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Abstract— In this work we address the problem of convex
optimization in a multi-agent setting where the objective is to
minimize the average of local cost functions whose derivatives
are not available (e.g. black-box models). Moreover agents
can only communicate with local neighbors according to a
connected network topology. Zeroth-order (ZO) optimization
has recently gained increasing attention in federated learning
and multi-agent scenarios exploiting finite-difference approx-
imations of the gradient using from 2 (directional gradient)
to 2d (central difference full gradient) evaluations of the
cost functions, where d is the dimension of the problem.
The contribution of this work is to extend ZO distributed
optimization by estimating the curvature of the local cost
functions via finite-difference approximations. In particular, we
propose a novel algorithm named ZO-JADE, that by adding just
one extra point, i.e. 2d + 1 in total, allows to simultaneously
estimate the gradient and the diagonal of the local Hessian,
which are then combined via average tracking consensus to
obtain an approximated Jacobi descent. Guarantees of semi-
global exponential stability are established via separation of
time-scales. Extensive numerical experiments on real-world
data confirm the efficiency and superiority of our algorithm
with respect to several other distributed zeroth-order methods
available in the literature based on only gradient estimates.

I. INTRODUCTION

Optimization is unquestionably the main pillar and enabler
of several real-world applications, as it allows to get the best
solution for any given problem, improve the performance
of processes and efficiently implement modern technologies.
However, most of the optimization techniques heavily rely on
the knowledge of the derivatives of the objective function,
which may be expensive or infeasible to obtain [1]. Such
situations occur when the derivative is not available in
analytical closed form, when automatic differentiation can-
not be applied, in simulation-based optimization and when
dealing with black-box models. Addressing these scenarios,
the zeroth-order (ZO) and derivative-free optimization (DFO)
branches have appeared in the literature, aiming to remove
the dependency from the derivative information. Notable
applications include adversarial attacks and explanations for
deep neural networks, hyper-parameters tuning and policy
search in reinforcement learning [2].

The most basic and widely used approach to ZO optimiza-
tion is to replace the true gradient with an estimator based
on the Kiefer–Wolfowitz scheme [3], which approximates
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the derivative by finite-differences of function values along
a set of search directions. The DFO branch, instead, includes
direct-search methods, interpolation models and trust-region
frameworks [4].

A common assumption in the ZO field is that evaluating
the objective function is a costly process, for example
involving complex simulations, and indeed the convergence
rate is often expressed in terms of number of function calls.
For this reason, in this work we extract as much information
as possible from the query points, estimating the curvature
information of the objective function and exploiting the
latter to speed up convergence. We note that in the ZO
literature most of the works limit themselves to extracting
the gradient information, and only few of them take into
account also the second-order derivative. Among them, [5]
uses a forward-difference gradient estimator in which the
search directions are random Gaussian vectors scaled by the
square root of the inverse Hessian matrix, and the latter
is estimated using either a power-based algorithm or some
heuristic methods. A similar idea is used in [6], where
two perturbations with inverse Hessian covariance are used
to estimate both the gradient and the Hessian by central
differencing. Other examples of second-order methods based
on finite-difference approximations are [7], which applies
Newton’s method along a single direction, and [8], which
proposes a ZO version of the well known limited memory
BFGS. Finally, [9] employs the second-order Stein’s identity
to estimate the Hessian and presents a cubic-regularized
Newton method. Regarding the DFO field, there are many
algorithms involving quadratic models constructed by means
of interpolation, Least Squares, Lagrange Polynomials [10]
or minimum Frobenius norm fitting [11].

However, all the aforementioned works consider only
the centralized setting. In many relevant cases, such as
distributed machine learning and estimation, robotic swarms
and wireless sensor networks, it is required to spread the
optimization process across a set of agents, which are often
endowed with limited communication capabilities. Notably,
the multi-agent setup does not require all the data and the
processing power to be owned by a single centralized au-
thority, increasing the scalability and the privacy guarantees
of the algorithm. Currently, all the existing second-order
solutions based on ZO estimates do not enjoy these appealing
features. To address this shortcoming we propose a novel
distributed second-order method for ZO optimization, which
to the best of our knowledge is the first of its kind. Our
algorithm, named ZO-JADE, takes advantage of the second-
order derivative to obtain a Jacobi-like descent direction,

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 8280



i.e. the gradient is re-scaled by the inverse of the diagonal
of the Hessian. Using tools from Lyapunov theory and
singular perturbation theory we formally prove the semi-
global exponentially fast convergence of ZO-JADE to a point
arbitrarily close to the minimum. The theoretical results are
validated by numerical experiments, namely distributed ridge
regression and one-vs-all classification on public datasets.
These tests show that our algorithm, compared to several
other zeroth-order multi-agent methods, converges much
faster and reaches a possibly better solution.

