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Low complexity convergence rate bounds
for the synchronous gossip subclass of push-sum algorithms

Balazs Gerencsér

Abstract— We develop easily accessible quantities for bound-
ing the almost sure exponential convergence rate of push-sum
algorithms. We analyze the scenario of i.i.d. synchronous gossip,
every agent communicating independently towards at most
a single target at every step. Multiple bounding expressions
are developed depending on the generality of the setup, all
functions of the network’s spectrum. Numerical experiments
demonstrate the quality of the bounds obtained together with
the computational speedup for acquiring them.

I. INTRODUCTION

Average consensus algorithms have been around for some
time [1], [2], with the fundamental goal of computing the
average of input values on a network in a distributed manner
with only local communication and simple operations. Often
some symmetry is imposed on the communication, in terms
of the matrix describing the linear update of the vector of
values to be either doubly stochastic, or even symmetric.
This condition is quite well understood [3], see the survey
[4] also for applications, further discussion and references.

However, the interest for distributed averaging algorithms
capable of handling asynchronous directed communication
emerged, naturally driving away the representing update
matrix from being doubly stochastic, still with the intent
to compute the exact average. As a result, the successful
scheme of push-sum was proposed [5], later referred to as
ratio consensus [6] and joined by variants such as weighted
gossip [7]. The goal of these algorithms is the same, but
now using only local, directed communication and without
requiring message passing to happen synchronously or con-
sistently across the network. Given the simple objective of
the algorithm, it also serves as a building block for more
complex tasks, e.g., the spectral analysis of the network
[8] or distributed optimization algorithms [9]. For the latter,
the distributed tracking of the gradient implicitly raises the
challenge for understanding the two-timescale variant of the
baseline algorithm.

With other real-life communication challenges taken into
account, the concept has been extended in multiple ways to
handle such aspects, e.g., including packet loss [10] [11] or
delay [6].

Related work. An essential question in the analysis for
usability and efficiency is understanding the asymptotics of
the processes, their convergence and the rate at which it
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happens. Already in [5], the exponential convergence of the
original push-sum scheme has been proven, however without
elaborating on the exact rate yet. An important step ahead
was made in [12] providing an impressive upper bound along
an unspecified, infinite subset of the timeline for the almost
sure (a.s.) rate of convergence. More recently, the tight bound
for the rate of a.s. convergence has been identified [13] as the
spectral gap of the Lyapunov exponents of the random update
matrix series with generous applicability. While being a clean
representation, the concern is present that this Lyapunov
spectral gap is known to be incomputable in general [14].
As a follow-up, it was possible to combine the inspiration of
[12] and the tool-set of [13] to obtain an actual upper bound
on the a.s. rate for the i.i.d. case [15], now formulated by
manipulating a single (random) update matrix, thus leading
to a computable quantity. The bounds are solid, however for
a graph on N vertices, matrices of size N2 x N2 have to be
analyzed, quickly increasing in complexity.

Contributions. Our goal is to provide even simpler con-
vergence rate estimates. For this purpose, we focus our
attention to the natural setup, where a weighted network
determines the communication scheme driving the consen-
sus process. In particular, we assume synchronized gossip
message passing, i.e. every node sending a single packet to
a single (random) recipient at each time slot, or possibly
skipping a slot if it would message itself.

The bounds provided can be computed directly once the
standard spectral description of the network is available. We
are to formulate multiple variants, both to provide general,
but more conservative estimates, and also sharper ones for a
more restricted setting with stronger symmetries.

Layout. The rest of the paper is structured as follows. In
the next section we formally define the averaging process
and state our results. Section III builds a framework for
the proof of the theorems, while Section IV completes
the proofs. Detailed numerical performance analysis and
concluding remarks are provided in Section V and Section
VI, respectively.

II. MAIN RESULTS

Let us recall the push-sum algorithm [5] along with some
notations to be used. Given is a finite graph G = (V, E') with
the vertex set V. = [N] := {1,2,..., N}, having degree
sequence di,...,dy. There is an initial vector of values
2(0) € RY at the vertices to be averaged. The process is
also using an auxiliary vector initialized at w(0) = 1 € R,
At each time step, representing local communication, a linear



column-stochastic update A(¢) is performed on both vectors:

a(t) = Azt —1),  w(t) = ADw(t —1).

