ṡ)(z>s)

‖s‖5/2
+

ż>s + z>ṡ

‖s‖1/2

)
.

From the sliding variable dynamics in (18), we can verify

V̇2 ≤ −
(
β1β3 +

β3
1

2

)
‖s‖1/2 −

(
β2β3 + 2β2

1β2
)
‖s‖

−
(
β1β4 +

5

2
β1β

2
2

)
‖s‖3/2 −

(
β2β4 + β3

2

)
‖s‖2

+ β2
1‖z‖+ 2β2

2‖s‖‖z‖+ 3β1β2‖s‖1/2‖z‖

− β2‖z‖2 −
β1
2

‖z‖2

‖s‖1/2
. (20)

Next, we define the state vector: x =
[
‖s‖1/2 ‖s‖ ‖z‖

]>
.

Then, from (20), we obtain

V̇2 ≤ −
1

‖s‖1/2
x>Ω1x− x>Ω2x, (21)

where the matrices Ω1 and Ω2 are defined as

Ω1 =

 1
2β

3
1 + β1β3 0 − 1

2β
2
1

0 β1β4 + 5
2β1β

2
2 − 3

2β1β2
− 1

2β
2
1 − 3

2β1β2
1
2β1


Ω2 =

β2β3 + 2β2
1β2 0 0

0 β2β4 + β3
2 −β2

2

0 −β2
2 β2

 .
We can validate that Ω1 > 0 and Ω2 > 0 if the following
conditions are satisfied:

4β3β4 > (8β3 + 9β2
1)β2

2 , βi > 0, i = 1, . . . , 4.

Hence, from (21), we can derive

V̇2 ≤ −
1

‖s‖1/2
x>Ω1x ≤ − 1

‖s‖1/2
λmin(Ω1)‖x‖2, (22)

in view of Rayleigh’s inequality. Now, by defining the new

state vector X =
[

s
‖s‖1/2 s z

]>
, it can be validated that

‖X‖ = ‖x‖. Thus, we can rewrite (22) as follows:

V̇2 ≤ −
1

‖s‖1/2
λmin(Ω1)‖X‖2. (23)
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We mention that the Lyapunov function V2 (see (19)) might
also be expressed in the quadratic form V2 = X>PX
with the proper symmetric positive definite matrix P. There-
fore, in view of the Rayleigh’s inequality and the fact that
‖s‖1/2 ≤ ‖X‖ ≤ V

1/2
2

λ
1/2
min(P)

, from (23), we have

V̇2 ≤ −
λ
1/2
min(P)λmin(Ω1)

λmax(P)
V

1/2
2 . (24)

In view of (24), V2, and thus, s and z, converge to zero in
some finite time T3. Then, from (18), ṡ also converges to
zero as t ≥ T3. This completes the second part of the proof.

Part 3: We first define the new state variables as e1 =
e1 and e2 = e2 + z11. Then, we can obtain the following
equivalent (attitude) tracking error dynamics:

ė1 = e2 + σ11, ė2 = −k1‖e1‖r1
e1

‖e1‖
− k2‖e2‖r2

e2

‖e2‖
+ ṡ.

(25)

As shown in (25), the equivalent tracking error dynamics are
suffered from the dynamics in both (12) and (15). Hence,
before investigating the finite-time convergence feature of
e1, it is crucial to ensure that the dynamics in (12) and (15)
do not force the equivalent tracking error dynamics in (25)
to infinity in finite time. In that context, we consider the
following positive definite function [16]:

V3 = ‖e1‖+ ‖e2‖. (26)

The time derivative of V3 in (26) along the equivalent
tracking error dynamics in (25) is given as

V̇3 =
1

‖e1‖
e>1
(
e2 + σ11

)
+

1

‖e2‖
e>2

(
− k1‖e1‖r1

e1

‖e1‖
− k2‖e2‖r2

e2

‖e2‖
+ ṡ

)
≤ V3 + 2max{k1, k2}max{V r13 , V r23 }+ L, (27)

where L is a positive constant such that ‖σ11‖ + ‖ṡ‖ ≤ L
in view of Parts 1 and 2. We consider the following cases:

Case 1: For V3 ≤ 1, it is straightforward to conclude that
‖e1‖ and ‖e2‖ remain bounded in a finite-time interval.

Case 2: For V3 > 1, Eq. (27) can be further expressed as
V̇3 ≤ (1+2max{k1, k2})V3 +L, which implies that V3, and
thus, ‖e1‖ and ‖e2‖, stay bounded in a finite-time interval.

Hence, from the aforementioned two cases, we can state
that for a finite-time interval, ‖e1‖ and ‖e2‖ stay bounded.
Now, as illustrated in the first and second parts of the
proof, σ11 and ṡ converge to zero in some finite time
T4 = max{T1,T3}. Note also that as we discussed above,
e1 and e2 remain bounded for a finite-time interval. In that
context, when t ≥ T4, the equivalent tracking error dynamics
(25) can be further expressed as

ė1 = e2, ė2 = −k1‖e1‖r1
e1

‖e1‖
− k2‖e2‖r2

e2

‖e2‖
. (28)

In view of [13], [14], [16], we introduce the following
Lyapunov function candidate:

V4 = ‖e1‖r1+1 +
r1 + 1

2k1
‖e2‖2. (29)

Then, by taking the derivative of V4 in (29) along the
equivalent tracking error dynamics in (28), we have

