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Abstract— In this work we consider mean field type control
problems with multiple species that have different dynamics.
We formulate the discretized problem using a new type of
entropy-regularized multimarginal optimal transport problems
where the cost is a decomposable structured tensor. A novel
algorithm for solving such problems is derived, using this
structure and leveraging recent results in entropy-regularized
optimal transport. The algorithm is then demonstrated on a
numerical example in robot coordination problem for search
and rescue, where three different types of robots are used to
cover a given area at minimal cost.

Index Terms— Computational methods, Fluid flow systems,
Large-scale systems, Optimization, Stochastic optimal control.

I. INTRODUCTION

In recent years, mean field type control problems have
emerged as a powerful tool for analysis and control of large-
scale dynamical systems consisting of subsystem that are also
dynamical systems. It provides a framework for modeling the
behaviour of a large population of interacting agents, where
i) each individual’s decision is negligible to others at the
individual level, but where the actions are significant when
aggregated, and ii) the number of agents is too large to model
each one individually. In such cases, one instead often seek a
model that explains the aggregate behaviour of the population
[17], [29], [30], [32]. Mean field type control problems are
density optimal control problems where the density abides to
a controlled Fokker-Planck equation with distributed control
[7], [10], [13], [32]. For example, potential mean field games
are a particular type of such models [6], [32].

In basic formulations of mean field type control problems,
all agents are equivalent in the sense that they all have the
same dynamics and they all have the same objective function
which they try to minimize. However, an important gener-
alization is the multispecies setting, where the population
consists of several different types of agents [1], [8], [15],
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[30]–[32]. This type of problem occurs in, e.g., coordination
of multiple types of robots, where the robots have different
properties (such as movement speed, movement capabilities,
cost, etc.), but they still have a common goal of achieving a
given task as efficiently as possible.

Recently, optimal transport has been successfully used
to address a number of problems in control, see, e.g.,
[9], [42], [45]. In the seminal paper [4], certain optimal
transport problems were formulated as density control prob-
lems over the continuity equation, and this idea can be
generalized to allow for optimal transport problems that
have general underlying dynamics [12], [28]. Moreover, the
recently developed Sinkhorn method, for numerically solving
large-scale optimal transport problems [16], [37], is closely
related to the density control formulation in [4]. In fact, the
added entropy regularization leading to the Sinkhorn method
corresponds to adding a stochastic term to the underlying
particle dynamics, which leads to a controlled Fokker–Planck
equation in the density control problem [11], [14]. This has
been used to develop methods for solving potential mean
field games [6], [38], [39], by formulating the potential mean
field game as a mean field type control problem and then
formulate the latter as a multimarginal optimal transport
problem. Due to the Markov property, such multimarginal
optimal transport problems have a graph-structured cost, and
this type of graph structures has also been used to develop
efficient computational methods to solve problems in control
[23], [25], estimation [24], and information fusion [18].

In this paper, we consider mean field type control problems
with multiple species that have different dynamics. First, we
reformulate the problem as a multimarginal optimal transport
problem. However, in this case the resulting problem turns
out to have a cost function that is no longer graph-structured;
instead, the cost function is a decomposable structured ten-
sor, i.e., a multi-indexed matrix, which can be represented by
a hypergraph. Next, for this type of structured multimarginal
optimal transport problem, we develop an efficient solution
algorithm. Finally, we illustrate the developed method on
an example in coordination of multiple types of robots in a
search-and-rescue type mission.

The outline of the paper is as follows: in Section II we
briefly review the areas of multimarginal optimal transport,
and mean field control problems. In Section III we formulate
the multispecies mean field control problem as a structured
multimarginal optimal transport problems, discretize it, and
present an efficient numerical method for computing the
optimal solution of the discretized problem. In Section IV we
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present a detailed numerical example of robot coordination,
and finally in Section V we present conclusions and future
directions.

