
A multi-processor implementation for networked control systems*

Alejandro I. Maass1, Wei Wang2, Dragan Nešić1, Ying Tan1, and Romain Postoyan3

Abstract— We study nonlinear networked control systems
(NCS) with a multi-processor emulation-based controller. We
start with a stable and centralised NCS commonly considered in
the literature. Then, we show how to implement the centralised
controller over multiple processors inspired by parallel comput-
ing techniques, so that stability is preserved (semi-globally and
practically) under sufficiently fast computations. An example
illustrates the main results.

I. INTRODUCTION

THE use of digital technology is rapidly changing the
world through the introduction of new paradigms such

as the Internet of Things (IoT) and industrial IoT (IIoT)
[1]. In the realm of IIoT, networked control systems (NCS)
research is pivotal for modeling, analysing, and designing
digital control systems. These systems find use in various
IIoT applications, such as vehicle-to-vehicle communication
on automated highways [2]. Analysing and designing IIoT
applications is challenging due to their complexity, featuring
multi-scale systems with diverse communication networks
and parallel/distributed computation.

Of greatest interest to this work is the parallel computation
aspect that arises when using multiple processors technology
in IIoT applications. The main drive for this setup is the
need to utilise parallelism effectively for solving complex,
large-scale problems while ensuring that communication
overhead and delays remain at acceptable levels. Indeed,
multiple processors are increasingly used in IIoT, see e.g.,
automotive industry [3], [4], internal combustion engines
[5], and intelligent transportation systems [6], where several
processors are used in parallel to solve various computational
tasks. This new technology is widely recognised as the
main driver for future performance improvements of digital
systems [7]. Exploiting the multi-processor structure in NCS
is crucial for maximising hardware benefits. The key question
in NCS revolves around how parallel control/estimation
algorithms interact with plant dynamics. Hence, translation
to multi-processor technology poses an interesting question
of implementing existing (single processor) control algo-
rithms on multiple processors. This problem is significant
as considerable effort has likely been invested in developing

*This work was supported in part by the Australian Research Council un-
der the Discovery Project DP200101303, the France-Australia collaboration
project IRP-ARS CNRS, and the grant HANDY ANR-18-CE40-0010.

1A.I. Maass, D. Nešić and Y. Tan are with the School
of Electrical, Mechanical and Infrastructure Engineering,
The University of Melbourne, Parkville, 3010, Victoria,
Australia. alejandro.maass@unimelb.edu.au,
dnesic@unimelb.edu.au, yingt@unimelb.edu.au

2W. Wang is an independent researcher. wweiqust@gmail.com
3R. Postoyan is with the Université de Lorraine, CNRS, CRAN, F-54000

Nancy, France. romain.postoyan@univ-lorraine.fr

and fine-tuning the existing algorithms to satisfy stringent
performance objectives (on a single processor) and their
implementation on multiple processors should be done with
minimum performance loss.

Most literature on (nonlinear) NCS design concentrates on
a monolithic view of the system, by adopting single processor
implementations only, see e.g., [8]–[12]. For linear NCS,
most works on distributed controller computation consider
architectures where the controllers are often far apart and
the topology might change while the system is operating,
see [13]–[15]. We emphasise that this approach, although
very important, is different to parallel computing systems,
where the various processors are located within a small
distance of each other. In this context, the work [16] studied
scheduling of computational tasks with the aim of optimising
the usage of network and computing resources under end-
to-end deadline constraints. An approach for decentralised
implementation of centralised controllers for linear intercon-
nected systems was proposed in [17]. Specifically, given
a centralised linear time-invariant (LTI) controller and a
strongly connected plant, a decentralised controller was
proposed, so that the state and input of the system under the
decentralised controller can become arbitrarily close to those
of the system under the centralised controller. Similarly,
given a centralised LTI controller, the work [18] showed that
a (high-frequency) periodic decentralised implementation
is internally stabilising if the centralised LTI controller is
stable, minimum-phase, and satisfies some relative degree
conditions. We are not aware of any work along these lines
for general nonlinear systems.

In this paper, we develop an alternative decentralised
design methodology inspired by wave relaxation methods
[19] for general nonlinear NCS, which are very much related
to Picard’s successive approximation method [20]. The goal
is to “emulate” a centralised controller on multiple processors
that satisfy certain requirements on computational speed
and accuracy. This enables us to obtain provable guarantees
of stability for nonlinear systems by adapting the single
processor hybrid modelling framework [9], [11], [12] to
this new scenario. We consider an NCS scenario where the
plant and controller communicate via a network, and the
control signals are generated by multiple processors. As in
parallel computing systems [19], processors are assumed
to be located within a small distance of each other, and
communications between them are reliable. To generate the
control signal, we schedule all processing nodes to take turn
in computing components of the controller state.

