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Abstract— This paper presents a funnel synthesis algorithm
for computing controlled invariant sets and feedback control
gains around a given nominal trajectory for dynamical systems
with locally Lipschitz nonlinearities and bounded disturbances.
The resulting funnel synthesis problem involves a differential
linear matrix inequality (DLMI) whose solution satisfies a
Lyapunov condition that implies invariance and attractivity
properties. Due to these properties, the proposed method can
balance maximization of initial invariant funnel size, i.e., size
of the funnel entry, and minimization of the size of the
attractive funnel for attenuating the effect of disturbance. To
solve the resulting funnel synthesis problem with the DLMI as
constraints, we employ a numerical optimal control approach
that uses a multiple shooting method to convert the problem into
a finite dimensional semidefinite programming problem. This
framework does not require piecewise linear system matrices
and funnel parameters, which is typically assumed in recent
related work. We illustrate the proposed funnel synthesis
method with a numerical example.

I. INTRODUCTION

Funnel, also referred to as tube, represents regions of
finite-time controlled invariant state space for closed-loop
systems equipped with an associated feedback control law
around a given nominal trajectory [1]. Funnel synthesis refers
to a procedure for computing both the controlled invariant
set and the corresponding feedback control law. Once we
compute a library of funnels along different nominal trajec-
tories, the resulting funnel can be used for different purposes
such as real-time motion planning [2] and feasible trajectory
generation [3].

The studies in funnel synthesis can be separated into two
categories depending on whether they aim to maximize [3]–
[5] or minimize the size of the funnel [2], [6]. The funnel
computation inherently aims to maximize the size of the
funnel to have a larger controlled invariant set in the state
space. On the other hand, when it comes to systems under
uncertainty or disturbances, the funnel size should be min-
imized to bound the effect of the uncertainty. For example,
[2] minimize the size of the funnel to prohibit collision with
obstacles instead of imposing obstacle avoidance constraints
directly. However, minimizing the size of the funnel is
against the original purpose of having a large controlled
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invariant set in the state space. In this work, we provide
a funnel synthesis algorithm that balances maximizing the
size of the funnel and minimizing the effect of the bounded
disturbance. To this end, we exploit invariance and attractiv-
ity conditions derived from Lyapunov theory [7] by solving
linear matrix inequalities (LMIs) [8], [9] and imposing state
and input constraints directly on the funnel.

When employing the Lyapunov condition, the resulting
optimization problem has a differential inequality of the Lya-
punov function in continuous-time for a finite-time interval.
Since it is intractable to satisfy the inequality for all time in
the given interval, many approaches focus on imposing the
differential inequality at a finite number of node points [2],
[4], [5]. When a quadratic Lyapunov function with a time-
varying positive definite (PD) matrix is employed, the result-
ing differential inequality ends up with a differential linear
matrix inequality (DLMI). To solve the resulting DLMI,
one can assume that first-order approximations (Jacobians
matrices) of the nonlinear dynamics computed around the
nominal trajectory are continuous piecewise linear in time.
By applying the same piecewise linear parametrization to the
PD matrix in the Lyapunov function, one can obtain a finite
number of LMIs whose feasibility is a sufficient condition
for the original DLMI [3], [10]. The main downside of
this approach is that the assumption of piecewise linear
system matrices may have large errors, and applying the
same parametrization on the PD matrix can be conservative.

In this paper, we provide a constrained funnel synthesis
algorithm for locally Lipschitz nonlinear systems under
bounded disturbance. To this end, we express the closed-loop
system around the given nominal trajectory as a linear time-
varying system having uncertain terms. Then, the DLMI is
derived based on the Lyapunov condition that guarantees the
invariance and the attractivity conditions. With the Lyapunov
condition, the continuous-time funnel optimization problem
maximizes the size of the funnel entry and minimizes the
attractive funnel for attenuating the effect of disturbance.
Furthermore, the proposed method can satisfy linear state and
control constraints in a way that the resulting funnel around
the given nominal trajectory remains inside the feasible
sets of states and controls. To convert the funnel synthesis
problem into a finite dimensional semidefinite programming
(SDP) problem, we employ a numerical optimal control
approach with a multiple shooting method [11].

