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Abstract— This paper proposes a passivity based integral
sliding mode controller for mechanical port-Hamiltonian sys-
tems. Recently, passivity based sliding mode control (PBSMC)
has been proposed for mechanical and electro-mechanical sys-
tems. This method has properties of both sliding mode control
(SMC) and passivity based control. However, the robustness
of the closed-loop system is not guaranteed in the reaching
phase. For this problem, integral sliding mode control (ISMC),
which eliminates the reaching phase, has been proposed. This
paper proposes a unified control method of passivity based
control and integral sliding mode control based on the idea
of PBSMC. In order to achieve ISMC in the port-Hamiltonian
form, an integral term of the sliding variable of PBSMC is firstly
added to the system equation. Next, by adding an appropriate
potential function to the Hamiltonian function, the dynamics of
ISMC is obtained. The proposed method is more robust than
PBSMC and ensures Lyapunov stability even if the resulting
feedback controller is replaced by its continuous approximation
to alleviate the chattering phenomena. The effectiveness of the
proposed method is demonstrated by a numerical example.

I. INTRODUCTION

Passivity based control is a method to find Lyapunov
function candidates using the physical energy and the re-
lated conserved quantities of the plant system. One of
the standard models for this control is a port-Hamiltonian
system [1]. Port-Hamiltonian systems are represented by
Hamilton’s canonical equation, and many physical systems
are described in this form, for example, mechanical systems,
electric circuits, electromechanical systems, nonholonomic
systems, and so on [2]–[5]. In this method, an appropriate
control input is added to the system so that the closed-loop
system has a desired Hamiltonian function, which represents
physical energy of the system and serves as a Lyapunov
function candidate. This method is called energy shaping.
Recently, Kinetic-potential energy shaping (KPES) [6]–[8] is
proposed for mechanical port-Hamiltonian systems. It allows
us to design a special class of potential functions whose
arguments are both configuration and momentum.

On the other hand, sliding mode control (SMC) [9]–[11]
is a nonlinear control method belonging to variable structure
control, and is known to be robust control against modeling
errors and external disturbances. A sliding mode control
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usually has two phases, a reaching phase and a sliding
phase. In the reaching phase, the system states are forced
to converge to a subspace called the sliding surface within a
finite time transient. Once the system states reach the sliding
surface, the states slide toward the origin of the state space
along the sliding surface. This motion is called the sliding
phase. In the sliding phase, the system response is invariant
for modeling errors and external disturbances. However,
during the reaching phase, the invariance of SMC is not
guaranteed and the system response is sensitive to them. For
this problem, integral sliding mode control (ISMC) has been
proposed [12], [13]. ISMC eliminates the reaching phase by
enforcing the sliding mode in the entire system response so
that the invariance of SMC is guaranteed throughout entire
system response from the initial time instance.

Recently, for mechanical and electro-mechanical port-
Hamiltonian systems, passivity based sliding mode control
(PBSMC) is proposed [14]–[16]. This method designs a
sliding mode controller by selecting a non-smooth function
as an artificial function based on KPES for port-Hamiltonian
systems. Since SMC is achieved in the framework of pas-
sivity based control, Lyapunov stability is ensured even if
the input is replaced by a continuous approximation of the
sliding mode control law to alleviate chattering phenomena.
However, the invariance of PBSMC in the reaching phase is
not guaranteed as the conventional SMC.

The scope of this paper is to design unified control of
passivity based control and ISMC based on the idea of
PBSMC. We consider an integral term of the sliding variable
of PBSMC as a state. By appropriate feedback, the dynamics
of ISMC is represented in the port-Hamiltonian form. It is
expected to result in a more robust controller compared to
PBSMC by eliminating the reaching phase and forcing the
states into the sliding surface from the initial time. It also
ensures Lyapunov stability when the chattering phenomenon
is mitigated, compared to the conventional ISMC.

The remainder of the paper is organized as follows.
Section II briefly refers to the background of the proposed
method. Section III gives the main result of the present paper.
Integral sliding mode control with an energy based Lyapunov
function is proposed. Section IV gives a numerical example
to show the effectiveness of the proposed method. Finally,
Section V concludes the paper.

