
A Linearly Convergent Robust Compressed Push-Pull Method for
Decentralized Optimization

Yiwei Liao, Zhuorui Li, and Shi Pu

Abstract— In the modern paradigm of multi-agent networks,
communication has become one of the main bottlenecks for
decentralized optimization, where a large number of agents
are involved in minimizing the average of the local cost
functions. In this paper, we propose a robust compressed push-
pull algorithm (RCPP) that combines gradient tracking with
communication compression. In particular, RCPP is compatible
with a much more general class of compression operators
that allow both relative and absolute compression errors. We
show that RCPP achieves linear convergence rate for smooth
objective functions satisfying the Polyak-Łojasiewicz condition
over general directed networks. Numerical examples verify the
theoretical findings and demonstrate the efficiency, flexibility,
and robustness of the proposed algorithm.

I. INTRODUCTION

In this paper, we study the decentralized optimization
problem:

min
x∈Rp

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where n is the number of agents, x is the global decision
variable, and each agent i only has access to its local
objective function fi : Rp → R. The goal is to find an
optimal and consensual solution through local computation
and local sharing of information in a directed communication
network.

Decentralized algorithms for solving (1) were well stud-
ied in recent years. The seminal work [1] proposed the
distributed subgradient descent (DGD) method, where each
agent updates its local copy by mixing with the received
copies from neighbors in the network and moving towards
the local gradient descent direction. However, under a con-
stant step-size, DGD only converges to a neighborhood
of the optimal solution. To obtain better convergence re-
sults, various works with bias-correction techniques were
proposed, including EXTRA [2], exact diffusion [3], and
gradient tracking based methods [4]–[7]. These methods
achieve linear convergence for minimizing strongly convex
and smooth objective functions. Under the more general

Yiwei Liao and Shi Pu are with School of Data Science, Shenzhen
Research Institute of Big Data, The Chinese University of Hong
Kong, Shenzhen (CUHK-Shenzhen), China. Zhuorui Li is with
H. Milton Stewart School of Industrial and System Engineering,
Georgia Institute of Technology, Atlanta, USA. This work is partially
supported by National Natural Science Foundation of China (NSFC)
(Grant No. 62003287), Shenzhen Research Institute of Big Data
(Grant No. T00120220003) and Shenzhen Science and Technology
Program (Grant No. RCYX20210609103229031). (emails:
liaoyiwei@cuhk.edu.cn, lizhuorui27@gmail.com,
pushi@cuhk.edu.cn)

directed network topology, several modifications have been
considered; see [6], [8]–[14] and the references therein.

In decentralized computation, exchanging complete in-
formation between neighboring agents may suffer from
the communication bottleneck due to the limited energy
and/or bandwidth. One of the promising means for re-
ducing the communication costs is applying compression
operators [15]–[23]. Most of the works have considered the
relative compression error assumption, including unbiased
compressors [18]–[20] and contractive biased compressors
[16], [17], or the unification of them [21]. Recently, a few
works have also considered quantized compression operators
with absolute compression errors [22]–[24]. To explore a
unified framework for both relative and absolute compression
errors, the work in [25] studied finite-bit quantization, but the
absolute compression error needs to diminish exponentially
fast for the desired convergence. In [26], the unbiased relative
compression error was considered together with the absolute
compression error, but the latter slows down the algorithmic
convergence.

In this paper, we propose a robust compressed push-
pull method (RCPP) for decentralized optimization with
communication compression over general directed networks.
In particular, we consider a more general assumption on
the communication compressors, which unifies both relative
and absolute compression errors. By employing the dynamic
scaling compression technique, RCPP provably achieves lin-
ear convergence for minimizing smooth objective functions
satisfying the Polyak-Łojasiewicz inequality (PL condition)
under the general class of compression operators.

The main contribution of this paper is summarized as
follows:
• For decentralized optimization with communication

compression, we consider a general class of com-
pression operators, which unifies the commonly used
relative and absolute error compression assumptions.
Such a condition is most general in the decentralized
optimization literature to the best of our knowledge.

• We propose a new method called the robust compressed
push-pull algorithm that works over general directed
networks. Based on the dynamic scaling compression
technique, RCPP provably achieves linear convergence
for minimizing smooth objective functions satisfying the
PL condition under the general unified assumption on
the compression operators.

• Numerical results demonstrate that RCPP is efficient
compared to the state-of-the-art methods and robust
under various compressors.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 4156

In Table I, we compare this paper with related works regard-
ing the assumptions on the compression operators, objective
functions, graph topologies and convergence guarantees.

The rest of this paper is organized as follows. We introduce
the notation in Section I-A. In Section II, we state the
standing assumptions and discuss the compression meth-
ods. In Section III, we introduce the RCPP method. In
Section IV, we establish the linear convergence of RCPP
under communication compression. Numerical experiments
are provided to verify the theoretical findings in Section V.
Finally, conclusions are given in Section VI.