The contributions of this work are as follows: First, the
proposed funnel synthesis approach for locally Lipschitz
nonlinear systems provides a new optimization framework
that can 1) balance maximizing the size of the funnel entry
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and minimizing the effect of the disturbance, and 2) guar-
antee the satisfaction of linear state and control constraints
on the funnel. Second, we provide a new approach based on
multiple shooting in numerical optimal control for solving
the DLMI. This is in contrast to the prior approaches that
assume the piecewise linear approximation on the PD matrix
in the Lyapunov function.

The notations R, R+ R++, and Rn are the field of
real, nonnegative, positive numbers, and the n-dimensional
Euclidean space, respectively. The set N r

q is a finite set
of consecutive nonnegative integers, i.e., {q, q + 1, . . . , r}.
The symmetric matrix Q = Q⊤(⪰) ≻ 0 implies Q is PD
(PSD) matrix, and (Sn+)Sn++ denotes the set of all PD (PSD)
matrices whose size is n×n. The symbols ⊗ is the Kronecker
product. The notation * denotes the symmetric part of a
matrix. The squared root of a PSD matrix A is defined as
A

1
2 such that A = A

1
2A

1
2 . We omit the time argument t if

it is clear from the context. The operation ⊕ is Minkowski
sum.

II. CONSTRAINED FUNNEL SYNTHESIS

A. Locally Lipschitz Nonlinear Systems

Consider the following continuous-time dynamics:

ẋ(t) = f(t, x(t), u(t), w(t)), t ∈ [t0, tf ], (1)

where x(t) ∈ Rnx is state and u(t) ∈ Rnu is input.
The vector-valued function w(t) ∈ Rnw represents bounded
disturbance such that ∥w(·)∥∞ ≤ 1 where ∥w(·)∥∞ :=
supt∈[t0,tf ]

∥w(t)∥, and t0 and tf are initial and final time,
respectively. The function f : R+×Rnx×Rnu×Rnw → Rnx

is assumed to be continuously differentiable. Suppose that
a nominal trajectory (x̄(·), ū(·), w̄(·)) is a solution of the
system (1). Particularly, we choose a zero disturbance for the
nominal trajectory, that is w̄(t) = 0 for all t ∈ [t0, tf ]. Then,
we can convert (1) into the linear time-varying (LTV) system
with the nonlinear remainder term via linearization around
the nominal trajectory, resulting in the following Lur’e type
system [3], [12]:

ẋ(t) = A(t)x(t) +B(t)u(t) + F (t)w(t) + Ep(t),

p(t) = ϕ(t, q(t)), q(t) = Cx(t) +Du(t) +Gw(t), (2)

where p(t) ∈ Rnp is a lumped nonlinearity represented by
a nonlinear function ϕ(t) and its argument q(t) ∈ Rnq . The
matrices A(t), B(t), and F (t) are first-order approximations
of the nonlinear dynamics (1) around the nominal trajectory.
The matrices E ∈ Rnx×np , C ∈ Rnq×nx , D ∈ Rnq×nu , and
G ∈ Rnq×nw are assumed to be time-invariant 1. The more
details in choosing these matrices could be found in [3].

With the state difference η := x − x̄, the difference

1The matrices E,C,D, and G are selector matrices with 0s and 1s to
organize the nonlinearity of the system. The simplest case has E = I ,
q = [x⊤, u⊤, w⊤]⊤, and p = ϕ(t, q) = f(t, x, u, w)−Ax−Bu−Fw.

dynamics can be derived as

η̇(t) = f(t, x, u, w)− f(t, x̄, ū, 0),

= A(t)η(t) +B(t)ξ(t) + F (t)w(t) + Eδp(t),

δp(t) = ϕ(t, q(t))− ϕ(t, q̄(t)),

δq(t) = Cη(t) +Dξ(t) +Gw(t),

where ξ := u− ū and δq := q− q̄ with q̄ = Cx̄+Dū. Since
continuously differentiable functions are locally Lipschitz, f
and ϕ are locally Lipschitz. It follows that for all t ∈ [t0, tf ]

∥p− p̄∥2 ≤ γ(t)∥q − q̄∥2, ∀ q, q̄ ∈ Q,

where γ(t) ∈ R+ is a Lipschitz constant for each t and Q ⊆
Rnx is any compact set. By employing the linear feedback
controller, that is ξ(t) = K(t)η(t), the closed-loop system
can be written as

η̇ = (A+BK)η + Fw + Eδp, ∥w(·)∥∞ ≤ 1, (3a)
δq = Cη +Dξ +Gw, ∥δp∥2 ≤ γ∥δq∥2. (3b)

With (3), we can express the nonlinear closed-loop system
as the LTV system having the state and input dependent
uncertainty δp. This could be a conservative way to handle
the nonlinear system, but it allows us to design a quadratic
Lyapunov function with which we can guarantee the invari-
ance and attractivity conditions of the funnel for the original
nonlinear system.

