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Abstract— LiDAR is a standard sensor choice for self-
localization and SLAM on indoor autonomous robots. While
there are many methods to estimate a robot’s location using
LiDAR measurements, most rely on algorithms that solve
a generic LiDAR scan matching problem. When safety is
a concern, these algorithms must provide a bound on the
localization error to enable safety enforcing controllers, such as
those based on Control Barrier Functions. Unfortunately, most
existing scan matching algorithms offer no formal guarantees
and are tailored to structured, high-resolution 3D point clouds.

In this paper, we present an improved theoretical analysis for
a low-cost alternative to these methods named PASTA (Provably
Accurate Simple Transformation Alignment), originally intro-
duced in [8]. We provide a formal worst-case guarantee on the
localization error and show, experimentally, that it is tight. This
characterization of the localization error simplifies the interface
between high-dimensional perception data and safety-critical
control.

I. INTRODUCTION

Light Detection And Ranging (LiDAR) scanners are popu-
lar sensors for autonomous robot and vehicle applications [7],
[14]. Their accuracy, insensitivity to lighting conditions, low
cost, and increasing availability in recent years make LiDAR
sensors an indispensable alternative and companion to other
sensors, such as camera vision. LiDAR is also widely used
in self-localization, mapping, and SLAM algorithms, with a
large body of literature devoted to its various properties [3].

In this paper, we consider an indoor localization problem,
wherein a small robot must estimate its current position and
orientation with respect to a fixed reference frame purely
from two LiDAR measurements. This task is equivalent to
estimating the rigid transformation (the rotation and transla-
tion) that relate the robot’s current pose to the fixed reference
frame from the LiDAR measurements. We may also frame
localization with LiDAR data as the general point cloud
registration problem, where we search for a transformation
that aligns two LiDAR data point clouds, for which a variety
of algorithms have been developed.

In the ideal setting with known point-to-point correspon-
dences between both LiDAR measurements, there is an ana-
lytic solution [6]. This solution, however, cannot be used in
most scenarios and faces additional difficulties when working
with point clouds from LiDAR measurements. For example,
LiDAR measurements are non-uniformly spaced and thus
points measured at different poses are not, in general, related
by a pure rigid transformation.

Other point cloud registration algorithms we might use for
localization fall into one of three categories: local (iterative),
global, or learning-based. While we refrain from listing all
existing methods in detail (see [9] for an excellent review),
we provide some remarks to contextualize our work.

Arguably the most well-known local method for point
cloud registration is Iterative Closest Point (ICP) [1]. The
algorithm follows a simple loop of choosing correspondences
(using nearest neighbors under the estimated transformation)
then using them to estimate a new associated transformation.
Since its inception, countless variants of ICP have been
developed to handle more structured environments [13]. All
of these ICP variants, however, rely on the same alternating
optimization approach, meaning they converge to an incor-
rect transformation when initialized poorly. Moreover, when
the correspondences (point-wise, planar, or otherwise) fail to
exist, such as in point clouds from LiDAR data, ICP-based
methods may fail entirely.

In contrast, global algorithms require no initialization to
estimate a transformation. These methods are typically based
on branch-and-bound techniques to solve the ICP problem
[16], or on random-sampling consensus [12]. While global
methods can have performance that is superior even to
well-initialized local algorithms, they often suffer from pro-
hibitively long runtimes or rely on carefully crafted features
persisting between measurements.

Various machine learning algorithms have also been de-
veloped to solve the point cloud registration problem. In
particular, machine learning methods are well-suited for
extracting features from raw point cloud data [10], or even
for finding correspondences between features in multiple
point clouds [5]. The identified features or correspondences
can then be directly handed to any of the aforementioned
local or global algorithms [15]. The major downfall of these
methods is their need for large amounts of labeled data
coming from the deployment environment and the inherent
brittleness of learned features.

Despite their practical success, these algorithms cannot be
used in safety-critical applications, as guaranteed safe con-
trol requires the state to be either known exactly, or formal
bounds on its uncertainty. [2]. To the authors’ knowledge,
only one other point cloud registration algorithm, TEASER++
[15], provides formal guarantees, but relies on the presence
of at least a few point-to-point correspondences that may
be absent in LiDAR point clouds. While this problem can
be circumvented by extracting point-features from the data,
most scenarios require significant feature engineering.