Notation: We denote with Id the d-dimensional identity
matrix, with ek the k-th canonical vector, and with 0 and
1 the vectors whose components are all equal to 0 and 1,
respectively. We indicate with ⊙ and ⊘ the element-wise
Hadamard product and division. The Euclidean or spectral
norm is ∥·∥ and coincides with the largest singular value
of the argument. We use the operator [·]i to select the i-th
element of the argument. The third-order derivative tensor of
f : Rd → R evaluated at x is denoted by

(
D3f

)
(x).

II. PROBLEM FORMULATION

In this paper we address the fully distributed optimization
scenario, where n agents can communicate with each other
through bi-directional links according to a connected network
topology. Each agent i has access to a local cost function
fi : Rd → R, and the goal of the network is to cooperatively
seek the optimal solution of the unconstrained minimization
problem

f(x⋆) = min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (1)

We consider the setting in which only zeroth-order infor-
mation is available, namely it is only possible to evaluate
the value of the local functions at the desired points, without
access to gradients or higher-order derivatives. To provide a
rigorous analysis we characterize the objective function with
the following assumption.

Assumption 1 (Strong Convexity and Smoothness): Let
the global cost f be three times continuously differentiable
with Lipschitz continuous derivatives and m-strongly
convex, i.e. there exist positive constants L1, L2, L3 and m
such that

mId ≤ ∇2f(x) ≤ L1Id ∀x ∈ Rd,∥∥∇2f(x)−∇2f(y)
∥∥ ≤ L2 ∥x− y∥ ∀x, y ∈ Rd,∥∥(D3f

)
(x)−

(
D3f

)
(y)
∥∥ ≤ L3 ∥x− y∥ ∀x, y ∈ Rd.

We are interested in consensus-based algorithms, in which
all the agents converge to the same optimal value of the
variable to be optimized by just communicating with their
neighbors. To do so, each agent updates its local variables
using a weighted average of its neighbors’ information,
where the weights are provided by a mixing matrix P .
The assumption below provides a formal definition of the
distributed scenario under consideration.

Assumption 2 (Communication network): Let the com-
munication network be represented by the time-invariant

graph G = (N , E) whose vertices N = {1, . . . , n} and edges
E are the set of agents and the available communication
links, respectively. Assume that the graph is undirected and
connected, and that each node can only communicate with
its single-hop neighbors. Let the network be associated with
the consensus matrix P ∈ Rn×n, whose generic entry pij is
positive if edge (i, j) ∈ E and zero otherwise. Choose P to
be symmetric and doubly stochastic, i.e. such that P1 = 1
and 1TP = 1T . A matrix that satisfies these requirements
can be constructed without knowledge of the entire network
topology using e.g. the Metropolis-Hastings weights [12].

III. ZEROTH-ORDER ORACLES

Our algorithm requires to evaluate the first and second
derivative of the local cost functions at the current point.
Since in the zeroth-order setting these information are not
available, we estimate them using central finite-difference
schemes along orthogonal directions. Given a generic func-
tion f and a small positive scalar µ we adopt the following
approximations of the gradient and of the Hessian’s diagonal:

∇̂f(µ, x) :=

d∑
k=1

f(x+ µek)− f(x− µek)

2µ
ek,

∇̂2f(µ, x) :=

d∑
k=1

f(x+ µek)− 2f(x) + f(x− µek)

µ2
ek.

(2)
We emphasize that many algorithms, such as [13] and [14],

require 2d function queries only for the gradient estimation.
In this work instead, by querying the function also at the
current iterate, i.e. f(x), which is in any case necessary to
evaluate the progress, we estimate also the diagonal of the
Hessian almost for free.