B. Lyapunov Conditions

With a continuously differentiable positive definite matrix-
valued function Q : R+ → Snx

++, the Lyapunov function is
defined as

V (t, η) := η⊤(t)Q−1(t)η(t). (4)

Here we aim to impose the following Lyapunov condition
for the closed-loop system (3):

V̇ (t, η) ≤ −αV (t, η), (5a)
for all ∥δp(t)∥2 ≤ γ(t)∥δq(t)∥2, (5b)

and V (t, η) ≥ ∥w(t)∥22, ∀ t ∈ [t0, tf ], (5c)

where α ∈ R++ is a decay rate. With the above Lyapunov
condition, we can establish the following lemma.

Lemma 1. Suppose that the Lyapunov condition (5) holds
with a positive definite matrix-valued continuous function
Q(t) , then the time-varying ellipsoid defined as

E(t) = {η | η⊤Q(t)−1η ≤ 1}, (6)

is invariant for the closed-loop system (3), that is, if η(·)
is any solution with η(t0) ∈ E(t0), then η(t) ∈ E(t) for
all t ∈ [t0, tf ]. Furthermore, the ellipsoid E(t) is attractive
such that for any solution η(·), the following holds for all
t ∈ [t0, tf ]:

V (t, η(t)) ≤ max{e−α(t−t0)V (t0, η(t0)), 1}. (7)

The above lemma can be deduced from [9, Lemma B10] and
[13, Lemma 1], so here we skip the proof.
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Nominal trajectory

E Ec

η(t) η(t0)

Fig. 1. Illustration of the ellipsoids E(t) and Ec(t). An example of solution
η(t) is given as a dashed red line. Since E is attractive, any solution η(·)
starting with η(t0) ∈ Ec(t0)\E(t0) converges to E if tf is sufficiently
large. The proposed funnel synthesis aims to maximize the size of Ec(t0)
and minimize that of E(t) for all t in [t0, tf ].

Now we define a invariant state funnel with a pair of Q in
(4) and a continuous scalar-valued function c : R+ → (0, 1]
as

Ec(t) :=
{
η

∣∣∣∣ η⊤Q(t)−1η ≤ 1

c(t)

}
, (8)

where the function c(t) satisfy the following condition:

1

c(t)
≥ max

{
1, e−α(t−t0)

1

c(t0)

}
, (9)

with 0 < c(t0) ≤ 1. With the ellipsoid Ec(t) having 1/c(t) as
the support value, we show the invariance property of Ec(t)
in the following lemma.

Lemma 2. The ellipsoid Ec(t) defined in (8) with (9) is
invariant for the closed-loop system (3) such that if η(·) is
any solution with η(t0) ∈ Ec(t0), then η(t) ∈ Ec(t) for all
t ∈ [t0, tf ].

Proof. If the solution η(·) satisfies η(t0) ∈ E(t0), it is
trivial to prove the invariance of Ec(t) since E(t) is invariant
and E(t) ⊆ Ec(t). Consider the solution η(·) such that
η(t0) ∈ Ec(t0) \ E(t0). By the attractivity condition (7),
we have V (t, η(t)) ≤ max{e−α(t−t0)V (t0, η(t0)), 1}. It
follows from V (t0, η(t0)) ≤ 1/c(t0) and 0 < c(t0) ≤ 1
that V (t, η(t)) ≤ max{e−α(t−t0) 1

c(t0)
, 1} ≤ 1/c(t) for

t ∈ [t0, tf ]. This completes the proof.

The illustration of both the ellipsoids E(t) and Ec(t) is
given in Figure 1. Any solution η(·) of the closed-loop
system (3) starting at Ec(t0) remains in the state funnel Ec(t)
for all t ∈ [t0, tf ] because of the invariance condition of Ec
derived in Lemma 2. Furthermore, the solution η(·) starting
at Ec(t0) converges to the ellipsoid E if tf is sufficiently large
because of the attractivity of E given in Lemma 1. Since we
use the attractivity condition of E as a key property for our
funnel generation, we refer to E in (6) as an attractive funnel.