TABLE I
COMPARISON OF RELATED WORKS ON DECENTRALIZED

OPTIMIZATION WITH COMMUNICATION COMPRESSION.

References relative absolute convergence graph function
[16], [17] C 1 × sublinear Und SVX 4

[18], [19] U × linear Und SVX
[27], [28] C × linear Und SVX [27], PL [28]
[21], [29] G × linear Und SVX [21], PL [29]

[23], [24], [29] × Q linear Und SVX [23], [24], PL [29]
[25] C dim-d linear* 2 Und SVX
[26] U X neighborhood 3 Und SVX
[20] U × linear Di SVX
[22] × Q linear Di SVX

our paper G XXX linear Di PL
1 ‘C’, ‘U’, ‘G’ represent contractive biased, unbiased, general rel-

ative compression assumptions, respectively. ‘dim-d’ and ‘Q’ represent
dimension-dependent absolute compression assumption and quantizer, re-
spectively. ‘Und’ and ‘Di’ denote undirected and directed graphs, respec-
tively.

2 * The result has extra requirement, e.g., exponentially decaying error.
3 The algorithm converges to the neighborhood of the optimal solution.
4 ‘SVX’ and ‘PL’ represent strongly convex functions and the PL

condition, respectively.

A. Notation

A vector is viewed as a column by default. The n-
dimensional column vector with all entries equal to 1 is
denoted by 1. Each agent i holds a local copy xi ∈ Rp
of the decision variable and an auxiliary variable yi ∈ Rp to
track the average gradient. Vectors xki and yki represent their
corresponding values at the k-th iteration. For simplicity,
denote the aggregated variables as X := [x1,x2, . . . ,xn]ᵀ ∈
Rn×p, Y := [y1,y2, . . . ,yn]ᵀ ∈ Rn×p. At step k, Xk

and Yk represent their corresponding values. The other
aggregated variables Hx, Hy , Qx, Qy , X̂, Ŷ, X̃, and Ỹ are
defined similarly. The aggregated gradients are ∇F(X) :=
[∇f1(x1),∇f2(x2), . . . ,∇fn(xn)]

ᵀ ∈ Rn×p. With slight
notation abuse, the gradients ∇fi(xi) and ∇f(x) are occa-
sionally regarded as row vectors, and the average of all the lo-
cal gradients is ∇F(X) := 1

n1
ᵀ∇F(X) = 1

n

∑n
i=1∇fi(xi).

The notations ‖ · ‖ and ‖ · ‖F define the Euclidean norm of
a vector and the Frobenius norm of a matrix, respectively.

The set of nodes (agents) is denoted byN = {1, 2, . . . , n}.
A directed graph (digraph) is a pair G = (N , E), where the
edge set E ⊆ N ×N consists of ordered pairs of nodes. If
there exists a directed edge from node i to node j in G, or
(i, j) ∈ E , then i is called the parent node, and j is the child
node. The parent node can directly transmit information to
the child node, but not the other way around. Let GB =
(N , EB) denote a digraph induced by a nonnegative square

matrix B, where (i, j) ∈ EB if and only if Bji > 0. In
addition, RB is the set of roots of all the possible spanning
trees in GB.

II. PROBLEM FORMULATION

In this section, we first provide the basic assumptions
on the communication graphs and the objective functions.
Then, we introduce a general assumption on the compression
operators to unify both the relative and absolute compression
errors.

A. Communication graphs and objective functions

Consider the following conditions on the communication
graphs among the agents and the corresponding mixing
matrices.

Assumption 1: The matrices R and C are both supported
by a strongly connected graph G = (N , E), i.e., ER =
{(j, i) ∈ N × N

∣∣Rij > 0} ⊂ E and EC = {(j, i) ∈
N × N

∣∣Cij > 0} ⊂ E . The matrix R is row stochastic,
and C is column stochastic, i.e., R1 = 1 and 1ᵀC = 1ᵀ.
In addition, there exists at least one node that is a root of
spanning trees for both GR and GCᵀ , i.e., RR ∩RCᵀ 6= ∅.

Remark 1: Assumption 1 is weaker than requiring both
GR and GC are strongly connected [12]. It implies that R has
a unique nonnegative left eigenvector uR w.r.t. eigenvalue
1 with uᵀ

R1 = n, and C has a unique nonnegative right
eigenvector uC w.r.t. eigenvalue 1 such that uᵀ

C1 = n. The
nonzero entries of uR and uC correspond to the nodes in
RR and RCᵀ , respectively. Since RR ∩RCᵀ 6= ∅, we have
uᵀ
RuC > 0. For a more detailed explanation, please refer to

[12].
The objective functions are assumed to satisfy the following
condition.

