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Abstract— Navigation and exploration within unknown envi-
ronments are typical examples in which simultaneous localiza-
tion and mapping (SLAM) algorithms are applied. When mobile
agents deploy only range sensors without bearing information,
the agents must estimate the bearing using the online distance
measurement for the localization and mapping purposes. In
this paper, we propose a scalable dynamic bearing estimator
to obtain the relative bearing of the static landmarks in the
local coordinate frame of a moving agent in real-time. Using
contraction theory, we provide convergence analysis of the
proposed range-only bearing estimator and present upper and
lower-bound for the estimator gain. Numerical simulations
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Navigation and exploration in unknown GPS-denied envi-
ronments (e.g. underwater, indoor, etc.) are typical applica-
tions of the simultaneous localization and mapping (SLAM)
algorithms, which can provide crucial information for the
positioning and control of mobile agents [1]–[3]. In this con-
text, range-only simultaneous localization and mapping (RO-
SLAM) pertains to the problem of estimating the position
of a moving agent and of various landmarks in the global
or local coordinate frame based on the use of range sensor
systems, which only provide relative distance information.
This is the case when ranging sensors, such as acoustic
or radio devices, are employed to sense the environment.
Examples of popular range-only sensor systems are ultra-
wideband (UWB) devices as used in the relative localization
of unmanned aerial vehicles (UAVs) [4] and of automated
guided vehicles (AGVs) [5]. The main challenge in the RO-
SLAM problem is the real-time estimation of the bearing
information based only on the distance measurement signals.
The combination of bearing and range information can then
provide the relative position of the landmarks with respect
to the moving agent.

Various methods have been proposed in the literature
to solve the problem using extended Kalman filter SLAM
(EKF-SLAM) [3], [6]–[9], unscented Kalman filter SLAM
(UKF-SLAM) [1] and particle filter SLAM (PF-SLAM) [10].
These methods work well locally, which can introduce a
practical issue in their deployment. Namely, they require
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a good initial estimate of the relative position in order to
guarantee the convergence of the algorithms. In general,
there are two approaches for the initialization in literature:
the delayed and undelayed approaches [6]. In the first ap-
proach, the application of the estimation filter is delayed
until consistent estimates of the positions for the landmarks
are obtained through multiple measurements (such as, the
triangulation techniques [3], [7]). This approach can lead
to convergence problems particularly when the delay is set
too large. The second approach relies on the availability
and evaluation of multiple probable hypotheses in order to
allow for immediate initialization of the landmarks’ relative
position and for subsequent application of the estimation
filter. The optimization process during such pre-processing
step and the recursive computation in these SLAM filters can
lead to high computational load [6], [8]–[10].

RO-SLAM can also be considered as a relative localization
problem when the local coordinate frame of the moving
agent is used over the global one. Swarming and formation
control are typical applications that consider this setting [4].
In these cases, estimating the relative displacement between
moving agents and/or static landmarks is a pre-requisite to
deploy formation or swarming algorithms. When beacons
are deployed as landmarks, source localization algorithms
can also be used to solve the estimation problem [11]–[13].
Specifically, nonlinear least-squares Gaussian-Newton (NLS-
GS) method [4], recursive least-squares filter [11], Kalman
filter [12] and a continuous-time adaptive estimator [13] have
been proposed in the literature.

In this paper, we propose a dynamic bearing estimator
design method. The estimator design requires only one
estimator state variable per landmark (so that it is scalable)
and it guarantees semi-global exponential convergence. The
design method does not require multi-hypothesis testing, de-
layed approaches or previous source localization techniques.
The update of the estimator state is based on comparing
the expected distance (obtained from the current agent’s
displacement and current bearing estimate) and the current
distance measurement. The convergence of the estimator is
analyzed via recent results of contraction theory [14], [15].
We provide the lower and upper-bound of the estimator gain
to guarantee the exponential convergence.We furthermore
show the existence of two attractive points when the agent
is moving in a straight line and the semi-global convergence
property of the estimator when the agent moves in a curved
trajectory. The efficacy of the proposed method is demon-
strated via numerical simulations.