Additionally, with the linear feedback control ξ = Kη, the
condition η ∈ Ec implies that ξ is in the following ellipsoid

[14], [15]:

Eu = {(KQK⊤)
1
2 y | ∥y∥2 ≤ 1/

√
c, y ∈ Rnu}. (10)

The set Eu represents the ellipsoid inside which the input
deviation ξ remains, so we refer to Eu as an invariant input
funnel. Now, we are ready to derive the DLMI condition that
guarantees the invariant and attractive conditions.

Theorem 1. Suppose that there exists Q : [t0, tf ] → Snx
++,

Y : [t0, tf ] → Rnu×nx , ν : [t0, tf ] → R++, 0 < λw, and
0 < α such that the following differential matrix inequality
holds for all t ∈ [t0, tf ]:

H :=


M − Q̇ ∗ ∗ ∗
νE⊤ −νI ∗ ∗
F⊤ 0 −λwI ∗

CQ+DY 0 G −ν 1
γ2 I

 ⪯ 0, (11)

M := QA⊤ + Y ⊤B⊤ +AQ+BY + αQ+ λwQ.

Then, the Lyapunov condition (5) holds for the closed-loop
system (3) with K = Y Q−1. Thus, with Q(t) and K(t)
satisfying the DLMI (11), the ellipsoid E(t) in (6) is invariant
and attractive, and Ec(t) in (8) is invariant by Lemma 1 and
Lemma 2.

Proof. By definition of positive definiteness and S-procedure
[12], the sufficient condition for the Lyapunov condition (5)
is that if there exists scalars λp > 0 and λw > 0 such that M̄ −Q−1Q̇Q−1 ∗ ∗

E⊤Q−1 0 ∗
F⊤Q−1 0 0

+ λp

[
Ccl

k 0 Gk

0 I 0

]
︸ ︷︷ ︸

:=CG

⊤ [
γ2I 0
0 −I

]
CG

+λw

 Q−1 0 0
0 0 0
0 0 −I

 ⪯ 0,

where M̄ := A⊤
clQ

−1 + Q−1Acl + αQ−1. Applying
Schur complement, and then multiplying either side by
diag{Q,λ−1

p I, I, I} complete the proof with ν := λ−1
p .

Notice that the above differential matrix inequality (11) is
linear in Q̇, Q, Y , and ν once λw and α are fixed.

C. Feasibility of State and Input Funnels

The funnel synthesis of the proposed work aims to be not
only invariant but also feasible, so constraints on the invariant
state and input funnels should be satisfied. The feasible sets
for the state and input funnels can be described as

X = {x | hi(x) ≤ 0, i = 1, . . . ,mx},
U = {u | gj(u) ≤ 0, j = 1, . . . ,mu},

where hi : Rnx → R and gj : Rnu → R are assumed to be
at least once differentiable (possibly nonconvex) functions.
Since it is not tractable to impose the nonconvex constraints
on the ellipsoid funnel, we linearize the above constraints
around the nominal trajectory, resulting in the following
polyhedral constraints sets [3]:

Px = {x | (ahi )⊤x ≤ bhi , i = 1, . . . ,mx},
Pu = {u | (agj )⊤u ≤ bgj , j = 1, . . . ,mu},
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where (ahi , b
h
i ) and (agj , b

g
j ) are first-order approximations

of hi and gj , respectively. The inclusions Px ⊆ X and
Pu ⊆ U hold if the function hi is a concave function,
such as ellipsoidal obstacle avoidance constraints. Here we
assume that the input constraint set Pu is bounded in Rnu to
prohibit the control input from being arbitrarily large. This
assumption usually holds because the unbounded input is not
allowable in practice.

Now we aim to design Ec in (8) and Eu in (10) with Q
and K such that {x̄} ⊕ Ec ⊆ Px, {ū} ⊕ Eu ⊆ Pu. These
conditions could be equivalently written as [12]

∥(Q/c)
1
2 ahi ∥2 ≤ bhi − (ahi )

⊤x̄, i = 1, . . . ,mx,

∥(K(Q/c)K⊤)
1
2 agj∥2 ≤ bgj − (agj )

⊤ū, j = 1, . . . ,mu.

Squaring both sides and applying Schur complement equiv-
alently generates

0 ⪯
[ (

bhi − (ahi )
⊤x̄

)2
c (ahi )

⊤Q
Qahi Q

]
, (12)

0 ⪯
[ (

bgj − (agj )
⊤ū

)2
c (agj )

⊤Y ⊤

Y agj Q

]
, (13)

i = 1, . . . ,mx, j = 1, . . . ,mu.