We illustrate that this underlying behaviour can be cap-
tured by fast switching flow dynamics in the processors’

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 5445

(a) Multi-processor NCS. (b) Single processor NCS.

Fig. 1: Considered NCS architectures.

state. We then apply the hybrid averaging tools from [21] to
obtain an averaged model for the multi-processor NCS. To
study stability, we use an emulation-based approach. That
is, we assume the availability of a centralised controller
that stabilises the NCS in absence of the multi-processing
structure. Then, we implement such controller over multiple
processors, and use the tools in [21] to show that stability of
the centralised NCS ensures semi-global practical stability
of the multi-processor NCS, for sufficiently small maximum
allowable computation interval (MACI). This is a newly
introduced design parameter to cope with the multi-processor
implementation, in addition to the commonly used maximum
allowable transmission interval (MATI), that typically en-
sures stability of centralised NCS.

Our main contributions can be summarised as follows.
1) We use hybrid systems to model the interconnection

between parallel computing techniques, controller design,
and communication networks; leading to a multi-processor
model structure often ignored in the NCS literature.

2) We show that stability of the centralised controller can
be preserved (in an appropriate sense) for the multi-processor
NCS. Compared to existing nonlinear and centralised NCS
literature, our results are tailored for multi-processor imple-
mentations that arise in IIoT applications such as [3]–[6].

3) Most decentralisation of centralised controllers focus on
linear systems only [16]–[18]. We suggest a novel approach
using relaxation methods, employing hybrid averaging for
controller parallelisation, yet to be explored in control liter-
ature, to achieve results for general nonlinear systems.

II. NCS FORMULATION

We tackle controller design for the NCS in Figure 1(a),
where a multi-processor setup is used for plant stabilisation.
To solve this, we employ an emulation-based approach.
Specifically, starting with a stabilising single-processor con-
troller for the NCS in Figure 1(b), our goal is to identify
conditions for the multi-processing structure that can main-
tain the original stability of the centralised controller for the
multi-processor NCS in Figure 1(a).

A. Centralised NCS

We first describe the elements of the centralised NCS in
Fig. 1(b). We consider the same (centralised) NCS model

as commonly used in previous work such as e.g., [9], [11],
[12]. The dynamics of the plant and controller are

ẋp = fp(xp, û), y = gp(xp), (1)
ẋc = fc(xc, ŷ), u = gc(xc), (2)

where xp ∈ Rnp and xc ∈ Rnc denote the plant and
controller states, y ∈ Rny is the plant output, u ∈ Rnu is the
control input, and (ŷ, û) ∈ Rny ×Rnu are the most recently
received values of (y, u) from the network. The functions
fp, fc,

∂gp
∂xp

and ∂gc
∂xc

are assumed to be locally Lipschitz, and
gp and gc are continuously differentiable. We note in Fig.
1(b) that a single processor P computes the whole state xc.

Let {tj}j∈Z≥0
be a monotonically increasing sequence

of transmission instants, where Z≥0 := {0, 1, 2, . . . }. The
network is composed of a set of nodes N := {1, . . . , N},
whose access to the network is governed by an underlying
protocol. A node consists of several sensors and/or actuators
with their corresponding data being transmitted at the same
tj . Right after transmission, (ŷ, û) are updated as

ŷ(t+j) = y(tj) + hy(j, e(tj)),

û(t+j) = u(tj) + hu(j, e(tj)),
(3)

where the functions hy and hu model the scheduling proto-
col, see e.g., [8], and e denotes the network-induced error,
defined as e := (ey, eu) ∈ Rne , with ey := ŷ−y, eu := û−u,
and ne := ny+nu. As per the N network nodes, we can write
e = (e1, . . . , eN), after re-ordering (if necessary). Typically,
hy and hu are such that eℓ(t+j) = 0, ℓ ∈ N , if the ℓ–th node
gets access to the network at tj . We also have that ˙̂y = 0
and ˙̂u = 0 for any t ∈ [tj , tj+1] (zero-order hold behaviour).

