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Johan Kon1, Roland Tóth2, Jeroen van de Wijdeven3, Marcel Heertjes1,3, Tom Oomen1,4

Abstract— Identifying structured discrete-time linear
time/parameter-varying (LPV) input-output (IO) models with
global stability guarantees is a challenging problem since
stability for such models is only implicitly defined through the
solution of matrix inequalities (MI) in terms of the model’s
coefficient functions. In this paper, a structured linear IO model
class is developed that results in a quadratically stable model
for any choice of coefficient functions, enabling identification
using standard optimization routines while guaranteeing
stability. This is achieved through transforming the MI-based
stability constraints in a necessary and sufficient manner, such
that for any choice of transformed coefficient functions the MIs
are satisfied. The developed stable LPV-IO model is employed
in simulation to estimate the parameter-varying damping of
mass-damper-spring system with stability guarantees, while a
standard LPV-IO model results in an unstable estimate.

I. INTRODUCTION

Given a stable system, stability of models obtained using
system identification [1] is often desirable for their utilization
in prediction, simulation, and control. However, even if
the underlying data-generating system is stable, the model
resulting from the identification process can be unstable due
to finite-time effects, modeling errors, or measurement noise
[2].

Ensuring stability of identified models has attracted inter-
est from the perspective of different model classes, rang-
ing from linear time-invariant (LTI) [2]–[6] through lin-
ear time/parameter-varying (LTV/LPV) [7]–[9] to nonlinear
models [10]–[13]. These results have been developed both
in continuous time (CT) [13] and in discrete time (DT), and
for state-space (SS) [3], [5], [8], [12], [13] and input-output
(IO) representations [7], [9], [10].

To ensure stability of an identified model, three different
approaches are distinguished in the aforementioned literature.
First, certain approaches involve projecting identified param-
eters back onto the set of stable models post-identification
[3], [6]. However, this projection disregards the measured
data and may lead to a significant decline in prediction
performance [3]. Second, stability can be enforced during
optimization by introducing constraints on the model pa-
rameters that, when satisfied, imply stability [2], [7], [10],
[11]. Nevertheless, these constraints typically take the form
of matrix inequalities (MI), which can significantly increase
the computational complexity of the optimization process.
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The most recent and third approach, first described by [12],
reparameterizes these LMI conditions representing stability
in terms of transformed parameters in such a way that
the MI conditions are satisfied for any choice of these
transformed parameters, i.e., the model is always guaranteed
to be stable [5], [8], [9], [12], [13]. This allows for the use of
arbitrary functions in the models, such as neural networks or
polynomials, while still guaranteeing stability. Additionally,
this enables the use of unconstrained optimization methods.

Next to stability, it is often desired to embed structure into
the model used in identification. One example is grey-box
system identification [14], where models consist of phys-
ical equations imposing structural relationships and model
parameters representing unknown physical functions. Other
examples include embedding prior knowledge, encoding de-
pendence of the model on only a specific subset of delayed
inputs and outputs, and in the LPV case, independence of
certain coefficient functions from the scheduling signal.

Guaranteeing stability through reparametrization in the
structured case is significantly more complex than in the
unstructured case [12]. Specifically, the imposed structure
results in a stability test in which some parts are fixed. Repa-
rameterization of this stability test then has to adhere to this
imposed structure. Additionally, the structure also imposes
conditions on possible Lyapunov functions. In contrast, in an
unstructured setting all parts of the stability condition can be
freely reparametrized. Only in the DT LTI case [5] a scaling
argument can be employed to ensure that the eigenvalues
of the system are within the unit circle. However, such an
approach does not extend to LPV/LTV models, in which it
is required to adopt a Lyapunov approach.

The main contribution of this work is a linear IO model
class where the model coefficient functions are constrained
within a lower dimensional linear subspace and stability of
the model is ensured for any choice of coefficient functions.
This is achieved through the following subcontributions.
C1) A criterion based on coupled matrix inequalities to

characterize stability of a linear IO model (Section III).
C2) A reparameterization of the coefficient functions such

that the above criterion is satisfied for any choice of the
transformed coefficient functions (Section IV).

C3) A simulation example in which a neural network is
employed to learn a position-dependent damping with
stability guarantees (Section V).

The stability criterion used in this paper is quadratic sta-
bility under a parameter-invariant Lyapunov function (QS).
Consequently, only systems that are QS can be represented
by the developed stable LPV-IO model. While this could be
conservative since not all stable LPV-IO systems are also QS
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[15], the developed stable LPV-IO already represents a sig-
nificant improvement over current methods which consider
only deviations from a fixed QS model or incorporate QS as
a constraint during optimization [7].