The paper is organized as follows. Preliminaries and prob-
lem formulation are presented in section II. In section III we
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describe the design of our observer, in subsection III-A and
III-B we analyze its contraction and convergence properties
respectively, and in section IV we present simulation results.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first define the estimation problem
at hand and briefly present existing results on contraction
systems theory that are central to the analysis of our main
results. For the sake of clarity, we present the setup and prob-
lem formulation for a single landmark, while the extension
to multiple landmarks will be discussed later towards the end
of subsection III-B.

A. Systems description and problem formulation
For describing the dynamics of a moving agent and a static

landmark, let us consider the following discrete-time system{
p(k + 1) = p(k) + Tu(k) ,

y(k) = ∥l∗ − p(k)∥ , (1)

where T is the sampling time, k denotes the time, p(k) ∈ R2

the position of the agent, u(k) ∈ R2 the velocity input,
y(k) ∈ R the output of the system (i.e. the relative distance
measurement), and l∗ ∈ R2 is the true position of a static
landmark, which is unknown to the agent. The positions
are defined in the local coordinate frame of the agent. As
mentioned in the introduction, our design goal is to design
a dynamic estimator of the bearing θ(k) which can be
combined with the distance information y(k) to obtain the
(relative) position l∗−p(k) = y(k)

[
cos(θ∗(k))
sin(θ∗(k))

]
, where θ∗(k)

is the true relative bearing information. From the RO-SLAM
context, our design problem is closely related to the mapping
task as we assume that we have good knowledge of the agent
position p(k) in its local coordinate frame at any given time
k. In practice, this assumption can be met by taking the
initial point of the agent as the origin, its initial orientation
defines the orientation of the frame and its displacement
can be measured by fusing information from the on-board
odometer and IMU sensor systems. By definition, the true
relative bearing θ∗(k) ∈ R between the agent and the static
landmark can be rewritten as:

θ∗(k) = tan−1

(
[(l∗ − p(k))]2
[(l∗ − p(k))]1

)
, (2)

where [·]1, [·]2 denote the first and second components of a
2D vector, respectively.

Instead of using (2) to obtain the bearing dynamics when
the agent is moving, we consider its approximation in the
following assumption throughout the paper. This approxi-
mation enables us to design a simple nonlinear observer. As
will be shown later in the numerical simulation, the proposed
observer based on this approximation works robustly when
the actual bearing dynamics is simulated based on (2).

Assumption 2.1: The agent displacement as in (1) is suf-
ficiently small, so the small-angle approximation holds:

θ∗(k + 1)− θ∗(k) ≈ sin(θ∗(k + 1)− θ∗(k))

=
T

y(k)

〈
u(k),

[
sin(θ∗(k))

− cos(θ∗(k))

]〉
, ∀k ≥ 0. (3)

We note that this assumption can be satisfied for suf-
ficiently small T∥u(k)∥, i.e. we a combination of high
sampling rate and small magnitude of the control input u(k).
In our range-only bearing estimation problem we define the
bearing estimation error e(k) as:

e(k) = θ∗(k)− θ(k) , (4)

so the problem can be defined formally as follows.
Range-Only Bearing Estimation Problem: For the system
(1) and under Assumption 2.1, design a dynamic estimator

θ(k + 1) = f (θ(k), p(k), y(k)) , (5)

with continuously differentiable f , such that the bearing
estimation error e(k) → 0 as k → ∞.

In the above problem formulation, the dynamic estimator
(5) relies only on the use of distance measurement y(k)
and current position information p(k) to update the bearing
estimator state. Before introducing our proposed estimator,
let us we briefly present known results from contraction
theory that will be used to analyze the convergence property.

B. Contraction theory

Consider a discrete-time non linear system

x(k + 1) = f(x(k), k) , (6)

where x(k) ∈ X ⊆ Rn is the state and f(x(k), k) is a
continuously differentiable function. In the seminal paper
[15] the contraction theory (for continuous- and discrete-time
systems) pertains to the study of the convergence property
of any trajectories of (6) to each other. The system (6)
is said to be contracting if for any two trajectories x1(k)
and x2(k) of (6) starting from two different initial state
x1(0) ̸= x2(0) ∈ X , there exists 0 < λ < 1, such that

∥x1(k)− x2(k)∥ ≤ λk∥x1(0)− x2(0)∥, ∀k ≥ 0 .