Assumption 2: The objective function f satisfies the
Polyak-Łojasiewicz inequality (PL condition), i.e.,

‖∇f(x)‖2 ≥ 2µ(f(x)− f(x∗)), (2)

where x∗ is an optimal solution to problem (1). For each
agent i, its gradient is Li-Lipschitz continuous, i.e.,

‖∇fi(x)−∇fi(x′)‖ ≤ Li‖x− x′‖, ∀x,x′ ∈ Rp. (3)
Remark 2: If f is µ-strongly convex as commonly as-

sumed, the PL condition is automatically satisfied. From
Assumption 2, the gradient of f is L-Lipschitz continuous,
where L = max {Li}. We denote κ = L/µ as the condition
number.

B. A unified compression assumption

We now present a general assumption on the compres-
sion operators which incorporates both relative and absolute
compression errors.

Assumption 3: The compression operator C : Rd → Rd
satisfies

EC ‖C(x)− x‖2 ≤ C ‖x‖2 + σ2, ∀x ∈ Rd, (4)

for some constants C, σ2 ≥ 0, and the r-scaling of C satisfies

EC ‖C(x)/r − x‖2 ≤ (1− δ) ‖x‖2 + σ2
r , ∀x ∈ Rd, (5)

4157

for some constants r > 0, δ ∈ (0, 1] and σ2
r ≥ 0.

Among the compression conditions considered for decentral-
ized optimization algorithms with convergence guarantees,
Assumption 3 is the weakest to the best of our knowledge.
Specifically, if there is no absolute error, i.e., σ2 = σ2

r = 0,
then Assumption 3 degenerates to the assumption in [21]
that unifies the compression operators with relative errors. If
there is no relative error, i.e., C = 0 and δ = 1, then the
condition becomes the assumption on the quantizers in [22],
[23]. Therefore, Assumption 3 provides a unified treatment
for both relative and absolute compression errors. In addition,
if C < 1, Assumption 3 reduces to the condition in [25].

III. A ROBUST COMPRESSED PUSH-PULL METHOD

In this section, we first introduce the dynamic scaling com-
pression technique that deals with the absolute compression
error. Then, we propose the RCPP algorithm and discuss its
connections with the existing methods.

A. The dynamic scaling compression technique

While Assumption 3 provides a unified condition on the
compression operators, new challenges are brought to the
algorithm design and analysis. Without proper treatment
for the compression errors, the algorithmic performance
could deteriorate, particularly due to the absolute error that
may lead to compression error accumulation. To tackle the
challenge, we consider the dynamic scaling compression
technique [23]. Consider the operator Q(x) = skC(x/sk),
where sk is a dynamic parameter related to the iteration
k. Then from Assumption 3, we have EQ ‖Q(x)− x‖2 =
EC ‖skC(x/sk)− x‖2 = s2kEC ‖C(x/sk)− x/sk‖2 ≤
s2k(C ‖x/sk‖2 + σ2) = C ‖x‖2 + s2kσ

2. Similarly, we know
EQ ‖Q(x)/r − x‖2 ≤ (1 − δ) ‖x‖2 + s2kσ

2
r . Note that only

C(x/sk) needs to be transmitted during the communication
process, and the recovery of signal is done by computing
Q(x) = skC(x/sk) on the receiver’s side. By using the
dynamic scaling compression technique, the absolute errors
can be controlled by decaying the parameter sk.

B. A robust compressed push-pull method

We describe the proposed RCPP method in Algorithm 1.
Lines 2 and 9 represent the updates for the local decision
variables and the gradient trackers, respectively. In Lines
3 and 10, the dynamic scaling compression technique is
applied to execute difference compression between the local
updates and the auxiliary variables. Difference compression
reduces the relative compression errors [16], [21], while the
dynamic scaling compression controls the absolute compres-
sion errors. More specifically, the operator Q is a dynamic
scaling compressor given by Q(x) = skC(x/sk). The
compressed vector C((x̃ki − hki,x)/sk) is transmitted to the
neighbors of agent i and recovered by computing skC((x̃ki −
hki,x)/sk) after communication, where x̃ki and hki,x denote
agent i’s local update and auxiliary variable, respectively.
It is worth noting that if the dynamic scaling compression
technique is not used, then the absolute compression error

would accumulate and significantly impact the algorithm’s
convergence.

In Lines 4 and 11, the decision variables and the gradient
trackers are locally recovered, respectively. Lines 5 and
12 represent the communication steps, where each agent
mixes the received compressed vectors multiplied by sk. The
variables X̂k

R and Ŷk
C are introduced to store the aggregated

information received from the communication updates. By
introducing such auxiliary variables, there is no need to
store all the neighbors’ reference points [16], [18]. Lines 6-7
and 13-14 update the auxiliary variables, where parameters
αx, αy control the relative compression errors; see e.g., [21]
for reference. The consensus updates are performed in Lines
8 and 15, where γx, γy are the global consensus parameters
to guarantee the algorithmic convergence.