The average Z := 3 >_,; z;(0) is then locally estimated by

x;(t) /w;(t). There is a wide generality of how (A(t));>0 can
be chosen [7], [13]. In the current paper, we focus on the
scenario of i.i.d. matrix series, and when at each step, every
vertex 4 sends a single message to a random recipient /3; (or
possibly none) with a constant fixed proportion g € [0, 1] and
all these choices are independent from one another. Formally,
At) = A= (1 —q)I + g, epel. This is a significant
generalization of the setup used in [12] where the underlying
topology was given by the complete graph with ¢ = 1/2.

By setting p;; := P(8; = i), we obtain an overall
transition probability matrix P which by construction has
to be compatible with the adjacency matrix of G. For
convenience, we introduce the notation P, = (1 —¢)I +¢P.
It is easy to check that EA = P,. In case P has only real
eigenvalues let \; denote its i*" largest eigenvalue and let
Agi = (1 —¢q) + g); denote that of P,.

Following the system description let us state our main
results about the exponential convergence rate to consensus.

Theorem 1: Let us consider a push-sum algorithm with
symmetric message probability matrix P. Then

1 i (¢
1imsupzmaxlog fui((t)) -z
1
§0g{1*q +2Q(1*Q)/\2+q}** (1)

Remark 1: In case each vertex chooses a recipient uni-
formly among its neighbors, the bounding quantity in Theo-
rem 1 will depend only on the graph structure. Indeed, it is
easy to check that in this case EA = P, with P = M D™,
where D denotes the diagonal matrix consisting of the
degrees of the underlying graph’s vertices, while M denotes
the graph’s adjacency matrix.

A better bound can be obtained for cases with stronger
symmetries: a message probability matrix is said to be
transitive if for any pair (4,j) there exists a permutation
matrix II with II;; = 1 such that IIPII"! = P.

Theorem 2: Suppose that the message probability matrix
P is symmetric and transitive. Then

l‘l(t)

with & being the largest root of the polynomial

2
7O =TIe-20-5F > 0= IT €-x0.
i>1 i>1 Jrikg>1

Remark 2: If G is a transitive graph and each vertex
chooses a recipient uniformly among its neighbors, then
the corresponding message probability matrix satisfies the
assumption of Theorem 2.

Let us emphasize the gain in computation complexity,
stemming from the smaller matrices analyzed despite using
their full spectrum: for the stated bounds it is O(N?) in the
worst case [16], whereas for the bounds of [12], [15] it is

1
lim sup n max log -z = log & = 2)

_2

O(N*) [17] meaning that the speed-up is at least of order
N. Later in Section V we will show that it can be even better
in practice.

III. MATHEMATICAL SETUP

Let us build a framework using an appropriate matrix
transformation and corresponding tools in a general setting.
First we remark that the elements w;(¢) are all positive
because the diagonal elements of the nonnegative A(t) are
strictly positive. Using the notations H(t) = A(t)A(t —
1)---A(1), J =117 /N easy calculation yields
z(t) — Zw(t) = H(t)xo — Tw(t)
=(HOUI - J)+H(t)])zo — zw(t)
=H(t)(I — J)xo,

meaning that for some constant C' > 0 we have

max‘w) _f‘ < ollollz - 1H@T = )]l
o) min; w; () 3)
< o lzollz 1B = J)llr
min; w; (t) ’

We are interested in the almost sure convergence rate of the
quantity on the left of (3). As we will see the dominant term
will be ||H(t)(I — J)||r. To get a handle on this factor let
us analyze the expectation of ||H (t)(I — J)||%:
E|[H()(I = D|F =E T{(I - HH(t) H(t)(I - J)}
=Tr{(I - E[H®)TH®)](I — )}

According to the definition of H(t) we can write

E[H(t)TH(t)] =1E[]E[A(1)T~(t) H(t)A(1) | A(1)]]
= B[A() "E[H(t) T H ()] A1), )
where H(t) = A(t)A(t — 1)---A(2), and by the iid.

4 H(t — 1). This motivates the
RNXN _, RNXN.

nature of the updates H (t)
introduction of the linear operator ¢ :

d(X):=E[ATX 4],
which we will need to understand for further developing (4).
Remark 3: Since Tr{(I — HNHO)HH)T(I — J)} =
Tr{H(t)"(I — J)H(t)} and the adjoint of the linear map
f:X = ATXAis the map f*: X s AXAT, it follows
that ®*(X) = E[AX AT] for any symmetric matrix X.
For satisfactory notation, before we progress let us introduce

the linear operator ¥ : RY*N — RN together with its
pseudo-inverse ¥~ : RN — RVXN .