This property is established via variational system analysis:

δx(k + 1) =
∂f

∂x
(x(k), k)︸ ︷︷ ︸

=:A(x(k),k)

δx(k) , (7)

where δx(k) denotes the variational state.
Lemma 2.1 (Lohmiller and Slotine in [15]): If the varia-

tional system (7) is uniformly stable in X (i.e. the eigenval-
ues of A(x(k), k) lie uniformly inside the unit disc), then
(6) is contracting.

We will use Lemma 2.1 above to establish the convergence
of the estimator state θ(k) to the true relative bearing θ∗(k).

In this regard, we can express (1)-(5) into (6), where
the input velocity signal u(k) is considered as an external
signal. In particular, our estimator design is independent to
the design of any controller to regulate the mobile agent
motion in the plane. As will be shown later, the update of
the estimator requires the mobile agent to move. This implies
that if no motion control is being applied to the mobile agent
for completing a certain task, we need to displace the mobile
robot by applying an appropriate input signal to map the
environment.
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III. RELATIVE BEARING ESTIMATOR DESIGN

Without loss of generality, we assume that the local
coordinate frame is aligned with the global one. Let us denote
v(k) as a unit vector that gives the direction from the current
agent position to the estimated landmark position l(k), and
w(k) as a unit vector orthogonal to v(k), i.e.

v(k) =

[
cos(θ(k))
sin(θ(k))

]
, and w(k) =

[
sin(θ(k))

− cos(θ(k))

]
. (8)

Furthermore, we assume that the input vector u(k) is not
collinear to v(k), i.e. the inner product ⟨u(k), w(k)⟩ ̸= 0,
for all k ≥ 0 and Assumption 2.1 hold.

Based on the estimation problem introduced in section II
our proposed relative bearing estimator design is given as:

θ(k + 1) =θ(k) +
T

y(k)
⟨u(k), w(k)⟩

+ γ sign (⟨u(k), w(k)⟩)β(k) ,

l(k) =y(k)v(k) + p(k) ,

(9)

where γ is the gain of the observer, ⟨·, ·⟩ is the inner product
operator, sign(·) denotes the sign function, and β(k) is the
correction term given by:

β(k) = y2(k + 1)− ∥l(k)− p(k + 1)∥2

= ∥l∗ − p(k + 1)∥2 − ∥l(k)− p(k + 1)∥2

= ∥l∗ − p(k)− Tu(k)∥2 − ∥l(k)− p(k)− Tu(k)∥2

= ∥l∗ − p(k)− Tu(k)∥2 − ∥y(k)v(k)− Tu(k)∥2 , (10)

since l(k)− p(k) = y(k)v(k) as in (9).
Hence, β(k) gives the mismatch between the expected

distance given the current bearing estimate and the actual
one when the agent has moved to the next position.

A. Contraction analysis

Before delving into the analysis, let us review the overall
system comprising of the plant and the estimator as follows:

p(k + 1) = p(k) + Tu(k), (11)

θ(k + 1) = θ(k) +
T

∥l∗ − p(k)∥
⟨u(k), w(k)⟩

+ γ sign (⟨u(k), w(k)⟩)β(k), (12)

where x(k) =
[
p(k) θ(k)

]⊤
is the state of the overall

system and β(k) is defined as in (10). Firstly, we analyze
the contraction property of the second equation of the overall
system (11) in this subsection. Subsequently, we provide the
analysis of the steady-state trajectory to which all trajectories
converge.

Proposition 3.1: Suppose that there exists 0 < c < 1 such
that the input |⟨u(k), w(k)⟩| ≥ c∥u(k)∥ for all k ≥ 0, i.e.
the direction of u(k) is within a cone with the axis of w(k)
for all time. If, for a given input signal u(k), the estimator
gain γ > 0 satisfies

γ >
1

2c∥l∗ − p(k)∥2
,

γ <
2∥l∗ − p(k)∥ − T∥u(k)∥
2T∥l∗ − p(k)∥2∥u(k)∥

∀k ≥ 0 ,
(13)

then the estimator dynamics in (12) is contracting. Moreover,
if T∥u∥∞ < 2c

1+c min (∥l∗ − p(k)∥) holds then there exists
γ > 0 satisfying (13).

PROOF. Since the sign function is non-differentiable the
proof concerns two cases. We first analyze the case where
sign(⟨u(k), w(k)⟩) = 1 and thus ⟨u(k), w(k)⟩ ≥ c∥u(k)∥.