The feasibility conditions (12) and (13) are linear in Q, Y ,
and c.

D. Objectives
The goal of the funnel synthesis aims to 1) maximize the

size of invariant funnel entry Ec(t0) from which the system
can remain inside the invariant funnel and converge to the
attractive funnel, and 2) minimize the size of the attractive
funnel E(t) for all t in [t0, tf ] for the disturbance attenuation.

First, the volume of funnel entry Ec(t0) is proportional to
detQ(t0)/c(t0) [14]. Since a log function is increasing, it
is equivalent to maximizing log det(Q(t0)/c(t0)). It follows
that

log det(Q(t0)/c(t0)) = −nx log c(t0) + log detQ(t0).

Hence, to maximize the volume of the funnel entry, we min-
imize c(t0) and − log detQ(t0), both of which are convex
functions. Second, minimizing the volume of the set E(t)
is equivalent to minimizing log detQ(t) that is a concave
function. Since minimizing the concave function is a non-
convex problem, we instead minimize the maximum radius
of E(t) that is equal to the squared root of the maximum
eigenvalue of Q(t) [14]. Therefore, instead of minimizing
the volume, we minimize the maximum eigenvalue of Q(t)
that is a convex function.

In summary, the funnel synthesis aims to minimize a cost
function J given as

J = wcc(t0)− wQ0
log detQ(t0) +

∫ tf

t0

w̄Qv
Q(t)dt, (14)

with Q(t) ⪯ vQ(t)I, ∀ t ∈ [t0, tf ], (15)

where vQ(t) ∈ R++ is a slack variable introduced to mini-
mize the maximum eigenvalue of Q(t), and wc, wQ0 , w̄Q ∈
R++ are user-defined weight parameters.

E. Continuous-time funnel synthesis problem

The continuous-time funnel synthesis problem can be
formulated as follows:

minimize
Q(t), Y (t), c(t), ν(t), vQ(t)

(14) (16a)

subject to ∀ t ∈ [t0, tf ], (16b)
(9), (11), (12), (13), (15), (16c)
Q(t0) ⪰ c(t0)Qi, (16d)
Q(tf ) ⪯ c(tf )Qf , (16e)

where the matrices Qi ∈ Snx
++ and Qf ∈ Snx

++ are con-
stant parameters used for the boundary conditions. These
boundary conditions imply Ec(t0) ⊇ {η | η⊤Q−1

i η ≤ 1} and
Ec(tf ) ⊆ {η | η⊤Q−1

f η ≤ 1}.

III. OPTIMIZING FUNNEL VIA OPTIMAL CONTROL

The problem formulated in (16) is an infinite-dimensional
continuous-time optimization problem, so it is not readily
straightforward to solve it numerically. Here we discuss
a way to transform the problem into a finite-dimensional
discrete-time convex problem.

A. Changing a DLMI to a Differential Matrix Equality

In this subsection, we illustrate how the funnel synthesis
problem (16) can be interpreted as a continuous-time optimal
control problem. Observe that the DLMI in (11) can be
equivalently converted into a differential matrix equality
(DME) by introducing a PSD-valued slack variable Z(t) ∈
Snz
+ with nz = nx + np + nw + nq as follows:

H +


Z11 ∗ ∗ ∗
Z21 Z22 ∗ ∗
Z31 Z32 Z33 ∗
Z41 Z42 Z43 Z44


︸ ︷︷ ︸

:=Z

= 0, Z ⪰ 0, (17)

where H is defined in (11) and Zij(t) have appropriate sizes
for all i, j ∈ {1, . . . , 4}. The first-row and first-column block
has the following form:

Q̇(t) = M(t) + Z11(t). (18)

with M(t) defined in (11). The DME (18) can be interpreted
as a differential equation for a linear dynamical system where
Q is a state, and Y and Z11 are control inputs.

To derive further, we define the following vectors using
the vectorization operation:

q := vec(Q), y := vec(Y ), z11 := vec(Z11), (19)

where the operation vec(·) stacks the columns to make
a single vector. Then the DME (18) can be equivalently
expressed with the vector variables in (19) as

q̇(t) = Aq(t)q(t) +Bq(t)y(t) + Sq(t)z
11(t), (20)

with

Aq = (I ⊗A) + (A⊗ I) + (α+ λw)(I ⊗ I),

Bq = (I ⊗B) + (B ⊗ I)Kc, Sq = (I ⊗ I),
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where Kc ∈ Rnxnu×nxnu is a commutation matrix [16] such
that Kcvec(N) = vec(N⊤) for any arbitrary matrix N ∈
Rnu×nx .