II. BACKGROUND

A. Multimarginal optimal transport

The optimal transport problem is a classic problem in
mathematics that involves finding the most efficient way of
moving mass to transform one distribution into another [44].
The multimarginal optimal transport problem is an extension
of this concept that deals with multiple distributions [5],
[22], [36], [40]. Here, we focus on the discrete case, where
the marginal distributions are represented by a finite set of
nonnegative vectors1 µ1, . . . , µT ∈ RN+ . The transport plan
and cost are both represented by T -mode tensors, M ∈ RNT

and C ∈ RNT , respectively, and the marginal distributions
of the transport plan are given by projections Pj(M) ∈ RN+ ,
where2

(Pj(M))ij :=

N∑
i1=1

· · ·
N∑

ij−1=1

N∑
ij+1=1

· · ·
N∑

iT =1

Mi1...iT .

The discrete multimarginal optimal transport problem can
then be formulated as

minimize
M∈RNT

+

〈C,M〉 (1a)

subject to Pj(M) = µj , j ∈ Γ, (1b)

where 〈C,M〉 :=
∑
i1,...,iT

Ci1...iTMi1...iT is the standard
inner product, and where we impose constraints on the
marginals corresponding to the index set Γ ⊂ {1, . . . , T }.
Although the optimal transport problem (1) is a linear
program, it can be challenging to solve it numerically due
to the large number of variables. A popular method for
approximately solving (1) is to perturb the problem by adding
a small ε > 0 times the entropy term

D(M) :=
∑

i1,...,iT

(
Mi1...iT log(Mi1...iT )−Mi1...iT + 1

)
to the cost function and use Sinkhorn iterations to solve the
resulting problem [16], [37]. The optimal transport plan for
the perturbed problem is of the form M = K �U, where
K = exp(−C/ε), and Ui1...iT =

∏
j∈Γ(uj)ij , see [5], [18].

Sinkhorn’s method iteratively updates uj as

uj ← uj � µj � Pj(K�U), for j ∈ Γ, (2)

where � and � means pointwise multiplication and point-
wise division, respectively, and the algorithm converges
(linearly) to an optimal solution of the perturbed problem
[35], [43]. In the multimarginal case, computing Pj(K�U)
suffers from the curse of dimensionality. However, in some
cases, structures in the underlying cost C can be used to
circumvent these issues, for instance when the cost decouples

1To simplify the notation, we assume that all the marginals have the same
number of elements, i.e., µj ∈ RN . This can easily be relaxed.

2For notational convenience, we will in the remainder of the text write
this type of sum as

∑
i1,...,ij−1,ij+1,...,iT

Mi1...iT .

into pairwise interactions according to a graph-structure [2],
[5], [18], [19], [23]–[27], [38], [39], [41].

B. Multispecies mean field control problems

Consider a set of infinitesimal agents moving in a state
space X ⊂ Rn. Assume that they belong to L different
classes, and that each infinitesimal agent of species ` ∈
{1, . . . , L} obeys the dynamics

dx`(t) = f`(x`)dt+B`(x`)
(
v`dt+

√
εdw`

)
, (3)

subject to the initial condition x`(0) = x0,`, where the latter
is a realization from a distribution ρ0,`(x). Moreover, w`,
for ` ∈ {1, . . . , L}, are n-dimensional Wiener processes
that are independent of each other. We also assume that
f` : X → Rn and B` : X → Rn×n are continuously
differentiable with bounded derivatives. Then, under suitable
conditions on the (Markovian) feedback v`, there exists a
unique solution almost surely to (3), cf. [20, Thm. V.4.1],
[7, pp. 7-8]. Moreover, the density of the particles of species
`, ρ`, is the solution of a controlled Fokker-Planck equation.
Therefore, the multispecies mean field control problem is
defined as the density optimal control problem

minimize
ρ,ρ`,v`

∫ 1

0

∫
X

L∑
`=1

1

2
‖v`‖2ρ` dxdt

+

∫ 1

0

Ft(ρ(t, ·))dt+ G(ρ(1, ·)) (4a)

+

L∑
`=1

(∫ 1

0

F`t (ρ`(t, ·))dt+ G`(ρ`(1, ·))
)

subject to
∂ρ`
∂t

+∇ · ((f` +B`v`)ρ`) (4b)

− ε

2

n∑
i,k=1

∂2((σ`)ikρ`)

∂xi∂xk
= 0, ` = 1, . . . L,

ρ`(0, ·) = ρ0,`, ρ(t, ·) =

L∑
`=1

ρ`(t, ·), (4c)

cf. [7, Chp. 2 and 4]. Here ∇· denotes the divergence oper-
ator, σ` := B`B

T
` , and Ft, G, F`t and G` are functionals on

on L2 ∩L∞. These functionals are the costs that the species
are trying to minimize by their behavior: F`t and G` are
species-dependent costs, where the former is the running cost
and the latter is the terminal cost. Ft and G are cooperative
costs that link the species together by acting on the total
density of all species. We assume that all these functionals
are proper, convex, and lower-semicontinuous. Moreover, we
assume that Ft and F`t are piece-wise continuous in time.