Remark 1: Obtaining these estimates involves 2d+1 func-
tion queries, which can be computationally demanding for
high-dimensional problems. Alternatively, one could resort
to randomized schemes in which directional derivatives are
estimated along a small number of random vectors. However,
using this type of estimators increases the total communica-
tion cost and does not guarantee that fewer total function
evaluations are needed for convergence. As also argued in
[13], which considers both a 2-points randomized gradient
estimator and a 2d-points deterministic one, there exists a
trade-off between the convergence rate and the ability to
handle high-dimensional problems. In the interests of space,
in this work we focus only on deterministic estimators,
considering the use of stochastic estimators as a possible
research avenue.

Using Taylor expansions it can be shown that in case of
noiseless function evaluations the approximation errors of
the estimators are bounded by∥∥∥∇̂f(µ, x)−∇f(x)

∥∥∥ ≤
√
dL2µ

2

6
,

∣∣∣[∇̂2f(µ, x)
]
i
−
[
∇2f(x)

]
ii

∣∣∣ ≤ L3µ
2

12
∀i = 1, . . . , d,
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and that the Jacobian of the gradient estimator takes the form

∂∇̂f(x)

∂x
= ∇2f(x) +R(µ, x),

∣∣∣[R(µ, x)]ij

∣∣∣ ≤ L3µ
2

6
,

∀i, j, x. Additionally, the estimators are Lipschitz continu-
ous:∥∥∥∇̂f(µ, x)− ∇̂f(µ, y)

∥∥∥ ≤

(
L1 +

µ
√
dL2

2

)
∥x− y∥ ,

∥∥∥∇̂2f(µ, x)− ∇̂2f(µ, y)
∥∥∥ ≤

(
L2

√
d+

µ
√
dL3

3

)
∥x− y∥ .

We refer the interested reader to the technical report [15] for
detailed derivations.

Remark 2: The approximation errors of the estimators and
the absolute values of the elements of the matrix R(µ, x) are
bounded by functions of µ2. This is due to the symmetry of
central-difference scheme, and shows that the estimates are
very reliable.

Since for a quadratic function L2 = L3 = 0, we have the
following result:

Lemma 1: In case of quadratic functions the gradient
estimator and the Hessian estimator are exact, i.e. they
coincide with the true gradient and with the diagonal of the
true Hessian matrix, respectively.

Let x⋆ be the unique global minimizer of f(x). The fol-
lowing Lemma, whose proof can be found in [15], states that
for any value of µ there exists a unique point Γ(µ) ∈ Rd for
which the gradient estimator is the zero vector. Moreover, the
distance between Γ(µ) and the optimal solution is bounded
by a term proportional to µ2.

Lemma 2: Let f(x) be a function which satisfies Assump-
tion 1 and ∇̂f(µ, x) be defined by (2). Then there exist
µ̄, δ > 0 and a continuously differentiable function Γ : R →
Rd such that for all µ ≤ µ̄ there is a unique x = Γ(µ) ∈ Rd

such that ∥Γ(µ)− x⋆∥ ≤ δµ2 and ∇̂f(µ,Γ(µ)) = 0.
To lighten the notation, from now on we will denote the
gradient and Hessian estimators as ∇̂f(x) and ∇̂2f(x),
keeping the dependence from the parameter µ implicit.

IV. PROPOSED ALGORITHM

In this section we present ZO-JADE to efficiently solve
the distributed convex optimization problem (1). Our method
can be seen as the ZO counterpart of a special case of
[16], with the additional difference that consensus is per-
formed also directly on the variable to be optimized. In
particular, we employ a Newton-type update which only
requires the diagonal of the Hessian, sometimes referred to as
Jacobi descent [17], from which the name ZO-JADE (JAcobi
DEcentralized). This allows to benefit from the accelerated
convergence rate which is typical of second-order methods,
while just estimating the curvature along the canonical basis.
Also, since the Hessian estimate is a vector, the storage
requirement and the communication overhead are linear in d,
and computing the inverse of the Hessian is straightforward.