II. PROBLEM FORMULATION

Consider the discrete-time linear system G : u→ y with
input uk ∈ R and output yk ∈ R with y resulting from the
parameter-varying input-output difference equation

yk = −
na∑
i=1

ai(ρk)yk−i +

nb−1∑
i=0

bi(ρk)uk−i, (1)

with coefficients functions ai, bi : P → R describing the
dependence of the difference equation on a scheduling signal
ρ : Z≥0 → P ⊆ Rnρ at time index k ∈ Z≥0. Note that for
constant ρk = ρc ∀k, (1) is equivalent to the LTI transfer
function G(z) = β(z)/α(z) with β(z) =

∑nb−1
i=0 bi(ρc)z

−i

and α(z) = 1 +
∑na

i=1 ai(ρc)z
−i. Thus, ai(ρk) can be

interpreted as describing the variation in poles of (1), and
bi(ρk) as the variation in zeros. For ρk = k ∀k, an LTV-IO
model is recovered. Define the collection of ai, bi as

A(ρk) =
[
a1(ρk) a2(ρk) . . . ana

(ρk)
]
∈ R1×na , (2)

B(ρk) =
[
b0(ρk) b1(ρk) . . . bnb−1(ρk)

]
∈ R1×nb . (3)

Now consider that it is desired that both R1) the coefficient
functions A(ρ), B(ρ) are structured, and R2) the dynamics
represented by (1) are stable. With respect to R1, in this
paper the considered structure is of the form

A(ρ) = Ā(ρ)H, B(ρ) = B̄(ρ)Hb, (4)

with predefined full rank structure matrices H ∈ Rnz×na ,
nz < na, Hb ∈ Rnl×nb , nl < nb and lower-dimensional
coefficient functions Ā : P → R1×nz , B̄ : P → R1×nl .
In other words, A(ρ) and B(ρ) are linearly constrained to
some lower-dimensional space of coefficient functions Ā(ρ)
and B̄(ρ). Some examples of this structure are as follows.

• Enforcing dependency of (1) on only specific
yk−i, uk−i, i.e., sparsity in A(ρ). For example, yk =
−a1(ρk)yk−1 − a3(ρk)yk−3 can be realized with
A(ρ) = [a1(ρ) a3(ρ)]

[
1 0 0
0 0 1

]
.

• Grey-box models in which some physical coefficients
are known, and it is only of interest to estimate specific
coefficient functions, see Section V.

With respect to R2, to characterize stability, the standard
notion of quadratic Lyapunov stability (QS) is adapted to the
IO case using a state vector of delayed outputs.

Definition 1 Given coefficient functions A(ρ), (1) is said to
be quadratically stable if there exists a P ∈ Sna

≻0 such that

x⊤k+1Pxk+1 < x⊤kPxk ∀ρk ∈ P, uk = 0 ∀k, (5)

where xk =
[
yk−1 yk−2 . . . yk−na

]⊤ ∈ Rna evolves
according to (1) with uk = 0 ∀k for any initial x0 ∈ Rna .

Quadratic stability as in Definition 1 implies that y asymp-
totically approaches zero for all ρ if the input u is uniformly
zero after some time k̄, i.e., limk→∞ yk = 0 for any ρ, any

x0 and any u with uk = 0 ∀k > k̄ [16]. Note that QS is both
necessary and sufficient for stability in the LTI case, while
it is only sufficient for LPV/LTV IO representations.

Given a structure matrix H , the goal of this paper is
to parametrize all structured coefficient functions A(ρ) =
Ā(ρ)H such that the system (1) is QS as in Definition 1. In
other words, the goal is to describe the set of functions

Ā = {Ā(ρ) | A(ρ) = Ā(ρ)H, ∃P ∈ Sna
≻0 s.t. (5)}. (6)

The approach in this paper is to develop a parametrization of
Ā(ρ) such that by construction of Ā(ρ) there always exists
a P ≻ 0 for which (5) is satisfied over the whole domain
P, avoiding the need for testing (5) during identification.
Specifically, Ā(ρ) and P are jointly constructed from trans-
formed coefficient functions ξ(ρ) : P→ R1×na and full rank
X5 ∈ Rna×na that can be chosen freely and an auxilary
µ ∈ R(0,1] found through bisection.

This parametrization without constraints on the coefficient
functions can subsequently be employed in system identifica-
tion, in which now any bounded functional parametrization
for ξ(ρ) can be chosen, e.g., a linear function or a neural
network, while stability is guaranteed by construction.