III. DISCRETIZATION AND SOLUTION VIA TENSOR
OPTIMIZATION

Recently, an approach for solving some types of potential
mean field games was proposed in [38], [39]. The approach
is based on formulating the problem on path space, i.e., on
C([0, 1], X) := the set of continuous functions from [0, 1]
to X , and then discretizing the problem in time and space,
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which results in a tensor optimization problem. Here we gen-
eralize this approach in order to derive a numerical solution
algorithm for multispecies mean field control problems of
the form (4).

A. Discretization of the problem

Let Pv` denote the distribution of species ` on path space,
induced by the controlled process (3). Then Pv`t = ρ`(t, ·),
where Pv`t is the marginal of Pv` corresponding to time t,
and ρ` is the solution to (4b) with initial condition ρ`(0, ·) =
ρ0,`. Moreover, let P0

` denote the corresponding uncontrolled
process (v` ≡ 0) with initial density ρ0,`. By the Girsanov
theorem (see, e.g., [21, pp. 156-157]), we get that

1

2

∫
X

∫ 1

0

‖v`‖2ρ`dtdx = εKL(Pv`‖P0
` ) (5)

where KL(·‖·) is the Kullback-Leibler divergence, see, e.g.,
[6], [11], [13], [33], [34]. Utilizing (5), problem (4) can be re-
formulated as an optimization problem over path space mea-
sures that corresponds to a generalized entropy-regularized
multimarginal optimal transport problem, see [38], [39]. In
particular, discretizing the space into points x1, . . . , xN ,
and considering time steps j∆t, for j = 1, . . . , T , where
∆t = 1/T , the term (5) takes the form 〈C`,M`〉+εD(M`),
where the tensor M` ∈ RNT+1

describes the flow of agents
in class `, and the tensor C` ∈ RNT+1

describes the asso-
ciated cost of moving agents. More precisely, (C`)i0...iT =∑T −1
j=0 C`ijij+1 , where C`ik is the optimal cost for moving

a unit mass of species ` from xi to xk in one time step, i.e.,

C`ik =


minimize
v∈L2([0,∆t])

∫ ∆t

0

1

2
‖v‖2dt

subject to ẋ = f`(x) +B`(x)v

x(0) = xi, x(∆t) = xk.

(6)

Thus, the discretization of (4) takes the form

minimize
M`,µj ,µ

(`)
j

j=1,...,T
`=1,...,L

L∑
`=1

(
〈C`,M`〉+ εD(M`)

)
+ ∆t

T −1∑
j=1

Fj(µj)

+G(µT )+

L∑
`=1

∆t

T −1∑
j=1

F `j (µ
(`)
j )+G`(µ

(`)
T )

 (7a)

subject to Pj(M`) = µ
(`)
j , j = 1, . . . , T , ` = 1, . . . , L, (7b)

P0(M`) = µ0,`, ` = 1, . . . , L, (7c)
L∑
`=1

µ
(`)
j = µj , j = 0, . . . , T (7d)

where µ0,` are discrete approximations of ρ0,`.

B. Solution method based on tensor optimization

Note that (7) consists of L coupled tensor optimization
problems as in [38], which are coupled through the constraint
(7d) and the cost imposed on µj , for j = 1, . . . , T , in (7a).
Next, we reformulate (7) into a single tensor optimization
problem (cf. [26], [39]) by “stacking together” the tensors
M` for ` = 1, . . . , L to form a (T + 2)-mode tensor M ∈

−1

0 1 2 T −1 T

(a) Full problem structure.

R−1,j R−1,j+1

µj µj+1

C

(b) One triangle in (a).