We assume τMIATI ≤ tj+1− tj ≤ τMATI, for all j ∈ Z≥0. The
parameter τMATI ∈ R>0 is the so-called maximum allowable
transmission interval, as proposed in e.g., [8]; and τMIATI ∈
R>0 is the minimal allowable transmission interval, see e.g.,
[22]. Due to hardware limitations, MIATI always exists. In
earlier works such as [8], [9], the MIATI was always set
to be (essentially) zero, and MATI was the only parameter
that played a role for stability. Later on, it was shown in
[22] that exploiting the knowledge on MIATI can lead to
less conservative stability results. Recently, [11] and [12]
illustrated why focusing solely on the MATI as a worst case
bound for stability can be unnecessarily conservative. In fact,
the worst case tj+1 − tj = τMATI may occur only seldom,
whilst the average time between successive transmissions
could be significantly smaller. As a consequence, [11], [12]
adopted a reverse average dwell time (RADT) condition to
enforce that, on average, at least one jump occurs every
τ∗r−dt > τMIATI time units. The RADT condition is given by

j − i ≥ [(t̄− t)− τMATI] /τ
∗
r−dt, (4)

where j − i is, loosely speaking, related to the number
of “jumps” of the solution of the underlying hybrid model
between t and t̄, with (t̄, j) ⪰ (t, i). Including information
about average transmission intervals helps to enlarge the
values of MATI while still guaranteeing stability [12].

5446

So far, the NCS literature has focused on single processor
implementations like (2); where τMATI, τMIATI and τ∗r−dt de-
termine the stability of the NCS. In this paper, we take a
step forward by implementing the controller across multiple
processors. In this new scenario, not only τMATI, τMIATI, and
τ∗r−dt play an important role for stability of the NCS in Fig.
1(a), but also the so-called maximum allowable computa-
tional interval (MACI), as described further below.

B. Multi-processor implementation

We now implement the single processor NCS from the
previous section over multiple processors as per Fig. 1(a).
Particularly, we consider a common parallel computing sce-
nario with shared memory architecture, as described in [19,
Chapter 1]; where multiple processing nodes P1, . . . ,PM

are located within a small distance of each other, and the
communication between them is reliable and done over a
shared memory bus. Each processing node Pi may be a
group of individual processors that execute computational
tasks in parallel. The time it takes for a computation task
to be completed by any processing node Pi, i ∈ M :=
{1, . . . ,M}, is denoted by1 ε ∈ R>0. We call activation
instants the times at which some Pi becomes active to
execute such computation task. Formally, let ak denote
the k–th activation instant, k ∈ Z≥0. We note that each
computation interval [ak, ak+1] has length ak+1 − ak = ε,
where ε satisfies 0 < ε ≤ τMACI. Parameter τMACI denotes the
maximum allowable computational interval, and it is a design
parameter to deal with the multi-processor structure.

The main task of P1, . . . ,PM is to implement the cen-
tralised controller (2). To that end, they adopt a parallelisa-
tion technique highly inspired by wave relaxation methods
[19]. That is, each of the M nodes will be assigned to update
a different group of components of fc in (2). The way each
component of fc depends on the individual components of
xc determines the parallelisation strategy. For instance, if a
component of fc depends on every element of xc, then only
one component of fc can be updated at a time [19]. If the
dependency is sparse, then certain updates can be performed
in parallel. To model this, we let xc be decomposed as xc =
(xc,1, . . . , xc,M), where xc,i ∈ Rnc,i , i ∈ M , M ≤ nc, and∑M

i=1 nc,i = nc. Here, xc,i denotes the i-th block component
of xc, which contains all the individual components of
xc (after re-ordering, if necessary) that are meant to be
computed in parallel by the i-th group of processors. This
way, the single processor controller (2) is decomposed into
M subsystems of the form ẋc,i = fc,i(xc,1, . . . , xc,M , ŷ),
where fc,i denotes the i–th (block) component of the function
fc in (2). There is freedom in choosing the order in which the
block components xc,i are to be updated, leading to different
scheduling algorithms for computation [19]. We focus on a
Round-Robin strategy in this work.

Let xc,i be the state of Pi, and µ ∈ (0, 1) a design pa-
rameter. For any t ∈ [ak, ak+1], there is an active processing

1Future work will consider that computation tasks might be completed at
different times for each processing node, i.e., εi for each i ∈ M .

node Pi, i ∈ M , and idle nodes Pn, n ∈ M \{i}, such that

ẋc,i = (1/µ)fc,i(xc,1, . . . , xc,M , ŷ), (5)

ẋc,n = 0. (6)

That is, whenever a computing node is active, its state xc,i

will evolve according to (5), and when it is idle, it will
buffer its most recent value of the state according to (6).
We note that µ in (5) is used to scale the vector fields in
order to generate—on average—the dynamics (2) that are
generated by a single processor. We design µ in Section
IV. The Round-Robin schedule determines which processing
node is active in every computation interval of length ε.
Particularly, it assigns computing tasks2 to the M processing
nodes in a circular manner so that (5) holds whenever
i = (k− 1) mod M +1, and (6) otherwise. Lastly, we note
that the control input for this multi-processor scheme results
in u = gc(xc), with xc := (xc,1, . . . , xc,M), see Fig. 1(a); as
opposed to the single processor case where u = gc(xc).