Throughout this paper, the symbol ∇x denotes the gradient

with respect to x, that is,∇xf ≡ ∂f
∂x

⊤
=
(

∂f
∂x1

, · · · , ∂f
∂xn

)⊤
with x = (x1, · · · , xn).
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II. BACKGROUND
This section introduces the background of kinetic-potential

energy shaping and passivity based sliding mode control. The
basic idea of sliding mode control is also introduced.

A. Port-Hamiltonian systems

Let us consider a fully-actuated mechanical system de-
scribed by the following port-Hamiltonian form [1](

q̇
ṗ

)
=

(
0 I
−I −D0(x)

)(
∇qH0(x)
∇pH0(x)

)
+

(
0

G0(x)

)
u,

H0(x) =
1

2
p⊤M−1(q)p. (1)

Here the state vector x = (q⊤, p⊤)⊤ ∈ R2m consists of
the configuration q ∈ Rm and momentum p ∈ Rm , and
u ∈ Rm denotes the input vector. The positive definite matrix
M(q) � 0 ∈ Rm×m denotes the inertia matrix and the
positive semi-definite matrix D0(q, p) ∈ Rm×m denotes the
damping matrix. The matrix G0(q, p) ∈ Rm×m denotes the
full rank input mapping matrix. The symbol H0(x) ∈ R
is called the Hamiltonian function which represents the
physical energy of the system. For such a class of systems,
passivity based control is often employed. Let us consider
the following control input for the plant system (1)

u = −G−1
0 (x) (Kq + Cq̇) , K � 0, C � 0. (2)

The closed-loop system becomes the following port-
Hamiltonian system(

q̇
ṗ

)
=

(
0 I
−I −(D0(x) + C)

)
︸ ︷︷ ︸

Jd(x)

(
∇qHd

∇pHd

)
,

Hd(x) =
1

2
p⊤M−1(q)p︸ ︷︷ ︸

H0(x)

+
1

2
q⊤Kq︸ ︷︷ ︸
U(q)

� 0.

(3)

The Hamiltonian function of the closed-loop system satisfies
Hd(x) � 01 and

Ḣd(x) = ∇xHd(x)
⊤Jd(x)∇xHd(x) � 0.

It follows from La Salle’s invariance principle that the origin
is asymptotically stable with a Lyapunov function Hd(x).
The second term of the Hamiltonian function (1/2)q⊤Kq
can be replaced with any function U(q) positive definite with
respect to q. The function U(q) is called an artificial potential
function.

B. Kinetic-potential energy shaping

Kinetic-potential energy shaping [8], [14] is one of energy
shaping methods and it allows us to select a wider class of
potential functions. The following coordinate transformation
for the plant system (1)(

q
p

)
7→
(
q
η

)
≡
(

q
T⊤(q)p

)
1The notation f(x) ≻ 0 ∈ R implies positive definiteness of a scalar

function f , while the same notation P ≻ 0 ∈ Rn×n implies positive
definiteness of a symmetric square matrix P .

where T (q) ∈ Rm×m is a nonsingular matrix satisfying

T (q)T⊤(q) = M−1(q) (4)

converts the system (1) into the port-Hamiltonian system(
q̇
η̇

)
=

(
0 T (q)

−T⊤(q) −D(x)

)
︸ ︷︷ ︸

J(x)

(
∇qH
∇ηH

)
+

(
0

G(x)

)
u (5)

with H(x) = (1/2)‖η‖2 where G(x) = T⊤(q)G0(x) and
D(x) is an appropriate matrix satisfying D(x) +D⊤(x) �
0. The new Hamiltonian function H(x) depends only on
η, and no longer depends on q. By modifying the upper
left block of the structure matrix J(x) defined in Eq. (5)
appropriately, we can select potential function which depends
on both configuration q and momentum η.