Algorithm 1 A Robust Compressed Push-Pull Method
Input: step-sizes Λ = diag([λ1, λ2, . . . , λn]), parameters
αx, αy , γx, γy , {sk}k≥0, initial values X0, Y0 = ∇F(X0),
H0
x = 0, H0

y = 0, H0
R = 0, H0

C = 0, number of iterations
K

1: for k = 0, 1, 2, . . . ,K − 1 do
2: X̃k = Xk − ΛYk

3: Ck
x = C((X̃k −Hk

x)/sk)
4: X̂k = Hk

x + Qk
x

1

5: X̂k
R = Hk

R + RQk
x . Communication

6: Hk+1
x = (1− αx)Hk

x + αxX̂
k

7: Hk+1
R = (1− αx)Hk

R + αxX̂
k
R

8: Xk+1 = X̃k − γx(X̂k − X̂k
R)

9: Ỹk = Yk +∇F(Xk+1)−∇F(Xk)
10: Ck

y = C((Ỹk −Hk
y)/sk)

11: Ŷk = Hk
y + Qk

y

12: Ŷk
C = Hk

C + CQk
y . Communication

13: Hk+1
y = (1− αy)Hk

y + αyŶ
k

14: Hk+1
C = (1− αy)Hk

C + αyŶ
k
C

15: Yk+1 = Ỹk − γy(Ŷk − Ŷk
C)

16: end for
Output: XK ,YK

1 Qk
x is the result of dynamic scaling compression with Qk

x = Q(X̃k−
Hk

x) = skC((X̃k−Hk
x)/sk) = skC

k
x. The operation for Qk

y is the same.
To see the connection between RCPP and the Push-

Pull/AB algorithm [11], [12], note that we have H0
R = RH0

x

and H0
C = CH0

y from the initialization. It follows by
induction that X̂k

R = RX̂k, Ŷk
C = CŶk and Hk

R = RHk
x,

Hk
C = CHk

y . Recalling Lines 8 and 15 in Algorithm 1, we
have

Xk+1 =X̃k − γx(X̂k − X̂k
R) = X̃k − γx(X̂k −RX̂k)

=X̃k − γx(I−R)X̂k, (6)

Yk+1 =Ỹk − γy(Ŷk − Ŷk
R) = Ỹk − γy(Ŷk −CŶk)

=Ỹk − γy(I−C)Ŷk. (7)

If X̃k and Ỹk are not compressed, i.e., X̂k = X̃k and Ŷk =
Ỹk, then, Xk+1 = X̃k − γx(I − R)X̃k = [(1 − γx)I +

4158

γxR](Xk − ΛYk), and Yk+1 = Ỹk − γy(I − C)Ỹk =
[(1 − γy)I + γyC](Yk + ∇F(Xk+1) − ∇F(Xk)). Letting
the consensus step-sizes be γx = 1 and γy = 1, the above
updates recover those in the Push-Pull/AB algorithm [11],
[12].

In addition, RCPP retains the property of gradient tracking
based methods. From Line 15 in Algorithm 1, 1ᵀYk+1 =
1ᵀ(Ỹk − γy(I − C)Ŷk) = 1ᵀ(Yk + ∇F(Xk+1) −
∇F(Xk)) = 1ᵀ∇F(Xk+1), where the second equality is
from 1ᵀ(I − C) = 0, and the last equality is deduced by
induction given that Y0 = ∇F(X0). Define X

k
= 1

nu
ᵀ
RX

k

and Y
k

= 1
n1

ᵀYk. Once (xki)ᵀ → X
k

and (yki)ᵀ → Y
k
,

then each agent can track the average gradient, i.e., (yki)ᵀ →
Y
k

= 1
n1

ᵀ∇F(Xk)→ 1
n1

ᵀ∇F(1X
k
).

IV. CONVERGENCE ANALYSIS

In this section, we study the convergence property of
RCPP under smooth objective functions satisfying the PL
condition. For simplicity of notation, denote ΠR = I− 1uᵀ

R

n ,
ΠC = I − uC1ᵀ

n and X∗ = (x∗)ᵀ ∈ R1×p. The main
idea is to bound the optimization error Ωko := E

[
f(X

k
) −

f(X∗)
]
, consensus error Ωkc := E

[
‖ΠRX

k‖2R
]
, gradient

tracking error Ωkg := E
[
‖ΠCY

k‖2C
]
, and compression errors

Ωkcx := E
[
‖X̃k − Hk

x‖2F
]

and Ωkcy := E
[
‖Yk − Hk

y‖2F
]

through a linear system of inequalities, where ‖ · ‖R and
‖ · ‖C are specific norms introduced in Lemma 1. Denote
λ = 1

nu
ᵀ
RΛuC , λ̂ = max

i
{λi}.