The main contribution of this work is a strong theoretical
guarantee for PASTA (Provably Accurate Simple Transfor-
mation Alignment), an algorithm first introduced in [8].

Given two LiDAR measurements, PASTA constructs sets
(i.e., regions of the 2D plane for 2D LiDAR) and compares
their first and second moments in an alignment step, the
result of which can immediately be used for localization.
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Comparing these sets, rather than the point clouds them-
selves, is a defining feature of PASTA that makes the method
robust to the variable point density of LiDAR measurements.
Moreover, this approach does not rely on persistent local
features, like other fast global methods. We note that PASTA
bears minor similarities to principal component analysis
(PCA) methods [4], [11], but instead relies on moments–the
mean and covariance–of a set, rather than those of a point
cloud or a grid of pixels.

While PASTA was introduced in [8] with some guaran-
tees, we significantly tighten the bounds on the error of
the produced location estimates. This improved theoretical
guarantee allows PASTA to seamlessly connect with exist-
ing safety-critical control frameworks. After proving these
improved guarantees, we validate their tightness with real
LiDAR data collected for an indoor localization task. These
experiments highlight the theoretical limits of our bound, but
also its good empirical performance.

II. PROBLEM STATEMENT

Given a point cloud {r(i)1 }
m1
i=1, r(i)1 ∈ Rn from a LiDAR

located1 at the pose (p1,R1), and a second point cloud
{r(i)2 }

m2
i=1 from a pose (p2,R2) (both in some global co-

ordinate frame) estimate the relative translation vector p̂
and rotation matrix R̂ that transforms the first pose into the
second, i.e., such that R̂R1 = R2 and p̂ = RT

1 (p2 − p1).

III. A BRIEF REVIEW OF PASTA

In [8], the authors introduced an algorithm named PASTA
(Provably Accurate Simple Transformation Alignment) in-
spired by 2D image alignment techniques, and proved worst
case bounds on the computed transformation error. Our
main contribution is a simpler theoretical analysis and a
substantially improved error bound, but we first review the
necessary concepts necessary and defer to [8] for other
details.

A. Moments of a Set

PASTA relies on the notion of moments of a compact
set H ⊂ Rn. Given a measure µ on Rn and the indicator
function2 on the set H , 1H , the zeroth moment of H (e.g.,
the area in 2D or volume in 3D) is defined as:

|H| =
∫

1H(x) dµ. (1)

Similarly, the first moment (centroid) and second moment
(covariance) of H are:

c =
1

|H|

∫
x · 1H(x) dµ (2)

Σ =
1

|H|

∫
(x− c) (x− c)

T
1H(x) dµ. (3)

1A pose is a pair (p,R) ∈ Rn ×SO(n), where p denotes a translation
vector and R denotes a rotation matrix between a fixed reference frame and
a frame fixed to the LiDAR. The location of the LiDAR frame is the origin
of the rays used by the sensor to perform the distance measurements.

2The indicator function of the set H , 1H : Rn → {0, 1}, is equal to
one for all points in H and zero elsewhere.

Algorithm 1 PASTA

Input: Point clouds {r(i)1 }
m1
i=1, {r(i)2 }

m2
i=1

Output: Transformation R̂, p̂

for each point cloud i do
Hi ← convex hull of {r(j)i }

mi
j=1

ci,Σi ← first and second moments of Hi

end for
R̂← closed-form solution of (4)
p̂← closed-form solution of (5)

PASTA algorithm details. Note that the rotation equation (4) may have
multiple solutions, and we must choose one properly. Details on selecting
which one to use can be found in [8].

For a convex hull H constructed from a (non-empty)
point cloud, the moments are well-defined. Moreover, by
partitioning H into a set of disjoint simplices (triangles in
R2, tetrahedrons in R3), we can compute the moments of H
as a weighted sum of the moments of the simplices, using
just the coordinates of their vertices (see [8]).