C. Sliding mode control

This subsection briefly refers to sliding mode control [9]–
[11]. In sliding mode control, the system states reach a
subspace of the state space called the sliding surface within
a finite time, which is called the reaching phase. After the
reaching phase, the states evolve along the desired dynamics
on the surface, which is called the sliding phase. Here we
consider a general input-affine nonlinear system

ẋ = f(x) + g(x)u (6)

where x ∈ Rn is the state vector and u ∈ Rm is the
input vector. We select a switching function called a sliding
variable σ(x) ∈ Rm. To enforce the sliding variable σ to zero
within a finite time, a discontinuous feedback is employed so
that the closed-loop system contains the following dynamics

σ̇i = −kisgn(σi), ki > 0, i = 1, 2, . . .m. (7)

Here the signum function sgn is defined by

sgn(z)


=1 (z > 0)

∈[−1, 1] (z = 0)

=− 1 (z < 0)

.

If its argument is a vector x = (x1, · · · , xn)
⊤ ∈ Rn, then

sgn(x) = (sgn(x1), · · · , sgn(xn))
⊤.

The input u is selected to include the function sgn so that the
dynamics in Eq. (7) is achieved. Throughout this paper, by
solutions on the sliding surface we mean Filippov solutions.

D. Passivity based sliding mode control

Recently, passivity based sliding mode control has been
proposed, which ensures Lyapunov stability even if the re-
sulting feedback is replaced by its continuous approximation.
Here let us consider the system (5). Then, the following
theorem gives a passivity based sliding mode controller.

Theorem 1: [15] Consider the system (5). Suppose that
there exists a diffeomorphism ϕ : Rm → Rm satisfying
ϕ(0) = 0 and

Λ(q) ≡ ∂ϕ(q)

∂q
T (q) + T⊤(q)

∂ϕ(q)

∂q

⊤
� ϵI, ϵ > 0, ∀q. (8)
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Then the feedback control

u =− kG−1(x)Λ(q)sgn(ϕ(q) + η)

+G−1(x)

(
D(x)− ∂ϕ(q)

∂q
T (q)

)
η, k > 0

(9)

achieves the following properties.
(i) The feedback (9) converts the system (5) into the follow-
ing closed-loop port-Hamiltonian system(

q̇
η̇

)
=

(
−T (q)∂ϕ(q)∂q

−⊤
T (q)

−T⊤(q) −∂ϕ(q)
∂q T (q)

)(
∇qHsmc

∇ηHsmc

)
Hsmc(x) =

1

2
‖η‖2 + k‖ϕ(q) + η‖1. (10)

(ii) Along the closed-loop system (10), the sliding variable

σ ≡ ϕ(q) + η

is enforced to converge to zero within a finite time.
(iii) The origin of the closed-loop system (10) is asymptot-
ically stable with the Lyapunov function Hsmc(x).

This theorem gives the unified method of passivity based
control and sliding mode control. Also asymptotic stability
is ensured by the Lyapunov function Hsmc(x) even if the
discontinuous feedback is replaced by its continuous approx-
imation to alleviate chattering phenomena.

However, this method has the reaching phase like con-
ventional sliding mode control. In the reaching phase, the
system response is sensitive to modeling errors and external
disturbances. In the next section, we propose passivity based
integral sliding mode control to solve this problem.

III. PASSIVITY BASED INTEGRAL SLIDING
MODE CONTROL

This section gives the main result of this paper. A new
integral sliding mode controller for port-Hamiltonian systems
is proposed based on the framework of passivity based
control.

A. Integral sliding mode control

This subsection briefly refers to integral sliding mode
control [12], [13]. Let us consider a class of perturbed
uncertain input-affine nonlinear systems such as

ẋ = f(x) + g(x)(u+ h(x, t)) (11)

where x ∈ Rn is the state vector and u ∈ Rm is the input
vector. It is assumed that function h is uniformly bounded,
that is, there exists a constant h̄i > 0 such that |hi(x, t)| ≤
h̄i, 1 ≤ i ≤ m. For the system (11), choose the following
control law

u = u0 + u1

where u0 ∈ R is the nominal control for (11), and u1 is
designed to be discontinuous for the rejection of h(x, t).
Next, we design a sliding variable ξ as