B. Multiple Shooting Numerical Optimal Control
To transform (16) into the finite-dimensional discrete-time

optimal control problem, we first choose uniform time grids
as tk = t0 + k

N (tf − t0) for all k ∈ NN
0 . The decision

variables and the Lipschitz constant γ at each node point
are set as △k = △(tk) where a placeholder △ represents
Q,Y, Z, c, ν, and γ.

We apply continuous piecewise linear interpolation for Y ,
Z, ν and c−1 for each k ∈ NN−1

0 as follows:

□(t) = λm
k (t)□k + λp

k(t)□k+1, ∀ t ∈ [tk, tk+1],

λm
k (t) =

tk+1 − t

tk+1 − tk
, λp

k(t) =
t− tk

tk+1 − tk
, (21)

where a placeholder □ stands for Y, ν, Z, c−1. Notice that we
apply the piecewise linear interpolation to the inverse of c,
that is c−1, not c itself. With this interpolation and additional
conditions, we can show that c(t) satisfies the condition (9)
for all t ∈ [t0, tf ].

Proposition 1. Suppose that for each subinterval c(t) satis-
fies

c(t) =
ckck+1

λm
k (t)ck+1 + λp

k(t)ck
,∀ t ∈ [tk, tk+1],∀ k ∈ NN−1

0 ,

and

0 < ck ≤ 1, e−α(tk−t0)ck ≤ c0, ∀ k ∈ NN
0 . (22)

Then, c(t) satisfies the condition (9).

Proof. We want to show that 1
c(t) ≥ max{1, e−α(t−t0) 1

c(t0)
}

for all t ∈ [t0, tf ]. The condition (22) implies 1/ck ≥
max{1, e−α(tk−t0) 1

c(t0)
} for all k ∈ NN

0 . Notice that
max{1, e−α(t−t0) 1

c(t0)
} is convex in t, and 1/c(t) is the

convex combination of two points 1/ck and 1/ck+1 for
t ∈ [tk, tk+1]. Thus, it follows from the definition of the
convex function that 1

c(t) ≥ max{1, e−α(t−t0) 1
c(t0)

} for
t ∈ [tk, tk+1]. Since this holds for all k ∈ NN−1

0 , we
complete the proof.

The PD-valued function Q(t) is not assumed to be piece-
wise linear, so q(t) is not. Instead, q(t) is the solution of the
ordinary differential equation in (20). Since the system (20)
is linear, we can equivalently express it through discretization
with the interpolation (21) as

qk+1 = Aq
kqk +B−

k yk +B+
k yk+1 + S−

k z11k + S+
k z11k+1,

∀ k ∈ NN−1
0 , (23)

where qk = vec(Qk), yk = vec(Yk), and z11k = vec(Z11
k ).

The matrices Aq
k, B−

k , B+
k , S−

k and S+
k are corresponding

discretized matrices. More details in obtaining these matrices
could be found in [17]. The other blocks in (17) are imposed
as
νkE + Z21

k = 0,−vkI + Z22
k = 0, F⊤

k + Z31
k = 0, Z32

k = 0,−λwI + Z33
k = 0,

CQk +DYk + Z41
k = 0, Z42

k = 0, G+ Z43
k = 0,−νk/γ

2
kI + Z44

k = 0,
(24)

for all k in NN
0 where Fk = F (tk).

−1 0 1 2 3 4 5 6

rx (m)

−1

0

1

2

3

4

5

6

r y
 (m

)

Initial

Finalnominal
invariant funnel c
attractive funnel 
initial and final
obstacles

Fig. 2. The figure of the nominal trajectory and synthesized funnels
projected on position coordinates. It shows the projection of E (brown
ellipsoid) and Ec (blue ellipsoid) at each node point.