Note that the estimator in (12) can be expressed as a
nonlinear system as in (6). In order to show that (12) is
a contracting system, we can analyze the corresponding
variational system following Lemma 2.1. Let us denote the
right-hand side of (12) by f(θ(k), k). By computing its
Jacobian, we obtain that

∂f

∂θ
(θ(k), k) = 1 +

T

∥l∗ − p(k)∥
⟨u(k), v(k)⟩

− 2γT∥l∗ − p(k)∥ ⟨u(k), w(k)⟩ , (14)

where v(k) and w(k) are defined in (8). Hence, in order to
apply Lemma 2.1 we need to verify that

−1 <
∂f

∂θ
(θ(k), k) < 1 (15)

holds for all k ≥ 0. Substituting (14) into the above
inequality we get arrive at the following inequalities:

T ⟨u(k), v(k)⟩
∥l∗ − p(k)∥

− 2γT∥l∗ − p(k)∥ ⟨u(k), w(k)⟩ < 0,

T ⟨u(k), v(k)⟩
∥l∗ − p(k)∥

− 2γT∥l∗ − p(k)∥ ⟨u(k), w(k)⟩ > −2.

(16)
By rearranging the inequalities above, it follows that

γ >
⟨u(k), v(k)⟩

2∥l∗ − p(k)∥2 ⟨u(k), w(k)⟩
,

γ <
2∥l∗ − p(k)∥+ T ⟨u(k), v(k)⟩
2T∥l∗ − p(k)∥2 ⟨u(k), w(k)⟩

. (17)

Since −∥u(k)∥ ≤ ⟨u(k), v(k)⟩ ≤ ∥u(k)∥ we conclude that
if (13) holds it follows from the first inequality in (13) that

γ >
1

2c∥l∗ − p(k)∥2
≥ ∥u(k)∥

2∥l∗ − p(k)∥2⟨u(k), w(k)⟩

≥ ⟨u(k), v(k)⟩
2∥l∗ − p(k)∥2⟨u(k), w(k)⟩

holds for all k and from the second inequality in (13) that

γ <
2∥l∗ − p(k)∥ − T∥u(k)∥
2T∥l∗ − p(k)∥2∥u(k)∥

≤ 2∥l∗ − p(k)∥+ T ⟨u(k), v(k)⟩
2T∥l∗ − p(k)∥2⟨u(k), w(k)⟩

also holds for all k. Hence, the contraction condition in (17)
(or in (16)) holds when (13) is satisfied. By Lemma 2.1 the
estimator (12) is contracting.

Analogously, for the case of sign (⟨u(k), w(k)⟩) = −1,
i.e. ⟨u(k), w(k)⟩ ≤ −c∥u(k)∥, equation (14) becomes:

∂f

∂θ
(θ(k), k) = 1 +

T ⟨u(k), v(k)⟩
∥l∗ − p(k)∥

+ 2γT∥l∗ − p(k)∥ ⟨u(k), w(k)⟩ . (18)
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Thus, the contraction condition (15) is satisfied when
T ⟨u(k), v(k)⟩
∥l∗ − p(k)∥

+ 2γT∥l∗ − p(k)∥ ⟨u(k), w(k)⟩ < 0,

T ⟨u(k), v(k)⟩
∥l∗ − p(k)∥

+ 2γT∥l∗ − p(k)∥ ⟨u(k), w(k)⟩ > −2.

(19)
By rewriting these inequalities we get:

γ < − ⟨u(k), v(k)⟩
2∥l∗ − p(k)∥2 ⟨u(k), w(k)⟩

,

γ > −2∥l∗ − p(k)∥+ T ⟨u(k), v(k)⟩
2T∥l∗ − p(k)∥2 ⟨u(k), w(k)⟩

. (20)

Since sign (⟨u(k), w(k)⟩) = −1 the inequalities become
γ >

⟨u(k), v(k)⟩
2∥l∗ − p(k)∥2 |⟨u(k), w(k)⟩|

,

γ <
2∥l∗ − p(k)∥+ T ⟨u(k), v(k)⟩
2T∥l∗ − p(k)∥2 |⟨u(k), w(k)⟩|

. (21)

Following a similar argumentation as before, it can be shown
that (13) implies (21).