We now provide an intuitive explanation of the algo-
rithm. The idea is to approximate each local fi(x) with

Algorithm ZO-JADE

Initialize:
Arbitrary xi(0) ∈ Rd, ϵ > 0, mixing matrix
P .
yi(0) = gi(0) = 0,
zi(0) = hi(0) = 0 ∀i ∈ N .

for t = 1, 2, . . . do
for all i ∈ N do

Compute ∇̂fi(xi(t − 1)), ∇̂2fi(xi(t − 1)) using
(2).

gi(t) = ∇̂2fi(xi(t−1))⊙xi(t−1)−∇̂fi(xi(t−1)),
hi(t) = ∇̂2fi(x(t− 1)),
yi(t) =

∑n
j=1 pij [yj(t− 1) + gj(t)− gj(t− 1)],

zi(t) =
∑n

j=1 pij [zj(t− 1) + hj(t)− hj(t− 1)],
xi(t) = (1− ϵ)

∑n
j=1 pijxj(t−1)+ ϵyi(t)⊘ zi(t).

end for
end for

a d-dimensional parabola whose axes are aligned with the
canonical basis, e.g.

fi(x) ≈ f̂i(x) :=
1

2
xT (ai ⊙ x) + bTi x+ ci,

nf̂(x) =

n∑
i=1

f̂i(x) =
1

2
xT

(
n∑

i=1

ai ⊙ x

)
+

n∑
i=1

bTi x+

n∑
i=1

ci,

for suitable ai ∈ Rd with positive entries, bi ∈ Rd, ci ∈ R.
At the current iterate {xi}ni=1, we match the derivatives of
the model with the estimates provided by the ZO oracles:

∇f̂i(xi) = ai ⊙ xi + bi = ∇̂fi(xi),

∇2f̂i(xi) = ai = ∇̂2fi(xi).

We then want to move towards the minimum of the approx-
imate global function, namely

argmin
x

f̂(x) = −

(
1

n

n∑
i=1

bi

)
⊘

(
1

n

n∑
i=1

ai

)
(3)

=

(
n∑

i=1

∇̂2fi(xi)⊙ xi − ∇̂fi(xi)

)
⊘

(
n∑

i=1

∇̂2fi(xi)

)
.

To do so, we define the local variables ∈ Rd

gi(t) = ∇̂2fi(xi(t− 1))⊙ xi(t− 1)− ∇̂fi(xi(t− 1)),

hi(t) = ∇̂2fi(xi(t− 1)),
(4)

and we estimate the means in (3) using gradient and Hessian
average tracking. As the name suggests, this technique in-
troduces two additional consensus variables which track the
average of the derivatives over the network:

yi(t) =

n∑
j=1

pij(yj(t− 1) + gj(t)− gj(t− 1)),

zi(t) =

n∑
j=1

pij(zj(t− 1) + hj(t)− hj(t− 1)).

(5)
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Indeed, using recursion it is easy to verify that by initializing
yi(0) = gi(0), zi(0) = hi(0) ∀i it holds ∀t > 0

n∑
i=1

yi(t) =

n∑
i=1

gi(t),

n∑
i=1

zi(t) =

n∑
i=1

hi(t). (6)

Assuming now that the mean of {xi}ni=1 is almost constant,
the local variables {yi}ni=1 and {zi}ni=1 will eventually
reach consensus, becoming equal to the numerator and
denominator of (3). The almost stationarity of the mean of
{xi}ni=1 is satisfied by adopting the time-scales separation
framework. According to the latter, a sub-system can be
regarded at steady state provided that it evolves sufficiently
fast compared to the rest of the system. Equivalently, a fast
system can consider a slow one as a fixed constraint. In
our case, we need the consensus (5) to be part of the fast
dynamics, while the dynamics

n∑
i=1

xi(t) =

n∑
i=1

(1− ϵ)

n∑
j=1

pijxj(t− 1) + ϵyi(t)⊘ zi(t)


must be sufficiently slow. We will prove that there exists
a positive scalar ϵ̄ such that for any ϵ ≤ ϵ̄ the time-
scales separation is verified and the algorithm converges
exponentially fast. Moreover, property (6) guarantees that we
are moving towards the minimum (3) of the global objective,
allowing the convex combination coefficient ϵ to be constant.