ξ = σ + z, ξ, σ, z ∈ Rm. (12)

Here σ is selected as the linear combination of the system
states like the sliding variable of the conventional first order
sliding mode control, and z is an integral term given by

ż = −∂σ

∂x
(f(x) + g(x)u0), z(0) = −σ(0) (13)

where z(0) is selected to be −σ(0) such that ξ(0) = 0. Then
the dynamics of ξ is

ξ̇ =
∂σ

∂x
g(x)u1 + h(x, t). (14)

We assume that (∂σ/∂x)g(x)+ g⊤(x)(∂σ/∂x)⊤ is positive
definite without loss of generality. If we use u1 = −ksgn(ξ)
and k is large enough, ξ(t) = 0,∀t ≥ 0 is achieved.
Then the reaching phase is eliminated and the sliding phase
occurs immediately after the initial time instance. The motion
equation of the system in the sliding phase will be

ẋ = f(x) + g(x)u0. (15)

Once the states are forced to the sliding surface ξ = 0, the
equivalent control u1eq is obtained by setting ξ̇ = 0 as

u1eq = −((∂σ/∂x)g(x))−1h(x, t). (16)

Remark 1: In the existing results [12], [13], to alleviate
chattering phenomena, it is suggested that the discontinuous
control u1 is filtered by a first order linear low pass filter

µu̇1av = −u1av + u1, u1av(0) = 0 (17)

where u1av can be used instead of u1, and µ> 0 is a filtering
constant that is small enough to avoid distorting the slow
component of the switched action which is equal to u1eq.

B. Passivity based integral sliding mode control
This subsection gives the main result of this paper. Here

we consider the following system (18) in which a matched
disturbance d(t) ∈ Rm is added to the system (5)(

q̇
η̇

)
=

(
0 T (q)

−T⊤(q) −D(x)

)(
∇qH
∇ηH

)
+

(
0

G(x)

)
(u+ d)

H(x) =
1

2
‖η‖2 (18)

where it is assumed that there exists a constant d̄i satisfying
|(G(x)d(t))i| ≤ d̄i, i = 1, 2, . . .m.

The following feedback control based on Theorem 1

u =−G−1(x)Λ(q)∇σU(ϕ(q) + η)

+G−1(x)

(
D(x)− ∂ϕ(q)

∂q
T (q)

)
η + u1

≡ u0 + u1

(19)

converts the system (18) into the following port-Hamiltonian
system(

q̇
η̇

)
=

(
−T (q)∂ϕ(q)∂q

−⊤
T (q)

−T⊤(q) −∂ϕ(q)
∂q T (q)

)(
∇qH̄
∇ηH̄

)
+

(
0

G(x)

)
(u1 + d),

H̄(x) =
1

2
‖η‖2 + U(ϕ(q) + η).

(20)
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The system (20) is equivalent to the system (10) if U(ϕ(q)+
η) = k‖ϕ(q) + η‖1 and u1 = d = 0. If the assumption (8)
holds and d = 0, asymptotic stability is ensured with the
Lyapunov function H̄(x) as stated in Theorem 1. Here let
us apply the following coordinate transformation(

q
η

)
7→
(
σ
η

)
=

(
ϕ(q) + η

η

)
.

Then the system (20) is transformed into the following port-
Hamiltonian system(
σ̇
η̇

)
=

(
−Λ(q) 0

−Λ(q) −∂ϕ(q)
∂q T (q)

)
︸ ︷︷ ︸

J̄(x)

(
∇σH̄
∇ηH̄

)
+

(
G(x)
G(x)

)
(u1+d),

H̄(x) =
1

2
‖η‖2 + U(σ). (21)

For the system (21), we introduce the controller state z based
on Eq. (13) as

ż = −∂σ

∂x

(
−Λ(q) 0

−Λ(q) −∂ϕ(q)
∂q T (q)

)(
∇σH̄
∇ηH̄

)
= Λ(q)∇σU(σ), z(0) = −σ(0). (22)

Adding the new state z to the system (21) converts the system
(21) into the port-Hamiltonian systemż