Finally, for the admissibility of γ it is necessary that

1

2c∥l∗ − p(k)∥2
<

2∥l∗ − p(k)∥ − T∥u(k)∥
2T∥l∗ − p(k)∥2∥u(k)∥

.

This inequality is satisfied when

T∥u(k)∥ <
2c

1 + c
∥l∗ − p(k)∥ holds ∀k ≥ 0 , (22)

which is the case for T∥u∥∞ < 2c
1+c min (∥l∗ − p(k)∥). □

As shown in Proposition 3.1 the sampling time and the
input signal u should be taken sufficiently small for the
admissibility of the estimator gain γ. This is in line with As-
sumption 2.1 where a sufficiently small T∥u(k)∥ is required.
Since the denominators in (13) depend on ∥l∗ − p(k)∥2 the
estimator gain becomes larger the closer the mobile agent
gets to the landmark. However, this is compensated by the
requirement that T∥u(k)∥ must be small in order to ensure
the validity of small-angle approximation.

Note that for a specific motion of the agent where
⟨u(k), v(k)⟩ = 0 ∀k ≥ 0, i.e. the agent is always moving
perpendicularly to the estimated landmark position l(k), one
can exploit (14) to design an adaptive gain γ(k) for the
estimator, such that (15) is always satisfied. That is:

∂f

∂θ
(θ(k), k) = 0 ⇒ 2γ(k)T∥l∗ − p(k)∥∥u(k)∥ = 1

⇒ γ(k) =
1

2T∥l∗ − p(k)∥∥u(k)∥
,

where γ(k) is the estimator gain at time step k.

B. Convergence analysis

The next step in our analysis is to investigate whether
the contractivity of the estimator in (12) implies that the
estimated landmark position l(k) converges to the true posi-
tion l∗ as k → ∞. We demonstrate this separately for both,

the case of straight and curved motion of the mobile agent,
starting with the latter.

Proposition 3.2: Assume that Assumption 2.1 and the
hypotheses in Proposition 3.1 hold for some c, γ > 0
such that (12) is contracting. If the agent is moving on a
curved trajectory then the estimated landmark position l(k)
converges to the true landmark position l∗ as k → ∞, i.e.
e(k) → 0.
PROOF. By Assumption 2.1 and the estimator definition
one admissible trajectory of (12) is the case when e = 0. In
this case, the steady-state trajectory θss(k) satisfies:

θss(k + 1) = θss(k) +
T

∥l∗ − p(k)∥

〈
u(k),

[
sin(θss(k))

− cos(θss(k))

]〉
,

(23)
which is invariant for all time steps, i.e. lss(k) = l∗ for all
k ≥ 0. By the contraction property of (12) all trajectories
converge exponentially to each other; since θ(k) → θss(k)
as k → ∞ when the initial error e(0) ̸= 0.

We will now prove by contradiction that the steady-state
trajectory θss is unique when the agent is not moving on
a straight trajectory. Let θ

′

ss ̸= θss be another steady-state
trajectory satisfying (23). From (23) it follows that β(k) = 0
for both trajectories, and this implies also that

∥l∗ − p(k)− Tu(k)∥2 =
∥∥∥l′ss(k)− p(k)− Tu(k)

∥∥∥2
= ∥lss(k)− p(k)− Tu(k)∥2 , ∀k ≥ 0. (24)

Let us take a particular k > 0. By definition,

∥l∗ − p(k)− Tu(k)∥2 =∥l∗ − p(k)∥2 + T 2∥u(k)∥2

− 2T ⟨l∗ − p(k), u(k)⟩ .

Substituting the above equation into (24) leads to:〈
y(k)

[
cos(θss(k))
sin(θss(k))

]
, u(k)

〉
=

〈
y(k)

[
cos(θ

′
ss(k))

sin(θ
′
ss(k))

]
, u(k)

〉
,

since l(k) − p(k) = y(k)
[
cos(θ(k))
sin(θ(k))

]
as in (9). Hence,〈[

cos(θss(k))
sin(θss(k))

]
−

[
cos(θ

′
ss(k))

sin(θ
′
ss(k))

]
, u(k)

〉
= 0 holds for the given

k. If θss ̸= θ
′

ss, then the above equations are satisfied
only when u(k) is orthogonal to the vector

[
cos(θss(k))
sin(θss(k))

]
−[

cos(θ
′
ss(k))

sin(θ
′
ss(k))

]
̸= 0. In the 2D plane, it means that the static

landmark lss(k) = l∗ mirrors another possible landmark
position l

′

ss(k) with respect to the axis collinear with u(k).
Let us now consider a future time step k + N for some
N > 0, where u(k+N) is not collinear with u(k), i.e., it is
not moving on a straight line. Following the same argument
as before we have〈[

cos(θss(k+N))
sin(θss(k+N)

]
−
[
cos(θ

′
ss(k+N))

sin(θ
′
ss(k+N))

]
, u(k +N)

〉
= 0 .