III. QUADRATICALLY STABLE LINEAR IO SYSTEMS

To obtain a parameterization of all structured coefficients
Ā(ρ)H such that by construction (1) is QS, first further
conditions on Ā(ρ) and P are required to determine if (1) is
QS. This section provides necessary and sufficient conditions
for QS of (1) in terms of matrix inequalities for the Lyapunov
certificate P given H , constituting Contribution C1.

Before developing the main equivalence result, first define

F =

[
0 0
Ina 0

]
∈ Rna+1×na+1, G =

[
1
0

]
∈ Rna+1. (7)

Additionally, given full row rank H ∈ Rnz×na , define
V2 ∈ Rna×na−nz as an orthonormal basis for kerH , i.e.,
V ⊤
2 V2 = Ina−nz

and HV2 = 0, and define V1 ∈ Rna×nz

as an orthonormal basis for Im H⊤, i.e., V ⊤
1 V1 = Inz

with
HV1 ∈ Rnz×nz full rank. Matrices Vi can be obtained from,
e.g., a singular value decomposition of H . With the provided
definitions, the main result of this section can now be stated.

Theorem 2 Given a structure matrix H , associated V1, V2
and structured coefficient functions A(ρ) = Ā(ρ)H , (1) is
QS as in Definition 1 if and only if there exists a P ∈ Sna

≻0

and M : P→ R1×nz with ∥M(ρ)∥2<1 ∀ρ ∈ P such that

F⊤PF − P − F⊤PG(G⊤PG)−1G⊤PF ≺ 0, (8)

V ⊤
2 (F⊤PF − P )V2 ≺ 0, (9)

and M(ρ) is related to Ā(ρ) as

M̄⊤
1 (ρ) =X

−1
4 M⊤(ρ)X3 (10)

+ (V ⊤
1 Q

−1V1)
−1V ⊤

1 Q
−1V2V

⊤
2 F

⊤PGX−1
2 ,

Ā(ρ)=(X−1
2 M̄1(ρ) + (G⊤PG)−1G⊤PFV1)(HV1)

−1, (11)



with Cholesky decompositions X⊤
1 X1 = Q, X⊤

2 X2 =
G⊤PG, X⊤

3 X3 = Q̂ and X⊤
4 X4 = V ⊤

1 Q
−1V1, where (8)-(9)

guarantee that Q ≻ 0, Q̂ ≻ 0 with

Q = −F⊤PF + P + F⊤PG(G⊤PG)−1G⊤PF, (12)

Q̂ = I −X−⊤
2 G⊤PFV2(V

⊤
2 QV2)

−1V ⊤
2 F

⊤PGX−1
2 . (13)

The proof of Theorem 2 is provided in Section VII and is
based on embedding (1) as xk+1 = (F −GĀ(ρ)H)xk with
state xk as in Definition 1 and proving that V (x) = x⊤Px is
a Lyapunov function. Theorem 2 states that if (1) is QS, then
there exists a P that satisfies (8)-(9), which are necessary
conditions for P to be a Lyapunov function. Given such a
P , transforming coefficient functions Ā(ρ) according to (10)-
(11) results in transformed coefficient functions M(ρ), which
have to reside in the unit ball if (1) is QS. The other way
around, which is more interesting for system identification,
Theorem 2 states that if a P can be found which satisfies (8)-
(9), then all coefficient functions Ā(ρ) that satisfy (5) with
this P , i.e., all Ā(ρ) for which this P proves QS, can be
constructed from functions M(ρ) contained in the unit ball.
This set of functions constrained to the unit ball is easy to
describe in an unconstrained fashion, which is exploited for
system identification purposes in the next section, coupled
with a method to construct a P that satisfies (8)-(9).

IV. TRANSLATION TO A STABLE IO MODEL CLASS

Given the equivalence result of Theorem 2 characteriz-
ing all coefficient functions Ā(ρ) such that (1) is QS, in
this section, a model parameterization is developed that
by construction satisfies the conditions of Theorem 2, i.e.,
a model that is guaranteed to be QS without constraints
on the coefficient functions, constituting Contribution C2.
This model parametrization can then be used in system
identification to ensure stability of the identified model.

A. Reparametrizing All QS Linear IO Systems

To satisfy the conditions of Theorem 2 by construction,
it is required to parametrize both an M(ρ) contained in the
unit ball as well as a P that satisfies (8)-(9).

First, M(ρ) is reparametrized to be inside the unit ball.