σ̇
η̇

 =

0 Λ(q) 0
0 −Λ(q) 0

0 −Λ(q) −∂ϕ(q)
∂q T (q)

∇zH̄
∇σH̄
∇ηH̄


+

 0
G(x)
G(x)

 (u1 + d),

H̄(x) =
1

2
‖η‖2 + U(σ). (23)

Then the next theorem holds.
Theorem 2: Consider the system (23) with any scalar

positive definite functions U(σ) and V (ξ), and any diffeo-
morphism ϕ : Rm → Rm. The feedback

u1 = −G−1(x)Λ(q)∇ξV (σ + z), ξ = σ + z (24)

with Λ defined in Eq. (8) achieves the following properties.
(i) The feedback (24) converts the system (21) into the
following closed-loop port-Hamiltonian systemż

σ̇
η̇

 =

−Λ(q) Λ(q) 0
0 −Λ(q) 0

0 −Λ(q) −∂ϕ(q)
∂q T (q)

∇zHismc

∇σHismc

∇ηHismc


+

 0
G(x)
G(x)

 d,

Hismc(x) =
1

2
‖η‖2 + U(σ) + V (σ + z). (25)

(ii) Suppose that there exists a constant ϵ > 0 satisfying
Eq. (8). Assume moreover that there exists a constant d̄i
satisfying |(G(x)d(t))i| ≤ d̄i, i = 1, 2, . . .m. Select V (ξ) =
k1‖ξ‖1 with k1 > 0. If k1 is large enough, the system states

are forced to stay in the sliding surface ξ = 0 from the initial
time instance.
(iii) Suppose that all assumptions in (ii) hold. Then, asymp-
totic stability of the origin of the closed-loop system (25) is
ensured with the Lyapunov function Hismc(x) in the presence
of any disturbance d satisfying the assumptions.

Proof: The property (i) follows from the direct calcu-
lation as follows. In fact, the first element of Eq. (23) is

ż = Λ(q)∇σU(σ)

= −Λ(q)∇ξV (σ + z) + Λ(q)(∇ξV (σ + z) +∇σU(σ))

= −Λ(q)∇zHismc(x) + Λ(q)∇σHismc(x)

which is equivalent to the first element of Eq. (25). Similarly,
substituting u1 in (24) into Eq. (23), the second and third
elements of Eq. (25) are obtained.

The proof of the properties (ii) and (iii) needs an additional
coordinate change as followsz

σ
η

 7→

ξ
σ
η

 =

σ + z
σ
η

 .

Then the system (25) is transformed into the following port-
Hamiltonian systemξ̇

σ̇
η

 =

−Λ(q) 0 0
−Λ(q) −Λ(q) 0

−Λ(q) −Λ(q) −∂ϕ(q)
∂q T (q)


︸ ︷︷ ︸

Jismc(x)

∇ξHismc

∇σHismc

∇ηHismc



+

G(x)
G(x)
G(x)

 d,

Hismc(x) =
1

2
‖η‖2 + U(σ) + k1‖ξ‖1. (26)

We can see that the dynamics of the sliding variable ξ is

ξ̇ = −Λ(q)∇ξHismc +G(x)d = −k1Λ(q)sgn(ξ) +G(x)d.

Now, let us consider V (ξ) as a Lyapunov function candidate.
First of all, for the reaching phase, i.e., σi 6= 0 for ∀i, the
following inequality holds from the assumption (8)

V̇ (ξ) = k1sgn(ξ)
⊤ (−k1Λ(q)sgn(ξ) +G(x)d)

≤ −k21ϵ‖sgn(ξ)‖2 + k1sgn(ξ)
⊤G(x)d

≤ −k1

m∑
i=1

(k1ϵ− d̄i) ≡ −k1a(k1).