(\IJ(X)),» = Tii,

(U (v)ij = {

(O if i = j,
0 otherwise.

Lemma 1: For any matrix X, we have
®(X) =P, XPy+*{V [PT ¥(X)] - U ¥(P'XP)}

reminding that P, = (1 — ¢)I + ¢P.



The proof is postponed to the Appendix. In order to obtain
a bound on Tr {(I — J)E[H (t)" H(t)](I — J)} it is enough
to understand ®, since

Tr {(I-DE[H() T HO)(I-J)} = Tt {(I-1)@(1)(I-J)},

where ®%(-) denotes the ¢-fold application of ®.
Proposition 1: The map ® has the following properties:

(P1) @ is linear,

(P2) &(X 1) =&(X)",

(P3) for any skew-symmetric matrix X, ®(X) = P X P,,

(P4) if X > 0 then ®(X) > 0, i.e. ¢ keeps the positive
semi-definite property,

(P5) if x1; > 0 V(k,1), then ®(X)z; > 0 V(k,1),

(P6) J is an eigenmatrix of ® with eigenvalue 1: ®(J) = J,

(P7) for X >0,and P = P we have Tr ®(X) < Tr X.

For the adjoint map ®* the following properties hold:

(P*1) ®*(Y) = PRYP] + U [PUY) -
P(U-9Y)PT},

(P*2) if X > 0 then ®*(X) > 0, i.e. ®* also keeps the
positive semi-definite property,

(P*3) if x4y > 0 V(k,1), then ®*(X) > 0 V(k, 1),

(P*4) if X1 =0 then ®*(X)1 = 0.

The proof can be found in the Appendix.
Remark 4: According to the definition of A, we have
JA = J, and so
I-DAI—-J)=AI-J),
E[(I - J)ATXA(I - J)]
=E[(I - )AT(I - )X(I - J)A(I - J)].

~

Corollary 1: Let us define the operator ® as

: X (I—J)X)I—J)
cEnd({Y e RN .Yy =Y T YJ=0}),
then according to the properties of & combined with Remark
4, forany X € {Y e RV*N .Y =Y T YJ =0} we have
' (X) = (I - 1)"(X)(I — J),
S((I-NXIT—-J)=0(X)+JXP+ P/ XJ - JXJ.
IV. PROOFS
The next proposition is the backbone of Theorem 1.

Proposition 2: Let P be a symmetric, doubly stochastic
matrix. Then

Tr (%) (1 = J) < N(AD, + ¢*(1 = A3))".

q
Proof: Due to the properties of ®* the subspace Ay :=

{X e RN . X = X7 XJ = 0} is invariant under its
action. For the target expression we see

Tr (@*)'(I — J) < N[[(2)"( = J)|2
< NI@) Moo (1 = T2 < N[@*[I,
where [|%[|x, - x, = max{[[®*(X)[] : [X]2 < L,X €

Xop}. It is easy to show that arg max ||®*(X)||2 > 0:let X =
argmax |®*(X)||2 and let us consider its decomposition

X = Xt — X~ with X*, X~ > 0. Due to ®* keeping
the semi-definite property we have
v O (X =0v & (XT)v—v (X v
<ol O (X T+ v (X ),
which would lead to a contradiction if X~ was not 0. Thus
8% | 2y s a0, = max{v ®*(X)v: X € Xy, X >0,
[Xl2 <1 vl 1,0 L1}

meaning that it is enough to bound v ®*(X)v from above.
Letv L 1 and X € Xy with || X |2 < 1, then

v ®*(X)v = (Pw) X Py
+ qQ(ijimiivf — Z(PU)?&C”)
i, i

Due to the conditions imposed on X, we have z;; € [0, 1],
furthermore °, pj; — (Pv)7 > 0 for any i, thus

v (X < [[Ppol® + (D piiv — Y _(Pv)i)

%7 i

=v' (P} +¢*(I-P*)v

where it is easy to check that the second eigenvector is the
maximizer, leading to the upper bound of the statement. W
With all the tools at our hands we can prove Theorem 1.
Proof: [of Theorem 1] According to Lemma 10 in [15] whose
assumptions are clearly satisfied we have