B. PASTA Overview

The main intuition behind PASTA (and other PCA-isnpired
methods) is as follows: if two compact sets H1 and H2

are related by a rigid transformation (p,R), then their first
(c1, c2) and second (Σ1,Σ2) moments are related by the
following algebraic expressions that we can sequentially
solve:

Σ2 = RΣ1R
T , (4)

c2 = Rc1 + p. (5)

This idea does not directly apply to LiDAR data point
clouds since, even without occlusions, points and sets are
never related by a pure rotation and translation. LiDAR
measurements are noisy and are not uniformly distributed
over the environment when the sensor changes pose, as seen
in Fig. 1, so (4) and (5) are not satisfied by the true rotation
and translation. However, we show that if the sets H1 and H2

(e.g., the convex hulls of both point clouds) are still nearly
related by a rotation and translation, PASTA’s estimated
R̂ and p̂ are also nearly correct. For clarity, Algorithm 1
describes the operation of PASTA in pseudo-code.

Fig. 1. First pair: LiDAR rays from different positions in a 2D environment.
Second pair: corresponding distance measurements converted into a point
cloud. The first moment (centroid) of the points (green cross) differs despite
the shapes being aligned in the same coordinate frame.
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IV. MAIN RESULTS

In this section we present our main theoretical result, a
new and tighter bound on the error in PASTA’s estimates
(p̂, R̂). This error is a function of how “closely” a compact
set H and a perturbed version of H–here denoted by H ′–are
related by some true rotation and translation, as measured in
variations of their second moments. In the following, we use
∥ · ∥ to refer to the ℓ2 norm on Rn and its induced norm
on Rn×n and use λi(A) to denote the ith eigenvalue of a
symmetric matrix A. For compactness, we also define:

∆λ(A) = max
i ̸=j
|λi(A)− λj(A)|

∆λ(A) = min
i ̸=j
|λi(A)− λj(A)| .

(6)

A. Eigenvector Perturbation Bounds

The second moment (3) corresponds to a symmetric and
positive definite covariance matrix, and assuming distinct
eigenvalues, this matrix has a set of orthogonal eigenvectors.
If we additively perturb any symmetric matrix A with
another symmetric matrix B, the eigenvectors of A will be
perturbed by some angle. The following lemma bounds the
magnitude of this angle as a function of the norm of B, and
is a stepping stone for a stronger result to follow.

Theorem 1 (Symmetric Matrix Eigenvector Perturbation):
Let A,B ∈ Rn×n be symmetric matrices, where A has
simple eigenvalues. Let λi and γi, i = 1, ..., n, be the ordered
eigenvalues of A and A+B respectively, with corresponding
unit eigenvectors ri and si. If ∥B∥ < 1

2 mini̸=j |λi − λj |,
the angle θk between rk and sk satisfies:

|θk| ≤ sin−1

(
2∥B∥

mini ̸=j |λi − λj |

)
. (7)

Proof: A and B are symmetric, thus their sum C = A+B
is also symmetric and we can write the eigenvalue decompo-
sitions A = RΛRT and C = SΓST . Note that Λ and Γ are
diagonal matrices whose ith entries are the ith eigenvalues
of A and C, respectively, in ascending order. Similarly, R
and S are orthonormal matrices whose ith columns ri and
si are the eigenvectors associated to λi and γi, respectively.

Consider the following for any unit-eigenvector sk of C:

sTk (A−C)T (A−C)sk

= sTk

(
RΛRT − SΓST

)T (
RΛRT − SΓST

)
sk

=
(
sTkRΛRT − γks

T
k

)(
RΛRT sk − γksk

)
= sTk

(
n∑

i=1

λ2
i rir

T
i

)
sk − 2γks

T
k

(
n∑

i=1

λirir
T
i

)
sk + γ2

k

=

n∑
i=1

(
λ2
i − 2λiγk

)
sTk rir

T
i sk + γ2

k

n∑
i=1

sTk rir
T
i sk

=

n∑
i=1

(λi − γk)
2
sTk rir

T
i sk,

where the fifth equality holds because sk has unit norm,

implying
∑

i s
T
k rir

T
i sk =

∑
i

(
rTi sk

)2
= 1. Further, note:

min
i ̸=k

(λi − γk)
2
∑
i ̸=k

sTk rir
T
i sk =

∑
i ̸=k

min
i ̸=k

(λi − γk)
2sTk rir

T
i sk

≤
∑
i̸=k

(λi − γk)
2sTk rir

T
i sk ≤ sTk (A−C)T (A−C)sk

= sTkB
TBsk ≤ ∥B∥2,

implying that as long as λi − γk ̸= 0, we have that∑
i̸=k

sTk rir
T
i sk ≤

∥B∥2

mini̸=k (λi − γk)
2 . (8)