This leads to a contradiction, since it implies that the
alternative static landmark position associated to θ

′

ss changed
position, due to the change of the mirror axis that is collinear
with u(k + N). Thus, θss is unique and corresponds to l∗,
since l(k) converges to l∗ and e(k) → 0 as k → ∞. □
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p(k − 1) p(k)

Tu(k)

l∗

l∗∗

l∗ − p(k)

l∗∗− p(k)

α(k) ·
·

Fig. 1. Geometric derivation of α(k), the value to which the estimation
error e(k) converges when the estimated landmark position l(k) converges
to the mirror landmark l∗∗.

Proposition 3.3: Assume that Assumption 2.1 and the
hypotheses in Proposition 3.1 hold for some c, γ > 0
such that (12) is contracting. If the agent is moving on a
straight trajectory then the estimated landmark position l(k)
converges either to the true landmark position l∗ or another
point l∗∗, that is mirrored to l∗ with respect to the axis
collinear with u(k), as k → ∞. The position to which l(k)
converges to depends on the bearing initialization θ(0).

PROOF. The proof of the proposition follows the same
reasoning as in the proof of Proposition 3.2, where we
conclude that there are two distinct points l∗ and l∗∗ that
satisfy (24) for a given k. For all future time step k + N
with N > 0 the conclusion remains the same, as u(k +N)
is always collinear with u(k). Note that in the proof of
Proposition 3.1, the contraction region of θ is separated into
two different domains, namely when sign(⟨u(k), w(k)⟩) =
1 or sign(⟨u(k), w(k)⟩) = −1 holds. One can check that if
w∗(k) corresponds to the real landmark l∗ and w∗∗ corre-
sponds to the mirrored one l∗∗, then sign(⟨u(k), w∗(k)⟩) ̸=
sign(⟨u(k), w∗∗(k)⟩). This implies that the real landmark

and the mirrored one have a different contraction region.
Thus θ(k) (starting from θ(0)) converges to θ∗ or θ∗∗ that
shares the same sign(⟨u(k), w(k)⟩). □

Using geometry (see Figure 1), we can also conclude that
when l(k) → l∗∗ the estimation error e(k) → α(k) where

α(k) = 2 cos−1

(
⟨l∗ − p(k), u(k)⟩
∥l∗ − p(k)∥∥u(k)∥

)
.

We remark that the above results can be further extended to
the case of m different landmarks l∗ =

[
l∗1 . . . l∗m

]⊤ ∈
R2m. In this case, we can extend the proposed estimator
(9) straightforwardly where the estimator state is defined by
θ(k) =

[
θ1(k) . . . θm(k)

]⊤ ∈ Rm and the correspond-
ing estimator gain vector γ =

[
γ1 . . . γm

]⊤ ∈ Rm.

IV. NUMERICAL SIMULATION

In this section, we present the results of a set of numerical
simulations implemented in MATLAB. Let us remark here
that for the previous convergence results, i.e. Proposition 3.2
and Proposition 3.3, we approximated the true relative bear-
ing dynamics θ∗(k) with (3) according to Assumption 2.1.
However, in the following simulations we used the actual
θ∗(k) dynamics (2) in order to validate the previous results.
To ensure the validity of Assumption 2.1 we set T∥u(k)∥ to
a constant, i.e. 0.001, for the first three simulations and to a
variable with max (T∥u(k)∥) = 0.0025 for the last one.
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Fig. 2. Simulation of curved trajectory for position estimation of a
static landmark when the gain γ satisfies the bounds: (a) depicts the agent
trajectory p(k) (red line), the true location of the landmark l∗ (green
cross), the estimated landmark position l(k) over time (blue circles), and
its initialization l(0) (black triangle); (b) displays the error trajectory e(k).
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Fig. 3. Simulation of curved trajectory for position estimation of a static
landmark when the gain γ does not satisfies the bounds: (a) depicts the
agent trajectory p(k) (red line), the true location of the landmark l∗ (green
cross), the estimated landmark position l(k) over time (blue circles), and
its initialization l(0) (black triangle); (b) displays the error trajectory e(k).