<0,

1
li ~log ————
1mtsup o8 min; w; ()

thus considering the quantity in (3) we can infer that
leoll - 110)(T = Dl

1
< limsup — log||H(t)(I = J)||r-
t

1
li -1 _
Py fo8 (mm w; (t)

The matrix H(t)(I — J) can we written as a product of
the i.i.d. random matrices A(¢t)(I — J), therefore due to the
Fiirstenberg-Kesten theorem it follows that

1 1
tim sup=log || H(t)(I — )| | =limElog [ H(0)(I = )|
t

1
< lim o log [ H(t)(I — J)|7,

where we applied Jensen’s inequality implicitly for the
squares of the norm inside the logarithm. By expressing the
expectation we obtain

E[[H(t)(I = J)l|F = Tr (27)"(1 = J).

The rate of decay of the r.h.s. can be controlled using
Proposition 2:

1
lim sup % log Tr (®*)(I — J)
t

< %((1 —q)” +2¢(1 = Q)ha + ¢%).

Linking the series of calculations above we conclude. [ ]



Now we will turn to the case when the underlying system
is transitive. In this scenario it is possible to give stronger
bounds, but before doing so we need to reformulate the
problem. Let us define X; = (®*)*(I — J). The following
two statements will help us to understand this process.

Lemma 2: Assume that P is the kernel of a symmetric
transitive Markov chain, implying that any diagonal element

pff) of P! depends solely on ¢ and not on i. Then we have

1) X; € Py := Span{P* J ; 0 < k < 2t}, hence the
diagonal elements of X; depend solely on ¢,
2) X1 = P, X P+ q?ri(I — P?), where r; denotes the
common diagonal element of X;.
Proof: We prove by induction. For t =0, Xg =1—J,
trivially a polynomial of P and J. For the induction step
t — t+ 1 assume that X; € P;, then X, is equal to

d*(X,) = P, X, P, + ¢*{(V"PYX,) — P(¥~UX,)P}

and, since X} is a polynomial of P and J, it is also transitive.
Noting VX; = ;1 and ¢~V X, = r, I, where 7, denotes the
common diagonal element of X, we can derive the recursion

X1 = PyX, P, + ¢*r(I — P?), (5)

which shows that X; 1 € Pyy1. [ |
As a consequence, if P is symmetric and transitive then X;
and P possess the same eigenvectors.

Proposition 3: If P is symmetric and transitive and v is
an eigenvector of P and X corresponding to the eigenvalue
A and p, respectively, then the following recursion holds:

Hiy1 = >\3/14t +¢°re(1 =A%), (6)

where r;, same as before, denotes the common diagonal
element of X,;. Furthermore the largest eigenvalue of X, is
asymptotically bounded:

lim sup log Max fiy,; < log (2,

where (5 is the second largest root of the polynomial

1- )3
= -1+ = :
oIl 52
Proof: Using 1y = &Tr X; = +; ZZ i We can write
the recursion described in (6) for all eigenvalues jointly as

2
q
Yie1 = (D+Nb1T>yt ™

with the vectors (y,); = pieis by = 1 — A, and D =
diag (A2 ,,.. A7 ), where \g; denotes the ith largest
eigenvalue of P, and p;; denotes the eigenvalue of X;
corresponding to the same eigenvector. In this case ;1 = 0,
since A\;;1 = 1 and X;1 = O for any ¢.

Let (A, v) denote an eigen-pair of P. According to the
previous lemma X; is a polynomial of P and J, hence v is
an eigenvector of X;, furthermore, due to the symmetry of

P, we have JP = PJ = J. Recursion (5) then yields

Xi11v = P, X Py + ¢*ri(I — P?)v
= >\2/~Ltv +@Pre(1 = N

and we have
frer1 = Aope + @°re(1— XN?),

proving the first part.