Because
∑

i s
T
k rir

T
i sk = 1, we can rewrite (8) as:∑

i̸=k

sTk rir
T
i sk = 1− sTk rkr

T
k sk = 1− cos2 θk

= sin2 θk ≤
∥B∥2

mini ̸=k (λi − γk)
2 .

(9)

Finally, by the triangle inequality,

|λi − γk| ≥ |λi − λk| − |λk − γk|

and since |λk − γk| ≤ ∥B∥ and ∥B∥ ≤ 1
2 mini ̸=j |λi − λj |

by assumption, we conclude that:

|λi − γk| ≥
1

2
min
i ̸=j
|λi − λj |.

Then, we can rewrite the bound (9) and find:

sin2 θk ≤
4∥B∥2

mini̸=j (λi − λj)
2 ,

⇒ |θk| ≤ sin−1

(
2∥B∥

mini̸=j |λi − λj |

)
. ■

The bound above is expressed in terms of the norm of the
perturbation B and the difference in the eigenvalues of A.
We can exploit this result to obtain a separate and strictly
tighter bound expressed in terms of the maximum eigenvalue
separation of B.

Corollary 1: Under the same assumptions of Theorem 1,
the angle θk between the kth eigenvector of A and A+B
is bounded by:

|θk| ≤ sin−1

(
maxi ̸=j |ζi − ζj |
mini ̸=j |λi − λj |

)
, (10)

where ζi is the ith eigenvalue of B.
Proof : First, note that adding a multiple of the identity kI

to a matrix does not alter its eigenvectors, and shifts all its
eigenvalues by k. Thus, the eigenvectors of A +B are the
same as those of the matrix

A+B− 1

2

(
λ(B) + λ(B)

)
I

where λ(B) and λ(B), respectively, denote the maximum
and minimum eigenvalues of B.
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Accordingly, we may consider the equivalent perturbation
B̂ = B − 1

2

(
λ(B) + λ(B)

)
I. By construction, then, λ(B̂)

and λ(B̂) are:

λ(B̂) =
1

2

(
λ(B)− λ(B)

)
=

1

2
max
i,j
|ζi − ζj | ,

λ(B̂) = −1

2

(
λ(B)− λ(B)

)
= −1

2
max
i,j
|ζi − ζj | .

Therefore, the induced ℓ2 norm of B̂ is:

∥B̂∥ = 1

2
max
i,j
|ζi − ζj | , (11)

and by Theorem 1, since perturbing by B̂ and B produces
the same eigenvalue perturbation to A, we conclude that for
the kth eigenvector angle:

|θk| ≤ sin−1

(
maxi̸=j |ζi − ζj |
mini ̸=j |λi − λj |

)
. ■

For a symmetric matrix B it always holds that
maxi̸=j |ζi − ζj | ≤ 2∥B∥, making this a tighter bound
than that in Theorem 1. Intuitively, Corollary 1 minimizes
the bound (7) over all matrices B̂ that produce the same
eigenvectors as A+B.

B. From Overlap to Eigenvalue Separation
In [8], the authors prove that their notion of compact set

overlap δ can be used to bound the norm of the difference be-
tween the second moments of each set. However, Corollary 1
requires a bound on the eigenvalue separation, rather than
norm. In this section, we show how a similar analysis can
also yield an equally tight bound on eigenvalue separation.

First, we need a measure of how “close” two sets H and
H ′ are. To characterize this, we recall the following notions
of size ρ and overlap δ from [8]:

ρ(H,H ′) = min
q∈Rn

max
x∈H∪H′

∥x− q∥, (12)

δ(H,H ′) =
|H ∩H ′|

max{|H|, |H ′|}
. (13)

Note that ρ(H,H ′) describes the radius of the smallest ℓ2-
ball containing both H and H ′, while δ(H,H ′) is a measure
of geometric similarity.