Fig. 1. Illustration of the structure for the multispecies density optimal
control problem. Red dots correspond to marginal constraints (8b), blue
lines to bi-marginal constraints (8d) and (8c), and yellow triangles to cost
interactions. Note that marginal µ0 does not have a constraint, thus for the
corresponding triangle in (b), the bottom left node is not colored red.

RL×NT+1

, where the index −1 refers to the species. That
is, its elements are given by M`i0...iT = (M`)i0...iT , and
M`i0...iT is the amount of mass of species ` that moves along
the path xi0 , . . . , xiT . Therefore, the additional marginal
µ−1 = P−1(M) ∈ RL+ describes the total mass of the
densities for the different species. Moreover, the bi-marginal
projection P−1,j(M) ∈ RL×N , defined by

(P−1,j(M))`ij :=
∑

i0,...,ij−1,ij+1,...,iT

M`i0...iT ,

satisfies P−1,j(M) = [µ
(1)
j , . . . , µ

(L)
j ]T , and Pj(M) is the

total distribution µj at time j∆t.
Finally note that

∑L
`=1D(M`) = D(M), and hence prob-

lem (7) can be written as the tensor optimization problem

minimize
M,µj ,R

(−1,j)

j=1,...,T

〈C,M〉+ εD(M) + ∆t

T −1∑
j=1

Fj(µj) +G(µT )

+

T −1∑
j=1

FLj (R(−1,j)) + GL(R(−1,T )) (8a)

subject to Pj(M) = µj , j = 1, . . . , T , (8b)

P−1,j(M) = R(−1,j), j = 1, . . . , T , (8c)

P−1,0(M) = R(−1,0), (8d)

where R(−1,0) = [µ0,1, . . . , µ0,L]T ∈ RL×N+ and where
FLj (R(−1,j)) =

∑L
`=1 ∆tF `j (µ

(`)
j ), j = 1, . . . , T , and

similarly for GL. Here, the cost tensor C is given by
C`i0...iT =

∑T −1
j=0 C`ijij+1

, which means that the problem
has a structure as the hypergraph illustrated in Figure 1.

In contrast to previous works, the cost tensor C is not
composed of pairwise cost interactions, and problem (8)
does not fall into the framework for graph-structured optimal
transport and tensor optimization problems [25], [27], [39].
However, similar to the setting in Section II-A, the solution
to (8) is of the form M = K�U, where

K`i0...iT =

T −1∏
j=0

K`ijij+1
, (9)

with K`ijij+1
= exp(−C`ijij+1

/ε), and where

U`i0...iT = (U−1,0)`i0

 T∏
j=1

(U−1,j)`ij

 T∏
j=1

(uj)ij

. (10)
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This can be readily derived using Lagrangian relaxation and
is omitted for brevity (cf. [25], [27], [39]). Moreover, the
components of the tensor U can be found by generalized
Sinkhorn iterations [39]. In particular, the problem can be
solved by Algorithm 1, in which ∗ denotes the Fenchel
conjugate of a function and ∂ denotes the subdifferential (for
definitions, see, e.g., [3]). Under relatively mild conditions on
the cost functions, the algorithm is in fact globally convergent
(see [39, Sec. III] for details). Akin to the classical Sinkhorn
iterations (2), the computational bottleneck is to compute
the relevant marginal and bi-marginal projections of the
tensor M = K � U. An efficient way to compute these
is described in the following Theorem, and the structure of
these computations are illustrated in Figure 2.

Theorem 1: The bi-marginal projections of the tensor
M = K�U, with K and U as in (9) and (10), respectively,
on the marginals −1 and j, are given by

P−1,j(K�U) = Ψj � Ψ̂j � U−1,j diag(uj), (11)

for j = 1, . . . , T − 1, and

P−1,0(K�U) = Ψ0 � U−1,0 (12)

P−1,T (K�U) = Ψ̂T � U−1,T diag(uT ). (13)

The components in these expressions are defined as

Ψ̂j=

{
ŜK(U−1,0) j = 1

ŜK(Ψ̂j−1 � U−1,j−1 diag(uj−1)), j = 2, . . . , T

with (
ŜK(A)

)
i1i3

=
∑
i2

Ki1i2i3Ai1i2 , (14)

and

Ψj=

{
SK(U−1,T diag(uT )) j = T − 1

SK(Ψj+1 � U−1,j+1 diag(uj+1)), j = 0, . . . , T − 2,

with
(SK(A))i1i2 =

∑
i3

Ki1i2i3Ai1i3 . (15)