Before continuing with the proof of the second part, let
us note that e; is a left eigenvector of the matrix D +
¢*’b17 /N corresponding to the eigenvalue 1, meaning that
the right eigenvectors corresponding to different eigenvalues
are orthogonal to e;. Let us choose the following new basis:
fi=e1, fi =e;—e1,i > 1, then for ¢ > 1 we have f; L 1.
The matrix D +¢?b1T /N of the recursion in the basis {f;}
can be described by the block matrix

{QQ/N Zj bj + /\3,1 er }
?/N(bi)iz2  Dn-a
where £ = (A2, — A2 )i>2 and Dy, is the lower right
(N —1) x (N — 1) submatrix of D.
The characteristic polynomial of the matrix in (8) can be
computed via expanding along the first column, leading to

plx) = (x - %Zbi - )\3’1> E(w —AZ)
% <,

®)

i>1 Gil<ji
2
q
~[e- Ai,»{x -y a-w
i>1 i
=
Z 1 _ )\2 ‘L
2
j>1 AQJ

H(m—)\g)i){a:— 1+ ?\Q,Z [(1 —A§)<xf§” - 1)“

i>1 i>1 q,)
21—
_ 2 q J
e-%0(- 5252
4 >1 a7

We note here that due the initialization y, = (0,1,...,1)"
and the fact that e; is a left eigenvector of D + qulT /N,
we have for each subsequent vector y, L ej. This means
that we are only interested in the second largest root (» of
the characteristic polynomial to obtain the asymptotic growth
rate of iz, i.€. ||pt]]oo < CC ||po]]oo With some C' > 0. m

Proof: [of Theorem 2] The first part of the proof,
up until the point where we have to bound the quantity
E||(I — J)H(t)||% from above, is analogous to the proof
of Theorem 1, hence it will be omitted here. To relate the
process investigated, observe

E[[H(t)(I - J)l|F = Tr {(7)"(I - J)}
=D g < Nmaxpj,
r J
with pi; ; as in Proposition 3. Due to Xg =I—Jand A\; =1

with v; = c1, we have pp 1 = 0 and according to recursion
(6), 1,1 = 0 for any ¢ > 0. In Proposition 3 it was shown that



1t loo < CC|luol| = CCL, where (o denoted the second

largest root of the polynomial

2
p() =@ =220 - 5302 [T @-22)).

i i>1 Giji
Exploiting the fact that 1 is a root of p we have
p(x) ¢
o1 [TE-x20 - N2 1= I | CEPYH)

i>1 i>1 Gil<js#i

thus by denoting the largest root of p(z)/(xz —1) with & we
can write ||ut||c < CEL. Altogether

log 1,

|~

1
lim sup o Tog B||H (6)(1 — J)| I3 <
t

and this concludes the proof. [ ]

V. NUMERICAL EXPERIMENTS

In order to evaluate the performance and computational
cost of the bounds obtained on the convergence rate, we
performed a numerical comparison of the available quan-
tities. For the simulated process we set ¢ = 1500 and,
for complexity and memory usage reduction, we used the
modified rate approximation

1 - -1 M

\/M[\P (w(®)]™ H()X™(0)
where XM (0) is an N x M matrix of uniform random
independent columns in 11 with unit norm, representing
various initializations, reaching the principal rate with high
probability. We chose M = |v/N |. This was compared with

o 12/2:=log p(E(A(1)®?)(I — J)®?)/2 from [15],

e 7/2 of Theorem 1 and «/2 of Theorem 2.

The underlying topologies were random transitive graphs

generated as Cayley-graphs of the symmetric groups up to
S5 with 3 random generators, and random regular graphs of
matching sizes and degrees. In all cases the recipients were
chosen uniformly at random.
In case of the transitive graph we can see a tight fit by the
bound of Theorem 2 through ¢ € (0,1) as shown in Figure
1b. In fact, we recover 72 /2 which is expected from the exact
analysis carried out in the proof, and the errors from the
simulated rates  are an order less than the rates themselves.
In the case of symmetric P, Theorem 1 provides a still usable
bound as shown in Figure la. The resulting curve captures
the linear trend when ¢ is near 0, it is a factor =~ 2 off from
the numerical value when ¢ < 0.5 and then deteriorates.

The most distinctive difference lies in the runtime (and
memory usage) of the methods, shown in Table I, including
smaller instances. The simulations were carried out on AMD
EPYC 7643 CPUs using the Julia computing language [18].

)

F

1
C = ;log

our bounds v/2, a/2, resp. n2/2
N 24 60 120 24 60 120
reg. g. 0.0012 | 0.0029 | 0.0071 | 0.155 | 1.71 | 15.33
trans. g. | 0.0097 | 0.0119 | 0.0358 | 0.132 | 1.50 | 24.85

TABLE I: Runtimes[sec] of computing the different bounds
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Fig. 1: Bounds and simulated rates

VI. SUMMARY AND FUTURE PLANS

In this work we have presented multiple bounds with ac-
curacy depending on the level of symmetry of the underlying
topology. For N = 120 vertices, the computational cost of
these bounds are ~ 3 orders of magnitude less than that of
computing 73 /2 from [15] or [12] confirming their usefulness
in assessing the efficiency of various push-sum algorithms.