Remark 1: When using PASTA, the definitions of δ and
ρ do not apply directly to the sets H1 and H2 = RH1 + p,
which will not overlap in general. Instead, we are interested
in how similar the (noisy) observed set H2 is to the reference
set H1 under the true rotation R and translation p. This
is equivalent to using δ and ρ to compare a “perturbed”
version of the set H1, which we call H ′

1, which is defined by
H2 = RH ′

1 + p. Note that H1 ̸= H ′
1 in general because of

occlusions, LiDAR resolution, and noise. In the following, δ
quantifies the overlap between H1 and H ′

1.
We need the following result, which we recall from [8].
Theorem 2 (Theorem 2, [8]): Let H,H ′ ⊂ Rn be com-

pact sets of non-zero measure, and let their first moments be
c, c′ ∈ Rn respectively. Further, let their size be ρ(H,H ′) ∈
R≥0 and their overlap be δ(H,H ′) ∈ [0, 1]. Then:

∥c− c′∥ ≤ 2(1− δ(H,H ′))ρ(H,H ′). (14)

We now present our new result.
Theorem 3: Let H,H ′ ⊂ Rn be compact sets of non-zero

measure, and let their second moments be Σ,Σ′ ∈ Rn×n

respectively. If their size is ρ(H,H ′) and their overlap is
δ(H,H ′) ∈ [0, 1], then:

λ(Σ′ −Σ)− λ(Σ′ −Σ) ≤
(
2(1− δ) + 4(1− δ)2

)
ρ2,

(15)
where λ(·) and λ(·) again denote the maximum and mini-
mum eigenvalues of a symmetric matrix.

Proof: For space reasons, we omit a detailed derivation
of the following claim, but its proof can be found in [8,
Theorem 2]. Let c and c′ be the first moments of H and
H ′ respectively, and let us define ∆c = c′ − c. Then, the
following holds:

Σ′ −Σ =

∫
(x− c′)(x− c′)T f+(x) dµ

−
∫

(x− c′)(x− c′)T f−(x) dµ+∆c∆cT ,

(16)

where f+ and f− are non-negative and satisfy:∫
f+(x) dµ =

∫
f−(x) dµ ≤ 1− δ. (17)

Note that Σ′ −Σ is the sum of three terms such that:
1)
∫
(x − c′)(x − c′)T f+(x) dµ is positive definite with

minimum eigenvalue zero and maximum eigenvalue:

λ

(∫
(x− c′)(x− c′)T f+(x) dµ

)
=

∥∥∥∥∫ (x− c′)(x− c′)T f+(x) dµ

∥∥∥∥
≤
∫ ∥∥(x− c′)(x− c′)T

∥∥ f+(x) dµ ≤ (1− δ)ρ2.

2) Analogously, −
∫
(x−c′)(x−c′)T f−(x) dµ is negative

definite with maximum eigenvalue zero and minimum
eigenvalue:

λ

(
−
∫

(x− c′)(x− c′)T f+(x) dµ

)
≥ −(1− δ)ρ2.

3) The eigenvalues of ∆c∆cT are all zero except for
λ(∆c∆cT ) = ∥∆c∥2 ≤ 4(1 − δ)2ρ2. Where the
inequality holds by Theorem 2.

Consequently, the eigenvalues of Σ′ −Σ are bounded as:

λ(Σ′ −Σ) ≤ (1− δ)ρ2 + 0 + 4(1− δ)2ρ2,

λ(Σ′ −Σ) ≥ 0− (1− δ)ρ2 + 0.

Taking the difference, we recover:

λ(Σ′ −Σ)− λ(Σ′ −Σ) ≤
≤ (1− δ)ρ2 + 4(1− δ)2ρ2 −

(
−(1− δ)ρ2

)
=
(
2(1− δ) + 4(1− δ)2

)
ρ2. ■

With Theorem 3 in hand, we can express our new, tighter
error bounds as a function of δ(H,H ′) and ρ(H,H ′).