Numerical simulations show that the consensus on the
current iterates in the update rule of xi(t), which is not
present in [16], brings significant performance improvements
to the algorithm, at the price of an additional communi-
cation variable. However, the main concern in the zeroth-
order setting is to minimize the number of function queries,
which in our case is directly proportional to the number
of iterations. Accordingly, the cost of the communication
overhead becomes negligible when compared to the gain in
terms of convergence rate.

V. CONVERGENCE ANALYSIS

In this section we prove the semi-global exponential
convergence of ZO-JADE to a solution arbitrarily close to the
true minimum of the optimization problem (1). Compared
to [16], both the additional consensus step on x and the
presence of inexact derivative estimators pose significant
challenges and require careful treatment. In particular, the
former makes the algorithm incompatible with the time-
scales separation principle in [18], which was needed in the
convergence proof. For this reason, in this work we extend
that principle and provide the following more general result.

Theorem 1 (Separation of time-scales): The origin of the
autonomous discrete-time system{

x̄(k) = x̄(k − 1) + ϵϕ (x̄(k − 1), ξ(k − 1))
ξ(k) = φ (ξ(k − 1), x̄(k − 1)) + ϵΨ(ξ(k − 1), x̄(k − 1))

is semi-globally exponentially stable for a suitable choice of
ϵ > 0, provided that the following conditions are verified:

(i) The functions φ, Ψ, ϕ are locally uniformly Lipschitz.
(ii) There exists ξ⋆ such that ξ⋆(x̄) = φ (ξ⋆(x̄), x̄) ∀x̄.

(iii) At the origin, ϕ (0, ξ∗(0)) = 0 and Ψ(ξ∗(0),0) = 0.
(iv) There exists a twice differentiable function V (x̄) and

positive constants c1, c2, c3, c4 such that

c1∥x̄∥2 ≤ V (x̄) ≤ c2∥x̄∥2,
∂V

∂x̄
ϕ (x̄, ξ∗(x̄)) ≤ −c3∥x̄∥2,

∥∥∥∥∂V∂x̄
∥∥∥∥ ≤ c4∥x̄∥.

Proof: In the interests of space, we only provide a
sketch of the proof. We define ξ′(k) := ξ(k) − ξ⋆(x̄(k))
and a Lyapunov function W (x̄, ξ′(k)) for the fast dynamics
ξ′(k). We consider U = V +W and show that the quantity
U(x̄(k+ 1), ξ′(k+ 1))−U(x̄(k), ξ′(k)) is always negative.
The full proof is contained in Appendix A of the technical
report [15].
Below we present our convergence result, which provides
theoretical guarantees on the stability and performance of
the algorithm.

Theorem 2 (Convergence of algorithm ZO-JADE):
Under Assumption 1, there exists a positive scalar ϵ̄ such
that for any ϵ ∈ [0, ϵ̄] ZO-JADE is guaranteed to converge
semi-globally and exponentially fast to Γ(µ).

Proof: The proof is based on a reformulation of our
algorithm which leads to a discrete-time system compatible
with Theorem 1. First, we rewrite the iterations of ZO-
JADE to obtain an equivalent autonomous system with
the same structure as the one considered by Theorem 1.
In the second part of the proof we demonstrate that the
system satisfies all the assumptions of Theorem 1, and
invoking the latter we get the desired result. To simplify
the notation let us stack the local variables and define
x(t) = [x1(t), . . . , xn(t)]

T ∈ Rn×d. Similarly, define
g(t), h(t), y(t), z(t), ∇̂f(x(t)), ∇̂2f(x(t)) ∈ Rn×d. We in-
troduce the auxiliary variables

x̄(t) =
1

n
11Tx(t), x̃(t) = x(t)− x̄(t),

which are respectively the mean of x(t) and the displace-
ment from it. This allows us to rewrite the algorithm as a
dynamical system and to decouple the fast dynamics

g(t) = φg = ∇̂2f(x(t− 1))⊙ x(t− 1)− ∇̂f(x(t− 1)),

h(t) = φh = ∇̂2f(x(t− 1)),

y(t) = φy = P (y(t− 1) + g(t)− g(t− 1)) ,

z(t) = φz = P (z(t− 1) + h(t)− h(t− 1)) ,

x̃(t) = φx̃ + ϵΨx̃ =

(
P − 1

n
11T

)
x̃(t− 1)

+ϵ

[(
In − 1

n
11T

)
y(t)⊘ z(t)−

(
P − 1

n
11T

)
x̃(t− 1)

]
from the slow dynamics

x̄(t) = x̄(t− 1) + ϵ

(
1

n
11T [y(t)⊘ z(t)]− x̄(t− 1)

)
= x̄(t− 1) + ϵϕx̄.