We first introduce two supporting lemmas.
Lemma 1: There exist invertible matrices R̃, C̃ such that

the induced vector norms ‖·‖R and ‖·‖C satisfy ‖v‖R =

‖R̃v‖ and ‖v‖C = ‖C̃v‖, respectively. Then, for any
γx, γy ∈ (0, 1], ‖ΠRRγ‖R ≤ 1 − θRγx and ‖ΠCCγ‖C ≤
1− θCγy, where Rγ = I−γx(I−R), Cγ = I−γy(I−C),
θR and θC are constants in (0, 1]. In particular, ‖ΠR‖R =
‖ΠC‖C = 1, ‖R‖R ≤ 2, ‖C‖C ≤ 2, ‖Rγ‖R ≤ 2, ‖Cγ‖C ≤
2 and ‖I−R‖R ≤ 3, ‖I−C‖C ≤ 3. In addition, there
hold ‖v‖ ≤ ‖v‖R , ‖v‖ ≤ ‖v‖C and there exist constants
δR,2, δC,2 such that ‖v‖R ≤ δR,2 ‖v‖ , ‖v‖C ≤ δC,2 ‖v‖.

Proof: See the supplementary material in [20].
Lemma 2: For

∥∥Yk
∥∥2
F

, we have∥∥Yk
∥∥2
F
≤3
∥∥ΠCY

k
∥∥2
C

+
3 ‖uC‖2

n
L2
∥∥ΠRX

k
∥∥2
R

+ 3 ‖uC‖2
∥∥∥∇f(X

k
)
∥∥∥2 . (8)

Proof: Reformulating Yk, we get
∥∥Yk

∥∥2
F

= ‖Yk −
uCY

k
+ uC(Y

k − ∇f(X
k
)) + uC∇f(X

k
)‖2F ≤ 3‖Yk −

uCY
k‖2F + 3‖uC(Y

k − ∇f(X
k
))‖2F + 3‖uC∇f(X

k
)‖2F ,

where the last inequality is based on Lemma 1. Based on
Lemma 1 and ‖∇f(X

k
) − Y

k‖ ≤ L√
n
‖Xk − 1X

k‖F ≤
L√
n
‖ΠRX

k‖R, the relation (8) is derived.
Next, we present the key linear system of inequalities.

Lemma 3: Suppose Assumptions 1, 2 and 3 hold and λ̂ ≤
min

{
1
6L ,

1
6
√
CL

}
. Then we have

wk+1 ≤ Awk + b
∥∥Yk

∥∥2
F

+ ζk, (9)

where wk =
[
Ωkc ,Ω

k
g ,Ω

k
cx,Ω

k
cy

]ᵀ
, ζk = s2k ·[

ζc, ζg, ζcx, ζcy
]ᵀ

, A1,: =
[
1− θRγx, 0,

18δ2R,2Cγ
2
x

θRγx
, 0
]
,

A2,: =
[
27e1L

2γ2
x

θCγy
, 1− θCγy, 27e1CL

2γ2
x

θCγy
,
36δ2C,2Cγ

2
y

θCγy

]
,

A3,: =
[
324γ2

x

αxrδ
,
162γ2

yλ̂
2

αxrδ
, 1− αxrδ

2 +
324Cγ2

x

αxrδ
,
324Cγ2

yλ̂
2

αxrδ

]
,

A4,: =
[
27e2L

2γ2
x

αyrδ
,
108γ2

y

αyrδ
,
27e2CL

2γ2
x

αyrδ
, 1− αyrδ

4 +
108Cγ2

y

αyrδ

]
,

and b =
[
δ2R,2(1−θRγx)

2λ̂2

θRγx
, 12e1L

2λ̂2

θCγy
, 48λ̂2

αxrδ
, 12e2L

2λ̂2

αyrδ

]ᵀ
.

The constants ζc, ζg, ζcx, ζcy can be found in the extended
version [30].

Proof: See Appendix D in the extended version [30].

The following descent lemma results from the smoothness
of the gradients and will be used for proving the main
theorem together with Lemma 3.

Lemma 4: Suppose Assumption 2 holds, λ ≤ 1
L and λ ≥

Mλ̂ for some M > 0. We have

f(X
k+1

) ≤ f(X
k
)− Mλ̂

2

∥∥∥∇f(X
k
)
∥∥∥2

+ E1Mλ̂L2
∥∥ΠRX

k
∥∥2
R

+ E2Mλ̂
∥∥ΠCY

k
∥∥2
C
,

(10)

where E1 = ‖uR‖‖uC‖
n2M and E2 = ‖uR‖2

n2M2 .
Proof: From Assumption 2, the gradient of f is L-

Lipschitz continuous. In addition, we know X
k+1

= X
k −

1
nu

ᵀ
RΛYk. Then, we have

f(X
k+1

) ≤ f(X
k
) + 〈∇f(X

k
),X

k+1 −X
k〉+

L

2

∥∥∥Xk+1 −X
k
∥∥∥2

= f(X
k
)− λ〈∇f(X

k
),

1

nλ
uᵀ
RΛYk〉+

Lλ
2

2

∥∥∥∥ 1

nλ
uᵀ
RΛYk

∥∥∥∥2
= f(X

k
)− λ

2

(∥∥∥∇f(X
k
)
∥∥∥2 +

∥∥∥∥ 1

nλ
uᵀ
RΛYk

∥∥∥∥2
−
∥∥∥∥∇f(X

k
)− 1

nλ
uᵀ
RΛYk

∥∥∥∥2
)