Theorem 4 (PASTA error bound): Let H,H ′ ⊂ Rn be
non-empty compact sets of non-zero measure with an overlap
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of δ(H,H ′) ∈ [0, 1]. Let c, c′ and Σ,Σ′ be the first and
second moments of H,H ′, and define the constants:

ec = 2(1− δ)ρ(H,H ′),

eΣ =
(
2(1− δ(H,H ′)) + 4(1− δ(H,H ′))2

)
ρ2(H,H ′).

Let (R,p) be the true transformation relating H to RH ′+p,
and

(
R̂, p̂

)
= PASTA(H,RH ′ + p) be the transformation

estimated by PASTA. Then, if mini,j |λi−λj | > 2eΣ, where
λi is the ith eigenvalue of the second moment of H , the
following holds:

∥R̂−R∥ ≤
√
n

eΣ
∆λ(Σ)

∥p̂− p∥ ≤
√
n

eΣ
∆λ(Σ)

∥c∥+ ec.
(18)

Proof: By the analysis in [8, Section IV], it holds that:

∥R̂−R∥ = ∥V′VT − I∥ = ∥V′ −V∥, (19)

where V and V′ are the eigenvector matrices of the covari-
ance matrices of H and H ′ respectively. Then, note that by
simple trigonometry if a vector v ∈ Rn is rotated by an angle
θ into the vector v′, their distance is ∥v′−v∥ = 2∥v∥

∣∣sin θ
2

∣∣.
Therefore, by Theorem 1 and Theorem 3:

∥R̂−R∥2 = ∥V′ −V∥2 ≤ ∥V′ −V∥2F ≤
n∑

i=1

∥v′
i − vi∥2

≤
n∑

i=1

(
2 sin

(
1

2
sin−1

(
∆λ(Σ

′ −Σ)

∆λ(Σ)

)))2

≤
n∑

i=1

(
2 sin

(
sin−1 1

2

(
∆λ(Σ

′ −Σ)

∆λ(Σ)

)))2

≤ n

(
∆λ(Σ

′ −Σ)

∆λ(Σ)

)2

≤ n

(
eΣ

∆λ(Σ)

)2

.

As for the position error, also by the analysis in [8, Section
IV] and Theorem 2, it holds that:

∥p̂− p∥ ≤ ∥R̂−R∥∥c∥+ ∥c′ − c∥

≤
√
n

eΣ
∆λ(Σ)

∥c∥+ ∥c′ − c∥ ≤
√
n

eΣ
∆λ(Σ)

∥c∥+ ec.

■

We now substantiate the claim that this bound is a major
improvement over the one in [8, Theorem 3]. In Fig. 2 we
illustrate the difference between the bounds by plotting them
as functions of δ and fixing their other parameters at some
arbitrary value (the bound from our Theorem 4 is tighter
than the one from [8, Theorem 3] regardless of choice). In
particular, we plot the functions for the parameters: n = 2,
ρ = 5m, ∆λ(Σ) = 1, and ∥c∥ = 1m. The rotation
error is expressed as an angle estimation error for ease of
interpretation.

Remark 2: PASTA’s theoretical guarantees can be applied
to other algorithms with a supervisory approach. First run
PASTA, which produces an estimate with worst-case guaran-
tees. Then, run any other algorithm to find a new estimate.
The triangle inequality immediately provides a naive guar-
antee on the estimate provided by this new algorithm.
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Fig. 2. Comparison of the bound in Theorem 4 and [8, Theorem 3].

Remark 3: Theorem 4 depends on the similarity, δ, be-
tween the two convex hulls H1 and H2. Occlusions or non-
convex geometry cause dramatic changes in these shapes,
and the overlap δ naturally reduces and the estimation error
increases according to (18). Note that when the shapes are
sufficiently different and δ is very small, the measurements
have so little in common that it is unrealistic to expect any
algorithm to correctly solve the localization problem.

Remark 4: PASTA’s error bound can be computed
through either ∆λ(B) or the geometric parameters (δ, ρ).
This flexibility raises the question of which quantity to use in
a practical setting. Either set of parameters can be estimated
by performing calibration experiments in an environment
with access to the ground truth poses by computing the
true ∆λ(B) or δ at these poses, then estimating their worst-
case values outside. Note that the bound computed directly
from an estimate of ∆λ(B) provides a significantly tighter
bound (see Fig. 4). δ and ρ, however, have a clearer physical
interpretation and are easier to reason about during the
calibration and subsequent worst-case estimation.