Since x(t) = x̄(t)+x̃(t) and the values g(t), h(t), y(t), z(t)
ultimately depend only on quantities at time t−1, the system

8283



is autonomous. By defining ξ := {g, h, y, z, x̃} and

φ (ξ(k − 1), x̄(k − 1)) := φg + φh + φy + φz + φx̃,

Ψ(ξ(k − 1), x̄(k − 1)) := Ψx̄, ϕ (x̄(k − 1), ξ(k − 1)) := ϕx̄,

we are in the position to apply Theorem 1, whose assump-
tions are all satisfied. Indeed, the fact that the gradient and
Hessian estimators are differentiable and Lipschitz continu-
ous guarantees that assumption (i) holds true. Considering
the boundary-layer system ξ(k) = φ (ξ(k − 1), x̄), obtained
by setting ϵ = 0, we note that x̃ vanishes to zero and all the
other components of ξ reach consensus. In particular, using
(4) and (6) we see that the steady-state values of y, z are

y(t) = ∇̂2f(x̄(t− 1))⊙ x̄(t− 1)− ∇̂f(x̄(t− 1)),

z(t) = ∇̂2f(x̄(t− 1)).

This verifies assumption (ii) and ensures that Ψ(ξ∗(0),0) =
0. Noticing that ϕ (x̄, ξ⋆(x̄)) = −∇̂f(x̄) ⊘ ∇̂2f(x̄) and
recalling Lemma 2, we have ϕ (Γ(µ), ξ⋆(Γ(µ))) = 0. To
satisfy assumption (iii) we assume without loss of generality
that the target solution Γ(µ), which is arbitrarily close to
the global minimum of f(x), coincides with the origin. This
corresponds to solving an equivalent problem in which the
objective function is translated by an offset.

Finally, assumption (iv) can be satisfied by choosing as

Lyapunov function V (x̄) =
∥∥∥∇̂f(x̄)

∥∥∥2, which is always
strictly positive except for V (0) = 0. Indeed, it is possible
to deduce the following bounds for V (x̄), whose detailed
derivations are contained in the technical report [15].

V (x̄) ≤

(
L1 +

µ
√
dL2

2

)2

∥x̄− Γ(µ)∥2 ,

V (x̄) ≥

(
m2 − 2L1

µ2L3

6
−
(
µ2L3

6

)2
)
∥x̄− Γ(µ)∥2 ,∥∥∥∥∂V∂x̄

∥∥∥∥ ≤
(
2L1 +

µL3d

3

)(
L1 +

µ
√
dL2

2

)
∥x̄− Γ(µ)∥ ,

∂V

∂x̄
ϕ (x̄, ξ⋆(x̄)) ≤

(
2dµ2L3

2m− L3µ2
− 12m

12L1 + L3µ2

)
(
L1 +

µ
√
dL2

2

)2

∥x̄− Γ(µ)∥2 .

To ensure that the lower bound on V (x̄) is not triv-
ial and that we are moving along a descent di-
rection, when L3 ̸= 0 we require that µ ≤

min {µ1, µ2}, where µ1 =

√
6
(√

L2
1+m2−L1

)
dL3

, µ2 =√
3

√
4d2L2

1+m2+4dL1m+8m2d−2dL1−m

dL3
. Since all the re-

quired conditions are verified, the proof is complete.
Remark 3: We recall that while the algorithm converges

to Γ(µ), in virtue of Lemma 2 it is possible to make such
point arbitrarily close to the actual global minimum of f(x)
by reducing µ. Therefore, the quantization parameter µ in the
derivative estimators determines the accuracy of the solution
reached by our algorithm.

ZO-JADE DZOANMO [13] ZOOM-PB [21]
ZONE-M [22] ZOASDNO [23] PSGF [20]

(a) Ridge regression on the dataset [19].