In the first two simulations we evaluated the bounds (13)
of the estimator gain γ (9) as presented in Proposition 3.1
for a curved trajectory. This simulation result is shown in
Figure 2, in which we chose a gain γ = 10 that satisfies
(13) for all k ≥ 0. As expected from Proposition 3.1 and
3.2 the estimated landmark position converges to the true
landmark, i.e. l(k) → l∗ as k → ∞. Figure 3 shows instead
the simulation when γ = 80 not satisfying (13). As predicted
from the theoretical analysis the estimated landmark position
l(k) does not converge to the true landmark l∗.

In the simulation shown in Figure 4 we validate the results
of Proposition 3.3 on the presence of another attracting
point for collinear trajectories p(k). It displays the simulation
results when θ(0) = −170◦, such that θ(0) is outside the
contraction region of θ∗. As predicted, the estimated land-
mark position l(k) does not converge to the true landmark
l∗ but to to the mirror position l∗∗.

Finally in Figure 5 we present results from simulations in
case of multiple landmarks. While the results from Propo-
sition 3.1 and 3.2 are applicable only to the motion in the
cones with axis wi(k) defined for each landmark i, we will
evaluate the effectiveness of the proposed estimator when the

906



-20 -10 0 10 20

x [m]

-20

-10

0

10

20

y
 [
m

]

0 3000 6000 9000

n° iteration

100

150

200

250

e
rr

o
r 

[d
e
g
]

Fig. 4. Simulation of a straight trajectory when the estimated bearing
initialization θ(0) is outside the contraction region of l∗: (a) shows the
agent trajectory p(k) (red line), the true location of the landmark l∗ (green
cross), the estimated landmark position trajectory l(k) (blue circles), and
and its initialization l(0) (black triangle); (b) displays the error trajectory
e(k) with time.
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Fig. 5. Simulation for 103 landmarks in case of a closed ellipse trajectory:
(a) shows the agent trajectory p(k) (red line), the true location of one
landmark l∗i (green cross), the correspondent estimated landmark position
trajectory li(k) (blue circles), and its initialization li(0) (black triangle); (b)
depicts the average |ē|(k) (red line) and the maximum |e|max(k) (black
dashed line) absolute values of the error over the number of laps, together
with its 97.5% confidence interval plot.

mobile agent completes a closed trajectory. Particularly, the
agent follows a closed ellipse trajectory for multiple rounds.
In this example the number of landmarks is 103 and their
positions were randomly generated inside a ring (with inner
radius 10 and outer radius 25), which is centred with the
closed ellipse trajectory. The estimated relative bearings have
also been initialized randomly so that θi(0) ∈ [−π, π] for all
i = 1, . . . ,m. As estimator gains we selected γi = 5, ∀i =
1, . . . ,m, such that the contraction condition (13) is satisfied
for each landmark.

In Figure 5a) the evolution over time for one estimated
landmark position li(k) is shown to converge to the corre-
spondent true landmark l∗i . Moreover, Figure 5b) displays
the 97.5% confidence plot for the absolute values of the
estimated errors |ei(k)| , ∀i = 1, . . . ,m over the number
of laps of the agent following the closed ellipse trajectory,
|ē|(k) represents the average and |e|max(k) the maximum

error trajectories. Note that all errors converge to zero before
even half a lap is completed.

V. CONCLUSION

This contribution proposes a dynamic bearing estimator
that relies exclusively on range and local displacement sensor
systems. Under some sufficient conditions on the estimator
gain, we have shown the contraction property of the bearing
estimator and its convergence to the actual static landmark
position or its mirror dependent on the trajectory of the
mobile agent. The theoretical findings are demonstrated
in several empirical simulations with varying trajectories,
estimator gains, as well as a multi-landmark scenario. Fu-
ture work will address the generalization of the approach
to dynamic landmarks and its application for multi-agent
distributed control systems.
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