Thus, if k1 > d̄i/ϵ,∀i holds, V̇ (ξ) < −k1a(k1), a(k1) > 0.
Next, for the sliding phases, i.e., there exist some i’s for
which ξi = 0. Suppose there are msp sub-sliding phases and
m−msp sub-reaching phases, i.e., msp elements of ξ are en-
forced to be zero and m−msp elements of ξ are not yet zero
for 1 ≤ msp ≤ m− 1. Let us denote ξsp ≡ (ξ1, . . . , ξmsp

)⊤,
ξrp ≡ (ξmsp+1

, . . . , ξm)⊤ and suppose ξsp = ξ̇sp = 0 (sliding
phase) and ξrp 6= 0 (reaching phase) for simplicity. Then the
dynamics of ξ is given by(
ξ̇sp
ξ̇rp

)
=−k1

(
Λ11(q) Λ12(q)
Λ⊤
12(q) Λ22(q)

)(
sgn(ξsp)
sgn(ξrp)

)
+

(
dsp
drp

)
=

(
0
∗

)
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where ∗ is an arbitrary value and (d⊤sp, d
⊤
rp)

⊤ = G(x)d. Thus,
the equivalent sliding mode control system is described as

ξ̇rp=−k1 (Λ22 − Λ⊤
12Λ

−1
11 Λ12)︸ ︷︷ ︸

Λ/Λ11(q)

sgn(ξrp)− Λ⊤
12Λ

−1
11 dsp + drp.

Calculating the time derivative of V (ξ) along the above
equation, we obtain

V̇ (ξ) = k1
(
sgn(ξsp)

⊤, sgn(ξrp)
⊤)(ξ̇sp

ξ̇rp

)
≤ −k1

m−msp∑
i=1

(
k1ϵ− d̄rpi

)
≡ −k1arp(k1),

where we define a constant d̄rpi satisfying∣∣(−Λ⊤
12(q)Λ

−1
11 (q)dsp+drp

)
i

∣∣≤ d̄rpi, 1 ≤ i ≤ m−msp (27)

and use the fact that Λ/Λ11(q) � ϵI which is derived from
the assumption (8) and the following decomposition of Λ(q):

Λ =

(
I 0

Λ⊤
12Λ

−1
11 I

)(
Λ11 0
0 Λ/Λ11

)(
I Λ−1

11 Λ12

0 I

)
.

Hence, if k1 is large enough, that is, k1 >max(d̄i, d̄rpi)/ϵ,
then V̇ (ξ) < −k1arp(k1) with arp(k1) > 0. The constant
d̄rpi satisfying Eq. (27) exists at least locally because Λ⊤

12(q)
Λ−1
11 (q) is evaluated along Eq. (20) with d = 0 whose origin

is asymptotically stable with the Lyapunov function H̄(x).
It follows from the above discussion that V (ξ) goes to

zero within a finite time and so is ξ. The setting ξ(0) = 0
eliminates the reaching phase resulting in ξ(t) = 0,∀t ≥ 0.

Finally, the property (iii) follows from the inequality

Ḣismc = ∇xH
⊤
ismc

(
Jismc∇xHismc + (G(x), G(x), G(x))⊤d

)
= ∇xH̄J̄∇xH̄ ≺ 0.

The second equality holds because −k1Λ(q)sgn(ξ) +
G(x)d = 0 and the inequality holds because J̄ + J̄⊤ ≺ 0
where J̄ is defined in Eq. (21).

Theorem 2 provides a new integral sliding mode controller.
The resulting ISMC dynamics is described in the port-
Hamiltonian form (26). The design parameter k1 should be
selected satisfying k1 > max(d̄i, d̄rpi)/ϵ as explained in the
proof.

Remark 2: According to [15], the proposed method
can alleviate chattering phenomena by choosing V (ξ) =
k1‖ξ‖rs, 1 ≤ s, 1 ≤ r < 2. Lyapunov stability is still ensured,
but ξ does not become strictly zero in this case.