V. FROM THEORY TO PRACTICE

While the bounds from Corollary 1 and Theorems 2 and
4 hold in theory, we now establish that they are reasonably
tight and behave as expected in extreme settings.

We equipped a small wheeled robot with a 360◦ 2D
LiDAR with 0.5◦ of angular resolution (i.e., each LiDAR
point cloud consists of 720 points in the plane). We placed
the robot in a closed indoor environment with several obsta-
cles, measuring both ground truth poses and LiDAR sensor
measurements as the robot constantly moved around the
environment. See Fig. 3 for a sample LiDAR measurement
and the robot’s trajectory in the environment.

Remark 5: We use a 2D LiDAR sensor in this regime
since we are considering the indoor navigation setting, where
2D LiDAR is often sufficient. The theory developed for
PASTA extends naturally to three dimensions.

For a given pair of scans from the experiment, we compute
the error bounds in two ways: i) We use the ground truth
measurements to align the convex hulls of LiDAR point
clouds in the two compared scans, then we compute the
size and overlap parameters ρ and δ, and the error bound
via Theorem 4; ii) Since both scans are now aligned with
the true transformation, we can also directly compute the
perturbations to the second moments ∆λ(Σ

′−Σ) = ∆λ(B),
which characterizes the bound in Corollary 1. The first
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Fig. 3. Sample LiDAR scan and trajectory (left) and image (right) of the
robot from the experimental setup.
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Fig. 4. Comparison of the error bound in Corollary 1 (orange) and
Theorem 4 (blue) and the empirical error of PASTA (green) on real
LiDAR data. Increased “lag” implies larger times between compared LiDAR
measurements.

approach is equivalent to first computing an upper bound
for ∆λ(Σ

′ − Σ) from δ and ρ, and then using this upper
bound in Corollary 1.

For each LiDAR scan at index i, we align it with the scan
at index i+k, and plot the computed error bounds along the
trajectory for three different values of “lag” k ∈ N, displayed
in Fig. 4. Generally, with higher k the scans we compare
are taken from poses further apart along the trajectory, thus
more likely to be different, with the expectation of a worse
bound and estimation error. Other variations naturally occur
depending on the obstacles and their relative location to
the robot, seen as small spikes in Fig. 4. We only show
angular error bounds, as translation error bounds are a simple
affine function of this value. For a given pair of scans,
PASTA provides two candidate estimated angles separated
by 180 degrees. We plot the error for the correct choice,
as there are multiple ways to reliably select the correct one
(see [8]), and the bounds only apply to this “correct choice”.
Missing values in the plot correspond to scan pairs where
mini,j |λi−λj | > 2eΣ fails to hold, violating the assumptions
for our results.

We observe that the perturbation bound in Corollary 1 is
very tight, and most of the difference between the bound
in Theorem 4 and the actual estimation error comes from
upper bounding ∆λ(Σ

′ −Σ) via knowledge of δ and ρ. As
expected, larger distances between poses (as measured by

EXPERIMENT SUMMARY

Lag k Bound from δ, ρ Bound from ∆λ(Σ
′−Σ) PASTA error

1 13.0◦, 99.1% 1.4◦, 100% 0.6◦, n/a
10 27.9◦, 80.5% 4.4◦, 100% 1.9◦, n/a
50 38.8◦, 50.0% 9.0◦, 100% 4.1◦, n/a

For each lag and error type, we list the mean error over the experiment
and the fraction of data points that satisfy the necessary assumptions.

the “lag” k) lead to higher error bounds. To counteract these
effects, one may need a weak correspondence method that
identifies common measured regions of both scans, which is
a direction of current research.

VI. CONCLUSIONS

In this paper, we presented a LiDAR localization algorithm
called PASTA and derived new theoretical worst-case bounds
on its estimation error. These worst-case bounds are crucial
for interfacing robotic systems using LiDAR for localization
with safety-critical control algorithms. We also provided ex-
perimental evidence highlighting the tightness of the bounds
and where improvements could be made.
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