Proof: Note that K`i0...iT =
∏T −1
t=0 K`itit+1 . Together

with (10), this means that

(P−1,j(K�U))`ij =
∑

i0,...,ij−1

ij+1,...,iT

((T −1∏
t=0

K`itit+1
(U−1,0)`i0

)
( T∏
t=1

(U−1,t)`it

)( T∏
t=1

(ut)it

))
= (U−1,j)`ij (uj)ij (Ψ̂j)`ij (Ψj)`ij ,

where Ψ̂j and Ψj , for j = 1, . . . , T , are given by

(Ψ̂j)`ij =
∑

i0,...,ij−1

K`i0i1(U−1,0)`i0

(
j−1∏
t=1

K`itit+1(U−1,t)`it(ut)it

)
,

(Ψj)`ij =
∑

ij+1,...,iT

 T∏
t=j+1

K`it−1it(U−1,t)`it(ut)it

.
This proves (11), and similar derivations (omitted due to
space constraints) yield the expressions (12) and (13).

U−1,j U−1,j+1

uj uj+1

K

Ψ̂j Ψ̂j+1

ŜK

Ψj Ψj+1
SK

Figure 2. Illustration of how the
structure of problem (8) can be
used for computations. The com-
ponents in each triangle in Figure 1
give rise to computational compo-
nents as indicated in this Figure.
The operators ŜK and SK , de-
fined in (14) and (15), respectively,
map these components forward and
backwards over the base of the
triangles.

Algorithm 1 Method for solving (8).
1: Given: Initial guess u1, . . . , uT , U−1,0, . . . , U−1,T .
2: Denote GL by FLT , and G by FT .
3: while Not converged do
4: for j = 1, . . . , T do
5: Let W−1,j be so that P−1,j(K�U)=U−1,j�W−1,j .

Update U−1,j by solving
0 ∈ −U−1,j �W−1,j + ∂((FLj )∗)

(
−ε log(U−1,j)

)
.

6: Let wj be so that Pj(K�U) = uj � wj . Update uj
by solving 0 ∈ −uj � wj + ∂(F ∗j )

(
− ε log(uj)

)
.

7: end for
8: end while
9: return u1, . . . , uT , U−1,0, . . . , U−1,T

Remark 1: The expressions in Theorem 1 can be seen
as a message-passing scheme similar to [19], [27]. More
precisely, the operators ŜK and SK are then interpreted as
messages that propagate information forward and backwards,
respectively, through the time instances t = 0, . . . , T . More-
over, it is easy to adapt this to accommodate time-varying
dynamics. In this case, C`i0...iT =

∑T −1
j=0 Cj`ijij+1

and
K`i0...iT =

∏T −1
j=0 Kj

`ijij+1
, and ŜK and SK in (14) and (15)

are changed to ŜKj−1 and SKj , respectively (cf. Figure 2).

IV. NUMERICAL EXAMPLE IN COORDINATION OF
MULTIPLE TYPES OF ROBOTS

In this section, we illustrate the method by considering a
numerical example of a robot coordination task. The scenario
is a search-and-rescue-type mission, with L = 3 different
types of robots and three different types of terrains. The goal
for the robots is to, at the last time point, cover the entire
area, and to do so as cheap as possible. The exact costs are
defined below. The set-up is shown in Figure 3(a), where
blue area is water, red area is rough terrain, and green area is
normal terrain. Moreover, the three different types of robots
start in the three areas marked in the lower left corner of
the figure: robot type 1, which start in the dark blue starting
area, can move on water and in normal terrain; robot type 2,
which start in the dark red starting area, can move in rough
terrain and normal terrain; and robot type 3, which start in
the black starting area, can only move in normal terrain.