Lemma 3 Given M(ρ) : P→ R1×na , ∥M(ρ)∥2 < 1 ∀ρ ∈ P
if and only if there exist bounded matrix functions D(ρ) :
P→ R, Z(ρ) : P→ Rna−1 such that

N(ρ) = D⊤(ρ)D(ρ) + Z⊤(ρ)Z(ρ) + ϵI, (14)

M⊤(ρ) =

[
(I −N(ρ))(I +N(ρ))−1

−2Z(ρ)(I +N(ρ))−1

]
. (15)

with 0 < ϵ≪ 1 a small positive constant.

For a proof, see [8, Lemma 1]. By Lemma 3, any M(ρ)
contained in the unit ball can be represented by unconstrained
D(ρ), Z(ρ). Consequently, D(ρ), Z(ρ) can be chosen as
any bounded function, e.g., radial basis functions, a neural
network or a Fourier expansion, and M(ρ) constructed as
(14)-(15) is guaranteed to be in the unit ball.

Second, it is required to parametrize all P that satisfy (8)-
(9). Current methods to obtain P solve (8)-(9) or equivalent

conditions in an alternating fashion, but provide no con-
vergence guarantees and are computationally complex [17].
Instead, here all P are parameterized by tracing rays and
exploiting that at least one P0 is known that satisfies (8)-(9).

Define Ω = Ω1∩Ω2 as the set of P satisfying (8)-(9) with

Ω1 = {P ≻0 | F⊤PF−P−F⊤PG(G⊤PG)−1G⊤PF ≺0},
Ω2 = {P ≻0 | V ⊤

2 (F⊤PF − P )V2 ≺ 0}, (16)

Ω3 = {P ≻0 | F⊤PF−P ≺ 0}.

Lemma 4 Ω3 ⊂ Ω1 and Ω3 ⊂ Ω2, giving that Ω3 ⊂ Ω.
Moreover, there exists a P0 ∈ Ω3, thus Ω is not empty.

Proof. Follows as −F⊤PG(G⊤PG)−1G⊤PF ⪯ 0 and V2
is full rank. F is stable (λi(F ) = 0 ∀i), i.e., ∃P0 ∈ Ω3.

In other words, the non-empty set Ω3 of Lyapunov func-
tions for F is a subset of all P satisfying (8)-(9). Now, denote
by R†(Q) the solution P ∈ Sna

≻0 to Riccati equation (12).
Then the following lemma holds.

Lemma 5 Given a P ∈ Sna
≻0, P ∈ Ω1 if and only if there

exists a Q ∈ Sna
≻0 such that P = R†(Q ).

Proof. (F,G) is controllable, thus for any Q ∈ Sna
≻0, (12)

has a unique solution P ∈ Sna
≻0 [18], and P ∈ Ω1 as Q ≻ 0.

Conversely, if P ∈ Ω1, Q ∈ Sna
≻0 by definition.

By Lemma 5, any P ∈ Ω1 can be implicitly represented
by some Q ∈ Sna

≻0 through solving (12), which allows for
eliminating constraint (8). However, not all Q ensure that
R†(Q ) ∈ Ω2. Yet, a point Q0 for which P0 = R†(Q0) ∈ Ω
is available by Lemma 4, such that any Q ∈ Sna

≻0 can be
projected back into the direction of Q0 to eventually obtain
a Q for which R†(Q) ∈ Ω2, as detailed next.

Lemma 6 Given a Q0 with R†(Q0) ∈ Ω, then for any Q ∈
Sna
≻0 there exists a µ ∈ R(0,1] such that R†(Q) ∈ Ω with

Q = µQ + (1− µ)Q0. (17)

Proof. If R†(Q ) ∈ Ω2, simply set µ = 1, Q = Q . If
R†(Q ) /∈ Ω2, continuity ensures that there exists a small
enough µ > 0 such that R†(µQ + (1− µ)Q0) ∈ Ω. Specif-
ically, by continuity of the solution R†(Q) [19], continuity
of eigenvalues and strictness of F⊤R†(Q0)F−R†(Q0)≺0,
there exists a ball Bϵ = {Q0 +∆ | ∥∆∥2 < ϵ} such that for
any Q ∈ Bϵ, also R†(Q) ∈ Ω. Then any µ > 0 such that
∥µ(Q −Q0)∥2 < ϵ results in R†(µQ +(1−µ)Q0) ∈ Ω.

Now, by varying Q over Sna
≻0, all Q ∈ {Q ≻ 0 | R†(Q) ∈

Ω2} ⊂ Sna
≻0 can be covered, as the latter is simply a subset of

Sna
≻0. Specifically, if already R†(Q ) ∈ Ω2 simply set µ = 1

to obtain Q = Q . If R†(Q ) /∈ Ω2, Lemma 6 guarantees that
a µ can be obtained such that R†(µQ+ (1− µ)Q0) ∈ Ω.