+
Lλ

2

2

∥∥∥∥ 1

nλ
uᵀ
RΛYk

∥∥∥∥2 ,
where the second equality is based on 〈a,b〉 = 1

2 (‖a‖2 +

‖b‖2 − ‖a− b‖2). Note that λ ≤ 1
L from the as-

sumption in Lemma 4, we know Lλ
2

2

∥∥∥ 1
nλ

uᵀ
RΛYk

∥∥∥2 ≤
λ
2

∥∥∥ 1
nλ

uᵀ
RΛYk

∥∥∥2. Meanwhile, ∇f(X
k
) − 1

nλ
uᵀ
RΛYk =

∇f(X
k
)−Y

k − 1
nλ

uᵀ
RΛΠCY

k. Thus, we have

f(X
k+1

) ≤ f(X
k
)− λ

2

∥∥∥∇f(X
k
)
∥∥∥2

+
λ

2

∥∥∥∥∇f(X
k
)−Y

k − 1

nλ
uᵀ
RΛΠCY

k

∥∥∥∥2
≤ f(X

k
)− λ

2

∥∥∥∇f(X
k
)
∥∥∥2 +

L2λ

n

∥∥∥ΠRX
k
∥∥∥2
R

+
‖uR‖2 λ̂2

n2λ

∥∥∥ΠCY
k
∥∥∥2
C

where we use ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 (∀a,b) in the
second inequality. Note that λ ≥Mλ̂ and λ = 1

nu
ᵀ
RΛuC ≤

1
nu

ᵀ
RuC λ̂ ≤

1
n ‖uR‖ ‖uC‖ λ̂. Then, we complete the proof.

4159

Based on the above lemmas, we demonstrate the linear
convergence rate of RCPP for minimizing smooth objective
functions satisfying the PL condition in the following theo-
rem.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold, the
scaling parameters αx, αy ∈ (0, 1r], λ̄ ≥Mλ̂ for some M >
0, and the consensus step-sizes γx, γy and the maximum step-
size λ̂ satisfy

λ̂ ≤

{
1

6
,

1

6
√
C
,

1

M
,

θC√
54e1

,
e3γx√

96E ‖uC‖
,
e4θCγy√

48e1

}
1

L
,

γx ≤

{
1,
e5αxrδ√

C
,

√
M ‖uC‖√

108 ‖uR‖ e1
θCγy

}
,

γy ≤

{
1,
θCe2
432e1

,
θC(αyrδ)

2

432e2C
,

αyrδ√
1728C

}
,

Then, the optimization error Ωko and the consensus error
Ωkc both converge to 0 at the linear rate O(ck), where
c ∈ (ρ̃, 1) with ρ̃ = max{1 − 1

2Mλ̂µ, 1 − θRγx
16 , 1 −

θCγy
8 , 1 − αxrδ

4 , 1 − αyrδ
16 }, s

2
k = c0c

k, E = ‖uR‖‖uC‖
n2M ,

e1 = 38δ2C,2, e2 = 108C+112, e3 = min
{

1
2δR,2

θR
1−θRγx , 1

}
,

e4 = min
{

θR
36(1−θRγx) ,

1
3
√
3

}
, e5 = min

{
θR

432
√
2δR,2

, 1
72

}
.

Proof: Let V k = L2Ωkc +AΩkg +BΩkcx+DΩkcy , where
A =

θCγyθR
108e1γx

, B = L2αxrδθR
1296γx

, D =
θCγyαyrδθR

108e2γx
≤ αyrδθR

108e2γx
.

Combining Lemmas 2 and 3 with the conditions on γx, γy, λ̂,
we have

V k+1 ≤
(

1− 7θRγx
32

)
L2Ωk

c +

(
1− θCγy

4

)
AΩk

g

+

(
1− αxrδ

4

)
BΩk

cx +

(
1− αyrδ

16

)
DΩk

cy

+
β

4E

∥∥∥∇f(X
k
)
∥∥∥2 + s2kζ0,

where β = θRγx
8 and E = ‖uR‖‖uC‖

n2M . Combining Lemma 4,
we obtain

Ωk+1
o +

EMλ̂

β
V k+1 ≤ Ωk

o −
Mλ̂

4

∥∥∥∇f(X
k
)
∥∥∥2

+
EMλ̂

β

[(
1− 3θRγx

32

)
L2Ωk

c +
(

1− θCγy
8

)
AΩk

g

+
(

1− αxrδ

4

)
BΩk

cx +
(

1− αyrδ

16

)
DΩk

cy

]
+ s2k ζ̃0,

where ζ̃0 = ζ0
EMλ̂
β and we use the fact γx ≤√

M‖uC‖√
108‖uR‖e1

θCγy . Recalling the PL condition, we obtain

−Mλ̂
4

∥∥∥∇f(X
k
)
∥∥∥2 ≤ −Mλ̂µ

2 (f(X
k
) − f(X∗)). Thus, we

have

Ωk+1
o +

EMλ̂

β
V k+1 ≤ ρ̃(Ωk

o +
EMλ̂

β
V k) + s2k ζ̃0

≤ρ̃k+1(Ω0
o +

EMλ̂

β
V 0) +

k∑
l=0

ρ̃k−lclΘ.