Along the way proving our main results we have devel-
oped a framework as described in Section III relying on
matrix operators ®, ®* that we hope can be useful when
analyzing similar dynamics.

Concerning our future plans, we observed in some numer-
ical experiments that the expression in (2) was also a valid
bound for regular graphs. This lead us to state the following:

Conjecture 1: The bound given in 2 provides a useful ap-
proximation in the simple symmetric case, e.g. for arbitrary
regular graphs. Possibly not an exact upper bound but a
quantity within small controllable error of the true rate.

APPENDIX
Proof: [of Lemma 1] Let L := ), eg,e; then
E[ATXA] = (1 —¢)?X +q(1 — ¢QE[XL]
+q(1 = qE[LTX] + ¢*E[LT X L]
=P/ XP,— ¢*P'XP+ ¢E[L"XL].
Next we will compute the term E[L " X L] as
E[LTXL) =) Elejes Xeg, ;]

i

=) Eag g, cieh + ) Eap, peie]

174 %
T T
= E DjiDjri' Tjjr€i€s + E DjiTjj€i€;
iti! ij
3.3’
T T T
=P'XP - pipjizipee] + Y pivjee,
04,4’ ij

=P 'XP-VU " U(P'XP)+ ¥ (P" ¥(X)).



Thus putting together the two parts reads
®(X) =P/ XP+{¥ (PTU(X)) - ¥ ¥(P'XP)}

and this concludes the proof. [ ]
Proof: [of Proposition 1] The first three properties

follow directly from the definition of ®, their proofs are left

to the respected reader.

Property (P4) can be proved as follows. Let X > 0 and let

w be an arbitrary vector, then

w' ®(X)w=w E[AT X AJw = E[(Aw) " X Aw] > 0.
(P5) is analogous to (P4), i.e. ®(X)y = (E[AT X A])x; > 0.
Property (P6) is the result of a short series of calculations.

®(J)=P"JP+ (V" P"UJ - U~ U (P"JP))
=J+¢(1/N-1-1/N-1)=J,

due to the facts JP = P".J = J and ¥J = 1/N.
Before proving (P7) let us note that due to X > 0 and the
linearity of @ it is enough to prove this property for X =
xx . Using the definition of A = (1 — ¢)I +¢*>>_, es,e;
we have
Tr&(zz') = Tr E{(1 — ¢)%zz"

+q(1—q)(L 2z + 22" L)+ ¢°L zz" L}

= (1-q)*||=[3
+2¢(1— )z PTa+¢* Y pjiat < |[=[3
1,7

where in the last step we used the facts P = PT,P1=1
and x7 Pz < A\ (P)||z||2 = ||z||3. Now we proceed with
proving the properties of the adjoint.

The proof of (P*1) is based on the following series of
calculations. Due to the equivalences

Tr{¢(PT UX)Y'} = Zpkﬂfkkyii

ik
= Z Tik Zpkiyii =Tr {XU (PUY ")},
% i
T {U-Y(PTXP)Y '} = Zpkﬂkzpliyu
ikl
= Zﬂsz Zpkiyiipli =Tr {XPU(Y")PT}
Tl i

we have
(®(X),Y)=Tr{e(X)Y "} =Tr {P, XP,Y "}
+¢*Tr {[\I/‘(PT\IJ(X))]YT — [\I/‘\I/(PTXP)]YT}
=Tr {XPY P/} + P Te {XU(PUYT)
— XPU(YTPT} = (X,®*(Y)).

Properties (P*2) and (P*3) can be confirmed analogously
to (P4), (P5).
(P*4) is a result of the short derivation
®*(X)1 =P, XP/1+ ¢V PUX1—P(U VX)P'1)
=0+ ¢* (v (P¥(X))1 - P(TUX)1)

since Pqu = P71 =1 and we assumed X1 = 0. For the
second term we have

(U7 (P¥(X))1); = Zpijffjj
(P(UTYX)1); = Zsz%‘p

so ®*(X)1 = 0. This concludes the proof. ]
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