III. HYBRID SYSTEM MODEL

In this section, we derive a hybrid model for the multi-
processor NCS from Fig. 1(a) based on the system descrip-
tion in Section II. Let τs ∈ R≥0 be a clock to keep track
of inter-transmission times; τr ∈ R be an additional clock
to store the value of τs at the last transmission time; and
κs ∈ Z≥0 be a counter for network transmissions. As per
[11], [12], the RADT condition (4), which covers he cases
in e.g., [9] as special cases, can be modelled by

τ̇s = 1
τ̇r = 0

}
τs ∈ [0, τMATI],

τ+s = max{0, τs − τ∗r−dt}
τ+r = max{0, τs − τ∗r−dt}

}
τs ∈ [τr + τMIATI, τMATI],

(7)

with τr(0, 0) ≤ τMATI − τMIATI and τr ∈ [0, τMATI]. To model the
multi-processing behaviour, we introduce the rapidly varying
clock τ ∈ R≥0. Therefore, by using (1), (3), (5), (6), (7), and
the definition of e, we write, for (xp, xc, e, τ, τs, τr, κs) ∈
Rnp × Rnc × Rne × R≥0 × [0, τMATI] × [0, τMATI] × K (i.e.,
during flows), with K ⊂ Z≥0 a compact set,

ẋp = fp(xp, eu + gc(xc)), (8a)

ẋc = (1/µ)∆(τ)fc(xc, ey + gp(xp)), (8b)
ė = g(xp, xc, e, τ), (8c)
τ̇ = 1/ε, (8d)
τ̇s = 1, τ̇r = 0, (8e)
κ̇s = 0, (8f)

where ∆(τ) := diag{δ1(τ), . . . , δM (τ)}, with
δi(τ) = 1 when i = ⌊τ⌋mod M + 1 and 0
otherwise, and g(xp, xc, e, τ) :=

(
− ∂gp

∂xp
fp(xp, gc(xc) +

eu),− ∂gc
∂xc

1
µ∆(τ)fc(xc, ey+gp(xp))

)
. The matrix ∆ is used

to model the Round-Robin activation of processors, as per

2Here, a computational task translates into a processor updating its state
according to (5), over a computation period of length ε. We neglect any
integration errors coming from computing (5), as we want to concentrate
on processor scheduling effects rather than numerical discretisation.

5447

the description surrounding (5)–(6). That is, ∆ is a periodic
time-varying matrix such that, in each ε–long computation
period, some δi will be equal to 1, meaning Pi is activated
to compute xc,i, and all other processors are idle (i.e.,
ẋc,n = 0) since δn = 0 for all n ∈ M \{i}. We highlight
that, contrary to prior work on single processor NCS such
as [8]–[10], [12], the implementation of the control law via
multiple processors naturally introduces rapidly changing
flow dynamics when ε > 0 is small, see (8b) and (8d).

Similarly, whenever (xp, xc, e, τ, τs, τr, κs) ∈ Rnp×Rnc×
Rne ×R≥0× [τr+ τMIATI, τMATI]× [0, τMATI]×K (i.e., at jumps),

x+
p = xp,

x+
c = xc,

e+ = h(κs, e),

τ+ = τ,

τ+s = max{0, τs − τ∗r−dt}, τ+r = max{0, τs − τ∗r−dt},
κ+
s = Gs(κs, τs),

(9)

where h := (hy, hu) as per (3), and Gs : K× [0, τMATI] → K
models the discrete dynamics of the counter κs. For analysis
purposes, we assume κs takes values in the compact set K.

We note that jumps in (9) represent network transmissions
only, as processors have continuous access to a shared mem-
ory bus (i.e. shared memory architecture [19]) and there is
no discrete communication between them. Different parallel
computing architectures may lead to additional jumps. For
instance, message passing architectures [19, Chapter 1],
where there is an interconnection network between proces-
sors, may lead to extra jumps to represent this communica-
tion among processors; these are left for future work.