where Θ = c0ζ̃0. Furthermore, we obtain

Ωk+1
o +

EMλ̂

β
V k+1

≤ρ̃k+1(Ω0
o +

EMλ̂

β
V 0) + ckΘ

k∑
l=0

(
ρ̃

c

)k−l

≤ρ̃k+1(Ω0
o +

EMλ̂

β
V 0) + ck+1 Θ

c− ρ̃ .

Remark 3: It is worth nothing that the linear convergence
of RCPP does not depend on the decaying assumption of the
absolute compression error as in [25].

V. NUMERICAL EXAMPLES

In this section, we provide some numerical results to
confirm the theoretical findings. Consider the following ridge
regression problem,

min
x∈Rp

f(x) =
1

n

n∑
i=1

fi(x)
(

= (uᵀi x− vi)
2

+ ρ‖x‖2
)
, (11)

where ρ > 0 is a penalty parameter. The pair (ui, vi)
is a sample data that belongs to the i-th agent, where
ui ∈ Rp represents the features, and vi ∈ R represents
the observations or outputs. These parameter settings are the
same as in [21].

We compare RCPP wih CPP [20] and QDGT [22] for
decentralized optimization over a directed graph. The row-
stochastic and column-stochastic weights are randomly gen-
erated. Regarding the compressor, we consider an adaptation
from the b-bits∞-norm quantization compression method in
[18], stated below:

Q(x) =
h(‖x‖∞)

2b−1
sign(x)�

⌊
2b−1|x|
‖x‖∞

+ u

⌋
, (12)

where sign(x) is the sign function, � is the Hadamard
product, |x| is the element-wise absolute value of x, and
u is a random perturbation vector uniformly distributed in
[0, 1]p.

Compared with the original compressor in [18] which
computes ‖x‖∞, the new operator uses the mapping h(‖x‖)
which is a random variable such that h(‖x‖) = b‖x‖c + 1
with probability ‖x‖−b‖x‖c and h(‖x‖) = b‖x‖c otherwise.
By considering h(‖x‖), only dynamic finite bits, i.e., about
log2(b‖x‖c+ 1) + 1 bits, need to be transmitted for nonzero
norms. The quantization with the new mapping h(‖x‖) is
abbreviated as Qn, and QTn denotes the composition of
quantization and Top-k compressor with the same operation.
Note that these compression operators produce absolute com-
pression errors and satisfy Assumption 3, and QTn does not
satisfy the previous conditions on the compression operators.
In the simulation we let b = 2 and k = 10. In addition to
Qn and QTn, we also consider the quantizer compression
in [22], [23] which satisfies the absolute compression error
assumption. The quantized level is 1, i.e., the quantized
values belong to {−1, 0, 1}.

In Fig. 1(a), we compare the residuals of CPP, RCPP and
QDGT against the number of iterations. It can be seen that

4160

the performance of CPP deteriorates due to the absolute
compression error. Meanwhile, RCPP outperforms QDGT
under different compression methods.

From Fig. 1(b) where we further compare the performance
of the algorithms against the communication bits, we find
that RCPP performs better than the other methods under
different compression methods. Besides, RCPP with QTn
achieves the best communication efficiency. This implies that
by considering Assumption 3 which provides us with more
choices on the compression operators, RCPP may achieve
better performance under a specific choice of compression
method with less communication (which may not satisfy the
previous assumptions).

0 0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-15

10
-10

10
-5

10
0

CPP: Qn

RCPP: Qn

QDGT: Qn

CPP: QTn

RCPP: QTn

QDGT: QTn

CPP: Quantizer

RCPP: Quantizer

QDGT: Quantizer

(a)

0 0.5 1 1.5 2 2.5 3

Communication bits 10
7

10
-15

10
-10

10
-5

10
0

CPP: Qn

RCPP: Qn

QDGT: Qn

CPP: QTn

RCPP: QTn

QDGT: QTn

CPP: Quantizer

RCPP: Quantizer

QDGT: Quantizer

(b)

Fig. 1. Residuals E
[
f(xk)− f(x∗)

]
against the number of iterations and

communication bits respectively for CPP, RCPP and QDGT under different
compression methods.

VI. CONCLUSIONS

This article considers decentralized optimization with
communication compression over directed networks. Specif-
ically, we consider a general class of compression operators
that allow both relative and absolute compression errors.
For smooth objective functions satisfying the PL condi-
tion, we propose a robust compressed push-pull algorithm,
termed RCPP, which converges linearly. Numerical results
demonstrate that RCPP is efficient and robust to various
compressors.