In summary, the above lemmas guarantee that any P ∈ Ω,
i.e., any P satisfying (8)-(9), can be represented through a
Q ∈ Sna

≻0, Q0 and µ ∈ R(0,1]. Translating this to system
identification, these lemmas enable optimization over Q ∈
Sna
≻0 combined with a simple bisection which is guaranteed

to converge, as opposed to solving (8)-(9) in an alternating
fashion. Last, Q ∈ Sna

≻0 is ensured by parameterizing Q =
X⊤

5 X5 with X5 full rank.



B. A Stable Linear IO Model Class
Above lemmas enable the use of Theorem 2 in system

identification. Specifically, they allow for representing Ā(ρ)
in terms of free bounded functions D(ρ), Z(ρ) and full rank
X5 that construct Ā(ρ), P such that (5) is satisfied, i.e.,
such that (1) with Ā(ρ) is guaranteed to be stable. This
construction is summarized in the next algorithm.

Algorithm 7 Stable structured LPV-IO model.
1: inputs: Structure matrices H,Hb, full rank matrix X5 ∈

Rna×na , a Q0∈Sna
≻0 such that F⊤R†(Q0)F−R†(Q0)≺

0, and functions D : P → R, Z : P → Rna−1, B̄(ρk) :
P→ R1×nl , and data {uk, ρk}Nk=1.

2: calculate Q = X⊤
5 X5 ∈ Sna

≻0.
3: if P = R†(Q ) ∈ Sna

≻0 satisfies (9), set P ← P .
4: else bisect µ ∈ R(0,1] such that P = R†(µQ + (1 −
µ)Q0) satisfies (9) and set P ← P .

5: calculate X1, X2, X3, X4 according to Theorem 2.
6: for k ∈ Z[1,N ] do
7: calculate M(ρk) according to (14)-(15).
8: calculate Ā(ρk) according to (10)-(11).
9: calculate A(ρk) = Ā(ρk)H , B(ρk) = B̄(ρk)Hb.

10: calculate yk according to (1).
11: end for

The functional parameterizations for D,Z, B̄ in Algorithm
7 are intentionally left free, and can be chosen arbitrarily,
e.g., as a neural network, while QS of the model is guar-
anteed by Theorem 2. Any structured QS IO system can
then be represented up to the approximation capabilities of
the functional parametrization of D,Z, B̄. Naturally, a too
limited functional parameterization can introduce structural
bias in the representation of a specific system.

Since all these transformations have well-defined gradi-
ents, this reparameterization can be used both in curve fitting
algorithms using frequency domain data [20] as well as in
prediction error methods using time domain data [1].

V. SYSTEM IDENTIFICATION EXAMPLE

In this section, the developed stable structured LPV-IO
model is used to identify the parameter-varying damping of
a mass-damper-spring system with known mass and stiffness,
resulting in a structured identification setting. This system is
illustrative of, e.g., varying damping due to configuration-
dependent contact forces. Whereas the developed model is
guaranteed to be stable, a baseline model results in unstable
estimates due to the effects of measurement noise1.

The data-generating system G is given by (1) with

A(ρk) =
[
−2 1 + km−1T 2

s

]
+ d(ρk)m

−1Ts
[
1 −1

]
B(ρk) =

[
0 0 m−1T 2

s

]
(18)

ỹk = yk + vk,

with k = 103, m = 0.2, Ts = 0.05, ρ ∈ R[0,1] = P and
d(ρ) = 6 + 4e−10ρ2

, resulting in frozen LTI dynamics as
shown in Fig. 1. These parameters have been chosen such

1The code for this example and other more general LTI/LPV examples
are available at https://gitlab.tue.nl/kon/stable-io-ide
ntification/-/tree/main/Structured

Fig. 1. Bode plot of the frozen LPV dynamics, i.e., the frequency response
of the LPV dynamics for constant scheduling ρ.

that the system is at the boundary of stability. Furthermore,
ỹk ∈ R is a measurement of the true output yk ∈ R perturbed
by zero-mean i.i.d. white noise vk with E(v2k) = σ2

v , resulting
in an output-error (OE) identification setup.

Note that, instead of a linear constraint as in (4), the
true system (18) contains an affine structural constraint
A(ρ) = h + d(ρ)H with h=

[
−2 1+km−1T 2

s

]
and H =

m−1Ts [1 − 1]. To convert this constraint to a linear one, F
is redefined as F←F+G(h+d0H), such that it again holds
that xk+1 = Fxk+Gds(ρk)H with ds(ρk) = d(ρk)−d0. For
d0 > 5, F is stable, giving that Lemma 4-6 are applicable.