C. Discrete-time convex funnel synthesis problem

The discrete-time funnel synthesis problem can be formu-
lated as follows:

minimize
Qk, Yk, ck, νk, v

Q
k ,∀ k ∈ NN

0

wcc0 − wQ0 log detQ0

+
∑N

k=0 wQv
Q
k

(25a)

subject to Z ⪰ 0, (22), (23), (24), (25b)
(12), (13), (15), (25c)
Q0 ⪰ c0Qi, QN ⪯ cNQf , (25d)

where the constraints (12), (13), (15) in (25c) are imposed at
each t = tk for all k in NN

0 . The continuous cost function
(14) is discretized by lower sum between the subintervals,
resulting in wQ = w̄Q(tf − t0)/Nnode. The optimization
problem (25) is convex with LMI constraints, resulting in a
SDP problem, so that we can solve it using any SDP solver.

D. Inter-sample constraint violation

One of the key issues in direct shooting approaches for
optimal control is the inter-sample constraint violation [18]
that the constraint violation can occur during subintervals
since the constraints are enforced only at temporal nodes, not
for all time. This is also an issue for the proposed method as
well as other funnel generation approaches [2]–[4]. Future
research will explore how to impose relevant constraints for
all time by exploiting the form of the solutions of DME (17)
[19].
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Fig. 3. The figure of input funnel (top left and right) and support value
1/c(t) (bottom).

IV. NUMERICAL SIMULATION

For the numerical simulation, we consider a unicycle
model with addictive disturbances written as ṙx

ṙy
θ̇

 =

 uv cos θ
uv sin θ

uθ

+

 0.1w1

0.1w2

0

 , (26)

where rx, ry , and θ are a x-axis position, a y-axis position,
are a yaw angle, respectively, and uv is a velocity and uθ is
an angular velocity. The values w1 and w2 are disturbances
such that w = [w1, w2]

⊤, ∥w∥ ≤ 1. In this model, the
argument q ∈ R2 for the nonlinearity in (2) is [θ, uv]

⊤.
We consider N = 30 nodes evenly distributed over a time
horizon of 5 seconds with t0 = 0 and tf = 5. The boundary
parameters Qi and Qf are both diag([0.08 0.08 0.06]).
We consider two obstacle avoidance constraints, leading to
nonconvex constraints for the state illustrated in Fig. 2. The
input constraints are given as: 0 ≤ uv ≤ 2 and |uθ| ≤ 2. The
100 samples around the nominal trajectory are used for the
local Lipschitz constant γk estimation for all k in NN

0 by
following the procedure given in [3]. The weights wc, wQ0 ,
and wQ are 103, 0.1, and 0.1, respectively. The parameters
α and λw are 0.7 and 0.5, respectively. The simulation can
be reproducible by using the code at https://github.com/
taewankim1/funnel_synthesis_multiple_shooting.

The results of the proposed work are given in Fig. 2 and
Fig. 3. We can see that the generated funnel satisfies both
state constraints (obstacle avoidance) and input constraints
at each node point. Also, the resulting support value 1/c
satisfies the constraint (9). To test the invariance and attrac-
tivity conditions, we take a total of 100 samples, 50 from the
surface of E(t0) and 50 from that of Ec(t0). We propagate
each sample through the model (26) with a randomly chosen
disturbance w such that ∥w∥ = 1. In the bottom figure of
Fig. 2, the value of the Lyapunov function for each sample
trajectory is plotted. We can see that the invariance conditions
of both E and Ec hold well, and the samples starting from
the surface of Ec converge to the attractive funnel E due to
the attractivity condition.

V. CONCLUSIONS

This paper presents a funnel synthesis method for locally
Lipschitz nonlinear systems under the presence of bounded
disturbances. The proposed funnel synthesis approach aims
to maximize the funnel entry while minimizing the attractive
funnel to bound the effect of the disturbances. To solve
the continuous-time funnel optimization problem having the
DLMI, we apply the direct multiple shooting optimal control
method. In the numerical evaluation with the unicycle model,
the results show that the generated funnel satisfies both
invariance and feasibility properties.
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[9] B. Açıkmeşe, J. M. Carson III, and D. S. Bayard, “A robust model pre-
dictive control algorithm for incrementally conic uncertain/nonlinear
systems,” International Journal of Robust and Nonlinear Control,
vol. 21, no. 5, pp. 563–590, 2011.

[10] A. I. Malikov and D. I. Dubakina, “Numerical methods for solving
optimization problems with differential linear matrix inequalities,”
Russian Mathematics, vol. 64, pp. 64–74, 2020.

[11] M. Diehl and S. Gros, “Numerical optimal control,” Optimization in
Engineering Center (OPTEC), 2011.

[12] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. SIAM, 1994.
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