(b) Classification via logistic regression on the dataset MNIST.

Fig. 1: Evolution of the loss function versus number of
function queries. The plots show the average performance
over multiple runs starting from different points, where the
solid lines are the mean trajectories and the shaded areas
represent the standard deviation.

Remark 4: Since the separation of time-scales is mainly
an existential theorem, it is difficult to provide a bound on
the parameter ϵ̄ or an explicit convergence rate. Even if this
was possible, very conservative values of little practical use
would be obtained. This is common to most works, where
usually in the numerical simulations the hyperparameters are
tuned by trial-and-error rather than according to possibly
available theoretical bounds.

VI. NUMERICAL RESULTS

Let us present some numerical results, which validate
the effectiveness of ZO-JADE and show its superiority with
respect to several state-of-the-art ZO algorithms for multi-
agent optimization. In particular, we compare our method
with the following distributed ZO algorithms: PSGF [20],
which employs a push-sum strategy; the accelerated version
of ZOOM, ZOOM-PB [21], which requires the Laplacian
matrix of the network and uses a powerball function; ZONE-
M [22], a primal-only version of the Method of Multipliers;
the primal-dual method proposed in [23], dubbed here as
ZOASDNO using the capital letters in the title of the paper,
based on the Laplacian framework; the algorithm in [13]
using a 2d-points gradient estimator and gradient tracking,
denoted here with the acronym DZOANMO. For all these
algorithms, we tune the possible parameters as suggested in
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the respective papers. For ZOOM-PB and ZONE-M, whose
randomized gradient estimators consider only a subset of co-
ordinates, we test different numbers of search directions and
show only the best performances obtained. We average over
multiple runs, starting from different randomly generated
initial points xi(0), which are the same for all the algorithms.

We consider a network of n = 20 agents satisfying
Assumption 2, where the consensus matrix P is built using
the Metropolis-Hastings weights, and we test the algorithms
on two types of cost functions. In the first scenario we
consider quadratic objectives, and specifically we perform
ridge regression on the condition-based maintenance dataset
[19] to predict the health state of a machine. In the second
test we consider more general convex functions, addressing
a binary classification problem via logistic regression. In
particular we run one-vs-all classification, in which one target
class needs to be distinguished from all the others, on the
well-known MNIST dataset [24]. Adopting the approach
followed by [25] on a similar dataset, we apply PCA to
reduce the size of the problem to d = 20 and provide each
agent with a balanced set Di = {s1, . . . , s|Di|}, where half
of the samples belong the target class and the other half to
the remaining classes, equally mixed. The objective functions
are the regularized log-loss cost functions

fi(x,Di) =
1

Di

|Di|∑
k=1

log
(
1 + exp

(
−lk[s

T
k 1]x

))
+

w

2
∥x∥2 ,

where lk ∈ {−1, 1} is the label corresponding to the
sample sk ∈ Rd−1 and the quadratic term with w > 0
ensures strong convexity. To take into account the possible
differences between the local solutions xi, we evaluate the
performance of the algorithms using the loss function ef =
1
n

∑n
i=1 f(xi)−f(x⋆)

|f(x⋆)| , where x⋆ is the unique minimizer of f .
The speed of convergence is measured in terms of number of
function evaluations, which in the zeroth-order optimization
field are assumed to be the most expensive computations.

The numerical simulations clearly show that ZO-JADE
outperforms the other algorithms in the considered scenarios,
as it achieved an equivalent or lower loss value using a
smaller amount of function evaluations. This suggests that
our method is suitable both in the case where a very precise
solution is desired and in the case where a limited amount
of function queries are available.

VII. CONCLUSION

We presented a novel zeroth-order algorithm for dis-
tributed convex optimization, which is the first of its kind
to exploit the second order derivative. We provided an
intuitive explanation of our method and we formally proved
its semi-global stability and exponentially fast convergence.
The theoretical results are validated by numerical simulations
on publicly available real-world datasets, in which ZO-
JADE is shown to outperform several zeroth-order distributed
algorithms present in the literature. We foresee interesting
possibilities for future work, such as extensions to online
and stochastic cases and the use of randomized derivative
estimators.
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