A dataset D = {uk, ρk, ỹk}Nk=1 of length N = 1000 is
generated with uk =

∑10
i=ℓ sin(2π

ℓ
20 t) and ρk = 1−kN−1+

wk, where wk is zero-mean white noise with E(w2
k) = 10−2.

The noise variance is set to σ2
v=3.185, resulting in a signal-

to-noise ratio of 10 log10 ∥y∥2ℓ2/∥v∥
2
ℓ2
=6 dB.

Given this data, two models M1 and M2 are identified.
M1 is a standard structured LPV-IO model that directly
parametrizes Ā(ρ) =

∑5
i=0 θiρ

i, i.e., as a 5th order poly-
nomial [21] with parameters θ = [θ0, . . . , θ5]. M2 is the
developed stable structured LPV-IO model with D(ρ) =∑5

i=0 ψiρ
i and X5 ∈ R2×2 as an upper triangular matrix,

resulting in parameters ψ = [ψ0, . . . , ψ5, vec(X5)] ∈ R9.
Both models have full knowledge of k,m, Ts, such that H is
fully known. For M2, Q0 ∈ Sna

≻0 is initialized by evaluating
(12) for P0 ∈ Sna

≻0 satisfying F⊤P0F−P0 = −I . Note that
M2 does not need Z(ρ) as Ā(ρk) ∈ R.

Both models are identified using prediction-error based
minimization based on gradient-based optimization [1],
which in the OE setting corresponds to minimizing the ℓ2
loss of the simulation error, i.e. for M2 according to

VN (ψ) =
1

N

N∑
k=1

(yk −M2(uk;ψ))
2, (19)

with M2(uk;ψ) the simulated model response of M2 to
uk, and similarly for M1. Criterion (19) is minimized in
MATLAB using the Levenberg-Marquardt algorithm [22].

Fig. 2 shows the true and estimated parameter-varying
damping for both models, together with the boundary for
d that results in stable frozen LTI dynamics. Note that this
boundary is not at d = 0 due to the Euler discretization. It is
observed that for p ∈ [0, 0.03] ⊂ P, M1 results in unstable
frozen LTI dynamics, even though the true system is quadrat-
ically stable. This is a consequence of the measurement
noise and finite-data effects. In contrast, M2 is guaranteed
to be quadratically stable, and consequently it results in
stable frozen LTI dynamics for any choice of ρ. In terms



Fig. 2. The true parameter-varying damping d(ρ) ( ) is accurately
described by the stable LPV-IO model ( ) while stability is guaranteed
by construction. As a consequence, its coefficient function is guaranteed to
result in a stable LTI system for each constant ρ, i.e., it stays outside the
region for which d(ρ) results in an unstable LTI model ( ). In contrast,
due to the effects of measurement noise, the standard LPV-IO model ( ) is
unstable: for constant ρ ∈ [0, 0.03] ⊂ P it results in unstable LTI models.

Fig. 3. Coefficient set AP = {A = [a1 a2] | (F − GA)⊤P (F −
GA) − P ≺ 0}, i.e., the set of unstructured coefficients for which P
proves stability at step 1 ( ), 10 ( ) and 23 ( ) of the optimization. At
every step, the intersection of AP with the affine structure set ( ) is not
empty, i.e., the structured coefficient set ĀP = {Ā = d | (F − G(h +
ĀH))⊤P (F −G(h+ ĀH))−P ≺ 0} is not empty. During identification,
P is optimized in such a way that the true system with A(ρ) as in (18)
( ) is contained in AP . Each AP is contained within A ( ), i.e., the set
of unstructured coefficients that result in a stable system in the LTI case.

of cost function, the models achieve VN (θ∗) = 3.218 and
VN (ψ∗) = 3.199 on the training dataset, which is very close
to the noise variance σ2

v = 3.185. However, on a validation
dataset, M1 only obtains VN (θ∗) = 55.78 as its predictions
diverge for the validation scheduling trajectory due to the
instability, while M2 still achieves VN (ψ∗) = 3.220.

Taking a closer look into the stability set, Fig. 3 shows all
unstructured coefficients a1, a2 for which P at the current
iteration of the optimization of (19) proves stability. By
varying P , the complete set of structured coefficients that
result in a QS IO model can be represented.