The state space is the rectangle [−1, 1] × [−1, 1], which
we uniformly discretize it into 100 × 100 grid points; the
latter are denoted xi = xi1,i2 for i1, i2 = 1, . . . , 100, and
the distance (in each direction) between discrete points is
denoted ∆x. Moreover, time is discretized into T + 1 = 61
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time steps. The dynamics for each robot type is taken to
be f`(x) ≡ 0 and B`(x) = (1/

√
α`)I , where 1/

√
α` is a

robot-type-dependent weight modeling the energy efficiency
of the robot type. By the reparametrization ṽ` = (1/

√
α`)v`,

α` can equivalently be understood as a cost of movement
for robot type `. However, the distance each type of robots
can travel with one time step is also limited: robot type 1
and 2 can travel to points inside a circle of radius

√
6∆x,

and robot type 3 can travel to points inside a circle of radius
3∆x. In free terrain, this results in the corresponding discrete
movement stencils shown in Figure 3(b), but we also disallow
robots to “jump over” areas where they cannot enter. This
means that the cost tensor has elements (6) given by C`ik =
α`‖xi1,i2 − xk1,k2‖2 if, for robot type `, state xk1,k2 is in
range from state xi1,i2 , and C`ik =∞ else. This means that
the corresponding K in (9) is a sparse tensor, since K`ik = 0
if C`ik =∞. We set α1 = 400, α2 = 400, and α3 = 100.

More precisely, we consider the discrete problem

minimize
M∈R3(1002)61

+

µj , µ
(`)
j ∈R

1002

+

〈C,M〉+0.2D(M)+

59∑
j=1

(
F (µj)+

3∑
`=1

〈c`, µ(`)
j 〉

)

subject to P−1,j(M) = [µ
(1)
j , µ

(2)
j , µ

(3)
j ]T ,

3∑
`=1

µ
(`)
j = µj , µ

(`)
j ≤ κ

(`), µ
(`)
0 = µ0,`,

for ` = 1, 2, 3, and j = 0, 1, . . . , 60,

µ60 uniform outside starting areas, see below.

The total mass of each robot type is set to 10, and the starting
distributions µ0,` are set to even distribution in each robots
starting area. As final distribution µ60, we enforce a uniform
distribution of total mass 10 in all areas outside the starting
areas; inside the starting areas, no constraint is enforced at
the last time point. Moreover, the running cost F is a cost
for congestion in states outside of the starting areas: F (µ) =∑

(i1,i2) 6∈starting area f((µ)i1,i2) where f : R+ → R+ ∪ {∞},
f(x) = x/(1 − x) + I[0,1](x) where IA(x) is the indicator
function on a set A, i.e., IA(x) = 0 if x ∈ A and ∞ else.
The running cost c` is a fixed cost for each time step a
robot is deployed, i.e., it is 0 in the starting area of robot
type ` and a constant c̃` in all other points in state space. In
particular, c̃1 = 0.2, c̃2 = 0.2, and c̃3 = 0.1. The constraint
κ(`) is zero in regions where the robot type cannot move
(which includes other robot types starting areas), it is 10
in the starting regions of robot type `, and 1 elsewhere. The
latter has no impact on the optimal solution, since the running
cost F limits the total density to 1 in any given point.

The problem is solved using Algorithm 1, where the
projections needed in the algorithm are computed using The-
orem 1. Note that the optimization problem in the example
has more than 10240 variables, which is too large for off-
the-shelf convex optimization solvers to handle. The optimal
solution is shown in Figure 4. It is nontrivial to allocate
the robots due to interaction costs and capacity constraints,
nevertheless, the behaviours in the solution is consistent with

the intuition. Robot type 1 and type 2 focus on the regions
where only they can reach, while robot type 3 covers most
of the area that all robots can reach due to the smaller cost
and larger speed. It can also be seen that deployment of the
robots is delayed as much as possible due to the cost of being
outside the starting region.
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(a) Terrain and starting positions. (b) Movement patterns.

Fig. 3. Set-up for the numerical example. In (a), blue area is water, red
area is rough terrain, and green area is normal terrain. The three different
types of robots start in the three areas marked in the lower left corner: robot
type 1 in the dark blue area, robot type 2 in the dark red area, and robot
type 3 in the black area. In (b), the color of the (free) movement stencils
are the same as the starting positions of the corresponding robot type.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we developed an efficient method for multi-
species mean field type control problems, where each species
have different dynamics. We also illustrated its use by solv-
ing a robot coordination task for a search-and-rescue-type
scenario. One limitation of our method is that it becomes ill-
conditioned when the intensity of noise ε becomes too small.
One future direction is to address this issue by incorporating
ideas from proximal point methods.
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