V̇4 = (r1 + 1)‖e1‖r1
e>1 ė1

‖e1‖
+
r1 + 1

k1
‖e2‖

e>2 ė2

‖e2‖

= −k2(r1 + 1)

k1
‖e2‖r2+1 ≤ 0,

and thus, V̇4 is negative semi-definite. In view of the LaSalle
theorem, we can observe that the set Λ = {V̇4 = 0}
includes of e2 = 0. Besides, we can easily investigate that
the only invariant set inside e2 = 0 is e1 = e2 = 0.
Hence, e1 and e2 will converge to zero asymptotically [13].
Now, by considering the vector field (28) and the dilation(
2−r2
1−r2 ,

2−r2
1−r2 ,

2−r2
1−r2 ,

1
1−r2 ,

1
1−r2 ,

1
1−r2

)
, we can observe that

the vector field (28) is homogeneous of degree −1. There-
fore, in view of [14], the dynamics in (28) is finite-time
stable. In other words, the attitude tracking error e1 (i.e., e1)
converges to zero in finite time. We complete the proof. �

Remark 4: This work mainly concentrates on the design of
the new attitude control structure for fixed-wing UAVs. The
signal measurement and processing are different problems,
which are beyond the scope of this paper. Hence, the
influences of measurement noises are neglected during the
control design and analysis. Meanwhile, the robustness of the
closed-loop system under measurement noises is investigated
through numerical simulation in Section IV.

Remark 5: The MDOB-FT-SM-AC can generally be ap-
plied into the following disturbed multivariable integrator
system:

ẋ1 = x2 + d1, ẋ2 = f(x1,x2) + u + d2,y = x1

where x1,x2 ∈ Rm are the state vectors, u ∈ Rm is the
control input vector, y ∈ Rm is the system output vector,
f(x1,x2) ∈ Rm is the state function vector, and d1,d2 ∈
Rm stand for the mismatched and matched disturbance
vectors, respectively. Note that in the absence of mismatched
disturbances, the MDOB-FT-SM-AC is reduced to the case of
multivariable finite-time control under matched conditions.

Remark 6: In [15], the SMC with mismatched disturbances
is considered for a scalar system. Meanwhile, in [16], the
SMC with matched disturbances is examined for a multivari-
able system. Different from [15], [16], we here focus on the
multivariable finite-time SMC with mismatched disturbances
that is more proper for systems with strong couplings.

IV. SIMULATION VERIFICATION

For verification, the information of the inertia matrix
I is borrowed from the Aerosonde UAV (see [1]). Also,
for system (1), the initial conditions are zero. In light of
[9], we set d1 = [0.3sin(t) 0.1sin(2t) 0.2sin(1.5t)]> and
d2 = [0.4sin(2t) 0.2sin(1.5t) 0.15sin(t)]>.2 The desired
command vector is Θref = [−0.15+0.15sin(1.5t) −0.05+

2It is straightforward to verify that d1 and d2 satisfy Assumption 1. Also,
d1 and d2 are set as sinusoidal signals to show the capability of eliminating
the effects of time-varying disturbances of the MDOB-FT-SM-AC.
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Fig. 1. Simulation results – From left to right: DOB-SM-AC, MSM-AC, MDOB-FT-SM-AC.
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Fig. 2. Robustness verification – The proposed MDOB-FT-SM-AC.

0.12sin(t) −0.1+0.25sin(0.8t)]>. The controller parameters
of the proposed MDOB-FT-SM-AC are selected as λ01 =

2L
1/3
1 , λ11 = 1.5

√
2L

2/3
1 , λ21 = 1.1L1, λ02 = 3L

1/2

2 , λ12 =
2.1L2, L1 = 5.0, L2 = 5.0, k1 = 5.0, k2 = 3.5, r1 =
3/7, r2 = 3/5, β1 = 5.0, β2 = 1.0, β3 = 8.0, and β4 = 10.0.
Besides, for observers (7) and (8), the initial conditions of
the terms z01, z11, z21, and z02, z12 are all set to zero.3 For
comparison purposes, the DOB sliding mode attitude control
(DOB-SM-AC) in [5] and the multivariable sliding mode
attitude control (MSM-AC) in [16] are implemented. For
an adequate comparison, the control input torque for each
channel is restricted in the range of [−4.0; 4.0] (N.m).

As shown in Fig. 1, compared with the DOB-SM-AC
and MSM-AC, the MDOB-FT-SM-AC exhibits the markedly
better flight performance. In fact, the DOB-SM-AC and
MSM-AC only drive e1 to some region around zero with
considerable fluctuation due to the presence of mismatched
disturbances. In addition, the DOB-SM-AC induces the seri-
ous chattering phenomenon. In contrast, the MDOB-FT-SM-
AC enforces the attitude tracking error e1 to zero precisely
and smoothly with significantly better control accuracy under
the influences of mismatched disturbances. Besides, under
the MDOB-FT-SM-AC, the chattering is noticeably allevi-
ated.

We now verify the robustness of the MDOB-FT-SM-AC
under measurement noises (see Remark 4). As regards of [1],
the measurement noises, which adhere a normal distribution
with a zero mean and variances of 0.0042 and 0.0022,

3Note that the initial conditions of the terms z01, z11, z21, and z02, z12
should be selected appropriately depending on conditions of each flight
scenario of the fixed-wing UAV such that the desirable control performance
is achieved and the control input constraint is met.

are included in the Euler angle and angular rate signals.
As shown in Fig. 2, the desirable flight performance and
reasonable chattering alleviation are obtained even with noisy
measurements.

V. CONCLUSIONS

This letter considered the MDOB-FT-SM-AC for disturbed
fixed-wing UAVs. Possible future work is further improve-
ment of the MDOB-FT-SM-AC under measurement noises.
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