VI. CONCLUSION

In this paper, a linear IO model class is developed that is
both guaranteed to be stable by construction and allows for
a user-specified linear structure constraint on the coefficient
functions. This stable structured linear IO model class allows
for identifying stable models without enforcing LMI condi-
tions during optimization or projecting the identified model
onto the set of stable models afterwards. It can be used in
any gradient-based system identification procedure since all
operations in the model have well defined gradients, e.g.,
it can be used to fit frequency response measurement data

using a curve-fitting algorithm or to fit time domain data
using prediction-error methods as is illustrated in the paper.

The results derived in this paper straightforwardly general-
ize towards the multi-input-multi-output and state-space case
as long as the structure specification remains unchanged. An
important future direction is to extend the results towards
less conservative stability criteria [15].

VII. PROOF OF THEOREM 2

Before considering the proof, first note that the evolution
of (1) for uk=0 ∀k ∈ Z≥0 can equivalently be expressed as

xk+1 =


−a1(ρk) . . . −ana−1(ρk) −ana

(ρk)
1 0

. . . 0
1 0

xk
= (F −GA(ρk))xk = (F −GĀ(ρk)H)xk, (20)

see also [9], with xk =
[
yk−1 yk−2 . . . yk−na

]⊤∈Rna .
Consequently, (1) is QS, see Definition 1, if and only if

(F−GĀ(ρk)H)⊤P (F−GĀ(ρk)H)−P ≺ 0 ∀ρk ∈ P. (21)

Necessity: Given an Ā(ρ)H = A(ρ) such that (1) is QS, i.e.,
(21) holds, it is shown that 1) P satisfies (8)-(9), 2) that (8)-
(9) imply that also Q, Q̂ in (12)-(13) are positive definite,
3) that there exists an M̄1(ρ) related to Ā(ρ) as in (11), and
4) that there exists an M(ρ) related to M̄1(ρ) as in (10).

1) Necessary conditions on P : First, since H has a kernel,
simply projecting (21) onto the basis for this kernel V2 gives
(9). Second, note that G is full rank and thus G⊤PG is
invertible. Then, completing the squares in (21) gives

(F −GĀ(ρk)H)⊤P (F −GĀ(ρk)H)− P = F⊤PF − P
−F⊤PG(G⊤PG)−1G⊤PF+R⊤(ρk)G

⊤PGR(ρk), (22)

with R(ρk) = Ā(ρk)H − (G⊤PG)−1G⊤PF . Now note that
R(ρk)

⊤G⊤PGR(ρk) ⪰ 0, thus (8) must hold if (21) holds.
2) Positive definiteness of Q,Q̂ in (12)-(13): Given a P

that satisfies (8)-(9), Q as defined in (12) is trivially positive
definite since P satisfies (8). To prove that Q̂ ≻ 0, note that
V ⊤
2 (F⊤PF − P )V2 ≺ 0 and (8) imply that

V ⊤
2 QV2 − V ⊤

2 F
⊤PG(G⊤PG)−1G⊤PFV2 ≻ 0. (23)

Now, it holds that G⊤PG ≻ 0 and V ⊤
2 QV2 ≻ 0 such that

taking the Schur complement of (23) implies

G⊤PG−G⊤PFV2(V
⊤
2 QV2)

−1V ⊤
2 F

⊤PG ≻ 0. (24)

Then a congruence with X−1
2 gives Q̂ ≻ 0.

3) Relation between Ā(ρ) and M̄1(ρ): Since Q≻0, it has
a factorization Q=X⊤

1 X1. Similarly G⊤PG=X⊤
2 X2. Then

a congruence of (22) with X−1
1 gives that

I −X−⊤
1

(
Ā(ρk)H − (G⊤PG)−1G⊤PF

)⊤
X⊤

2 X2 (25)(
Ā(ρk)H − (G⊤PG)−1G⊤PF

)
X−1

1 ≻ 0 ∀ρk ∈ P,

or equivalently I−M̂⊤(ρk)M̂(ρk) ≻ 0 ∀ρk ∈ P by defining

M̂(ρ) = X2

(
Ā(ρ)H − (G⊤PG)−1G⊤PF

)
X−1

1 . (26)



In other words, if (1) with A(ρ) = Ā(ρ)H is QS, there
exists an M̂(ρ) that is contained in the unit ball. Additionally,
M̂(ρ) is structured. Specifically, a multiplication of (26) with
X1

[
V1 V2

]
reveals

M̂(ρ)X1

[
V1 V2

]
=X2

[
Ā(ρ)HV1 0

]
(27)

−X−⊤
2 G⊤PF

[
V1 V2

]
.

where it has been used that (G⊤PG)−1 = X−1
2 X−⊤

2 . Now
express M̂(ρ) in new coordinates M̄(ρ) as

M̂(ρ) =
[
M̄1(ρ) M̄2(ρ)

] [
V1 V2

]⊤
X−1

1 , (28)

such that (27) results in

M̄2(ρ) =M̄2 = −X−⊤
2 G⊤PFV2, (29)

M̄1(ρ) =X2Ā(ρ)HV1 −X−⊤
2 G⊤PFV1. (30)

Now, since HV1 is invertible, (30) uniquely determines the
relationship between M̄1(ρ) and Ā(ρ), which is equivalent
to (11). Additionally, (29) states that M̄2(ρ) is ρ-independent
and only determined by P to adhere to the structure speci-
fication H , and is thus denoted explicitly as M̄2.