IV. NUMERICAL EXAMPLE

In this section, we show the effectiveness of the proposed
method through numerical simulations. The plant system is
a fully-actuated two degrees of freedom planar manipulator
arm shown in Fig 1. This system can be described in the
port-Hamiltonian form(

q̇
ṗ

)
=

(
0 I
−I −D

)(
∇qH
∇pH

)
+

(
0
I

)
(u+ d),

Fig. 1: A two degrees of freedom manipulator arm

TABLE I: Physical parameters

Link 1 Link 2
Length of link l1 = 1 l2 = 1
Mass of link m1 = 1 m2 = 1

Center of mass of link r1 = 1/2 r2 = 1/2
Moment of inertia of link J1 = 1/12 J2 = 1/2

Friction coefficient ν1 = 1/2 ν2 = 1/2

with H = (1/2)p⊤M−1(q)p. System states are the angles of
the links q ∈ R2 and the angular momenta p = M(q)q̇ ∈ R2.
The inertia matrix M(q) is

M(q) =

(
M1 +M2 + 2M3 cos q2 M2 +M3 cos q2

M2 +M3 cos q2 M2

)
,

M1 = m1r
2
1 +m2l

2
1 + J1,M2 = m2r

2
2 + J2,M3 = m2l1r2.

Here mi, Ji and li denote the mass of the i-th link, the
moment of inertia of the i-th link and the length of the i-th
link, respectively, and ri denotes the length from the joint
to the center of mass of the i-th link. The damping matrix
D = diag(ν1, ν2) consists of the friction coefficients ν1, ν2.
The physical parameters of the system are given in Table I.

The control objective is to stabilize the states at the desired
equilibrium q∗ = (π/6, π/3)⊤. We select σ as follows

σ(q, η) =

(
4 0
2 4

)
(q − q∗) + η.

In this simulation, we choose the function U and V as

U(σ) = ‖σ‖2, V (ξ) = ‖ξ‖1.351.35

corresponding to u1 ∝ (|ξ1|0.35sgn(ξ1), |ξ2|0.35sgn(ξ2))⊤as
in Remark 2. Thus this choice of V gives a continuous ap-
proximation of the discontinuous controller given in Theorem
2 (ii), while it also ensures asymptotic stability. We compare
the proposed method to conventional u1av, which is low-pass
filtered u1

V (ξ) = ‖ξ‖1, filtering constant µ = 0.01.

The following matched disturbance d(t) is considered.

d(t) = (sign(sin(6t)), sign(cos(6t)))
⊤ (28)

The initial condition of the state is given by
(q(0)⊤, p(0)⊤)⊤ = (0, 0, 0, 0)⊤.

Figures 2-5 show the results of the numerical simulations.
Figure 2 shows the responses of the angles q. In Fig. 2, the
solid lines denote the responses of the angles and the dashed-
dotted lines denote the desired angles. This result shows the
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(a) Proposed (b) Conventional

Fig. 2: Trajectories of the angles q with proposed and conventional
controllers

(a) Proposed (b) Conventional

Fig. 3: The sliding variables ξ with proposed and conventional
controllers

angles converge to the desired angles with both proposed
and conventional controllers. Figure 3 shows the responses
of the integral sliding variable ξ. Since the disturbances
are square waveform, ξ is not zero even with conventional
method when the disturbances change stepwise. Also in the
proposed method, ξ takes minute values when chattering is
alleviated. Figure 4 shows the responses of input u. While
the response q(t) of the proposed method and that of the
conventional method are very similar as illustrated in Fig.
2, the corresponding inputs are different as depicted in Fig.
4. Figure 4 shows that the conventional method causes very
oscillatory chattering phenomena for the disturbance d(t) in
Eq. (28) while the proposed method gives a less oscillatory
control input. Figure 5 shows the response of the Hamiltonian
function Hismc(x). It plays the role of the Lyapunov function
of the closed-loop system.

V. CONCLUSIONS

This paper has proposed a new integral sliding mode
controller using the passivity based approach. It provides

(a) Proposed (b) Conventional

Fig. 4: The inputs u with proposed and conventional controllers

Fig. 5: The Hamiltonian function Hismc

a family of controllers smoothly connecting integral slid-
ing mode control and passivity based control. Through the
numerical example, we have confirmed that the proposed
method ensures Lyapunov stability even if the discontinuous
sliding mode controller is replaced by its continuous approx-
imation to alleviate chattering phenomena.
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