REFERENCES

[1] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan. 2009.

[2] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[3] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for dis-
tributed optimization and learning—part I: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2019.

[4] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in Proceedings of the 54th IEEE Conference on Decision
and Control (CDC). IEEE, 2015, pp. 2055–2060.

[5] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex opti-
mization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[6] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[7] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, Sept. 2018.

[8] Y. Sun, G. Scutari, and A. Daneshmand, “Distributed optimization
based on gradient tracking revisited: Enhancing convergence rate via
surrogation,” SIAM Journal on Optimization, vol. 32, no. 2, pp. 354–
385, 2022.

[9] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed
dual averaging for convex optimization,” in Proceedings of the 51st
IEEE Conference on Decision and Control (CDC). IEEE, 2012, pp.
5453–5458.

[10] C. Xi and U. A. Khan, “DEXTRA: A fast algorithm for optimization
over directed graphs,” IEEE Transactions on Automatic Control,
vol. 62, no. 10, pp. 4980–4993, 2017.

[11] R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 315–320, 2018.

[12] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push–Pull gradient methods for
distributed optimization in networks,” IEEE Transactions on Automatic
Control, vol. 66, no. 1, pp. 1–16, Jan. 2021.

[13] R. Xin, S. Pu, A. Nedić, and U. A. Khan, “A general framework for
decentralized optimization with first-order methods,” Proceedings of
the IEEE, vol. 108, no. 11, pp. 1869–1889, 2020.

[14] S. Pu, “A robust gradient tracking method for distributed optimization
over directed networks,” in Proceedings of the 59th IEEE Conference
on Decision and Control (CDC). IEEE, 2020, pp. 2335–2341.

[15] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication
compression for decentralized training,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 7652–7662.

[16] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
in Proceedings of the 36th International Conference on Machine
Learning. PMLR, 2019, pp. 3479–3487.

[17] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in International
Conference on Learning Representations, 2020.

[18] X. Liu, Y. Li, R. Wang, J. Tang, and M. Yan, “Linear convergent
decentralized optimization with compression,” in International Con-
ference on Learning Representations, 2020.

[19] D. Kovalev, A. Koloskova, M. Jaggi, P. Richtarik, and S. Stich, “A
linearly convergent algorithm for decentralized optimization: Sending
less bits for free!” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2021, pp. 4087–4095.

[20] Z. Song, L. Shi, S. Pu, and M. Yan, “Compressed gradient tracking
for decentralized optimization over general directed networks,” IEEE
Transactions on Signal Processing, vol. 70, pp. 1775–1787, 2022.

[21] Y. Liao, Z. Li, K. Huang, and S. Pu, “A compressed gradient tracking
method for decentralized optimization with linear convergence,” IEEE
Transactions on Automatic Control, vol. 67, no. 10, pp. 5622–5629,
2022.

[22] Y. Xiong, L. Wu, K. You, and L. Xie, “Quantized distributed gradient
tracking algorithm with linear convergence in directed networks,”
IEEE Transactions on Automatic Control, 2022.

[23] Y. Kajiyama, N. Hayashi, and S. Takai, “Linear convergence of
consensus-based quantized optimization for smooth and strongly con-
vex cost functions,” IEEE Transactions on Automatic Control, vol. 66,
no. 3, pp. 1254–1261, 2021.

[24] S. Magnússon, H. Shokri-Ghadikolaei, and N. Li, “On maintaining
linear convergence of distributed learning and optimization under
limited communication,” IEEE Transactions on Signal Processing,
vol. 68, pp. 6101–6116, 2020.

[25] N. Michelusi, G. Scutari, and C.-S. Lee, “Finite-bit quantization for
distributed algorithms with linear convergence,” IEEE Transactions on
Information Theory, vol. 68, no. 11, pp. 7254–7280, 2022.

[26] R. Nassif, S. Vlaski, M. Carpentiero, V. Matta, M. Antonini, and
A. H. Sayed, “Quantization for decentralized learning under subspace
constraints,” arXiv preprint arXiv:2209.07821, 2022.

[27] J. Zhang, K. You, and L. Xie, “Innovation compression for
communication-efficient distributed optimization with linear conver-
gence,” IEEE Transactions on Automatic Control, pp. 1–8, 2023.

[28] C.-Y. Yau and H.-T. Wai, “DoCoM-SGT: Doubly compressed
momentum-assisted stochastic gradient tracking algorithm for
communication efficient decentralized learning,” arXiv preprint
arXiv:2202.00255, 2022.

[29] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Commu-
nication compression for distributed nonconvex optimization,” IEEE
Transactions on Automatic Control, pp. 1–16, 2022.

[30] Y. Liao, Z. Li, and S. Pu, “A linearly convergent robust compressed
push-pull method for decentralized optimization,” arXiv preprint
arXiv:2303.07091, 2023.

4161