4) Relation between M̄1(ρ) and M(ρ): Now M̂(ρ) =
(M̄1(ρ)V1 + M̄2V2)X

−1
1 is structured with M̄2 fixed as in

(29), and M̂(ρ) satisfies I−M̂⊤(ρk)M̂(ρk)≻0 ∀ρk ∈ P, or
I − M̂(ρk)M̂

⊤(ρk)≻0 ∀ρk ∈ P. Combining the two gives

I − (M̄1(ρk)V
⊤
1 + M̄2V

⊤
2 )X−1

1 (31)

X−⊤
1 (V1M̄

⊤
1 (ρk) + V2M̄

⊤
2 ) ≻ 0 ∀ρk ∈ P.

Expanding this expression and completing the squares gives

I − M̄2V
⊤
2 (Q−1 −Q−1V1(V

⊤
1 Q

−1V1)
−1V ⊤

1 Q
−1)V2M̄

⊤
2

− T⊤(ρk)V
⊤
1 Q

−1V1T (ρ) ≻ 0 ∀ρk ∈ P, (32)

T (ρ) = M̄⊤
1 (ρ) + (V ⊤

1 Q
−1V1)

−1V ⊤
1 Q

−1V2M̄
⊤
2 . (33)

Now first note that with Q = X⊤
1 X1, it holds that

Q−1 −Q−1V1(V
⊤
1 Q

−1V1)
−1V ⊤

1 Q
−1 (34)

= X−1
1 (I −X−⊤

1 V1(V
⊤
1 X

−1
1 X−⊤

1 V1)
−1V ⊤

1 X
−1
1 )X−⊤

1

= X−1
1 (X1V2(V

⊤
2 X

⊤
1 X1V2)

−1V ⊤
2 X

⊤
1 )X

−⊤
1

= V2(V
⊤
2 QV2)

−1V2,

where the second identity follows by recognizing that I −
X−⊤

1 V1(V
⊤
1 X

−1
1 X−⊤

1 V1)
−1V ⊤

1 X
−1
1 is a projection operator

onto the space complementary to Im X−⊤
1 V1, i.e., onto

Im X1V2 since (X1V2)
⊤X−⊤

1 V1 = 0. Now substitute (34)
and (29) into (32) and note that V ⊤

2 V2 = I to obtain

I −X−⊤
2 G⊤PAV2(V

⊤
2 QV2)

−1V ⊤
2 A

⊤PGV2X
−1
2

− T⊤(ρk)V
⊤
1 Q

−1V1T (ρk) ≻ 0 ∀ρk ∈ P,
(35)

where the first line can be recognized as Q̂. Now
T⊤(ρk)V

⊤
1 Q

−1V1T (ρk)⪰ 0 ∀ρk ∈ P, such that Q̂ is positive
definite, which was already shown to be equivalent to (9)
under (8). Now decompose Q̂ = X⊤

3 X3 and V ⊤
1 Q

−1V1 =
X⊤

4 X4. A congruence of (35) with X−1
3 results in

I −M(ρk)M
⊤(ρk) ≻ 0 ∀ρk ∈ P, (36)

or ∥M(ρk)∥2 < 1 ∀ρk ∈ P where M(ρ) is given by

M⊤(ρ) = X4T (ρ)X
−1
3 , (37)

which, with T (ρ) in (33) and M̄2 in (29), equals (10) .
Sufficiency: follows by following the same arguments in
reverse order. Specifically, if P satisfies (8)-(9), then by step
2) Q̂ ≻ 0. If M(ρ) is such that ∥M(ρk)∥2 < 1 ∀ρk ∈ P,
then by constructing M̄1(ρ) as in (10), or equivalently as in
(37), gives that (35) and thus (32) and (31) are satisfied. Now
construct Ā(ρ) according to (11), or equivalently according
to (30). Then, by construction of Ā(ρ) and since (31) is
satisfied, (25) is also satisfied, which implies (21). In other
words, P proves QS for the constructed Ā(ρ).
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