We now write the hybrid model (8)–(9) in a compact form
that is more amenable for the forthcoming analysis. Let q :=
((xp, xc, e), (τs, τr, κs)) ∈ X×T, with X := Rnp×Rnc×Rne

and T := [0, τMATI] × [0, τMATI] × K. Then, the hybrid system
(8)–(9) can be written as

q̇ = F(q, τ)
τ̇ = 1/ε

}
(q, τ) ∈ C × R≥0,

q+ = G(q)
τ+ = τ

}
(q, τ) ∈ D × R≥0,

(10)

where the flow and jump sets are given by

C := X× [0, τMATI]× [0, τMATI]×K,

D := X× [τr + τMIATI, τMATI]× [0, τMATI]×K.
(11)

The mapping F in (10), for (q, τ) ∈ C × R≥0, is defined
as F(q, τ) :=

(
fp(xp, eu + gc(xc)),

1
µ∆(τ)fc(xc, ey +

gp(xp)), g(xp, xc, e, τ), 1, 0, 0
)
. The mapping G

in (10), for (q, τ) ∈ D × R≥0, is defined as
G(q) :=

(
xp, xc, h(κs, e),max{0, τs − τ∗r−dt},max{0, τs −

τ∗r−dt},Gs(κs, τs)
)
. Hereafter, and for clarity, we introduce

the following definitions. Let x := (xp, xc) ∈ Rnx ,
nx := np+nc, Fp(x, e) := fp(xp, eu+ gc(xc)), Fc(x, e) :=
fc(xc, ey + gp(xp)), Fx(x, e) := (Fp(x, e),Fc(x, e)), and
Fe(x, e) :=

(
− ∂gp

∂xp
Fp(x, e),− ∂gc

∂xc
Fc(x, e)

)
.

In (10), we can see that τ changes faster compared to
the rest of the state q, because of the parallel computing
implementation of the controller via (5)–(6). This contrasts
significantly with centralised NCS implementations [8]–[10].

IV. STABILITY ANALYSIS

Since the implementation of the centralised controller (2)
over multiple processors leads to fast switching flow dynam-
ics when ε > 0 is small; our stability analysis for system
(10) will be based on averaging. We impose conditions on
an average (approximated) system to conclude stability of the
original system (10). To do so, we will apply the averaging
tools for hybrid systems proposed in [21].

A. Average system
The first step is to derive the average system. For that

purpose, we need the following two preliminary lemmas,
whose proofs are given in the appendix.

Lemma 1: The following holds for F in (10).
(i) For each compact set K ⊂ Rnq , there exists R > 0

such that |F(q, τ)| ≤ R for all (q, τ) ∈ (K∩C)×R≥0.
(ii) There exists T ∈ R>0 such that F(q, τ+T) = F(q, τ)

for all (q, τ) ∈ C × R≥0. □
Lemma 1(i) ensures the boundedness of F on compact

sets, and (ii) states that F is periodic with respect to τ . Before
stating the next lemma, we define for each (q, τ) ∈ C×R≥0,

Fav(q) :=
1

T

∫ T

0

F(q, s)ds, (12)

σ(q, τ) :=

∫ τ

0

[F(q, s)−Fav(q)] ds, (13)

with T as per Lemma 1(ii). We highlight that (12) will
determine the average system, and (13) helps to quantify the
difference between the multi-processor and average systems.

Lemma 2: The following holds.
(i) If µ = 1/M in (8b), then Fav in (12) is given by

Fav(q) = (Fx(x, e),Fe(x, e), 1, 0, 0), where Fx and
Fe are defined after (11).

(ii) For each compact set K ⊂ Rnq , there exists L > 0
such that σ in (13) satisfies

|σ(q, t)| ≤ L , (14)
|σ(q, t)− σ(w, s)| ≤ L(|q − w|+ |t− s|) , (15)

for all (q, t), (w, s) ∈ (K ∩ C)× R≥0. □
Lemma 2(i) designs µ so that the average of the rapidly time-
varying function 1

µ∆(τ)Fc(x, e), coming from the multiple
processor architecture, is given by the centralised controller
function Fc(x, e), when µ = 1/M . Lemma 2(ii) shows some
regularity properties for σ in (13), that are useful to state
the main stability result. These conditions were adopted as
assumptions in previous literature for generic rapidly-varying
hybrid systems [21, Assumption 4], and Lemma 2 shows that
these are verified for our class of multi-processor NCS.

We can now introduce the average hybrid system for the
rapidly time-varying system (10), which is given by

q̇ = Fav(q), q ∈ C,

q+ = G(q), q ∈ D,
(16)

5448

with Fav as per Lemma 2(i), and C,D,G exactly as in
(10). It is important to note that the average system actually
coincides with the hybrid system that models the single
processor NCS in Fig. 1(b), see e.g., [11], [12]. In the sequel,
we show that stability of the centralised NCS in Fig. 1(b),
i.e., the average system (16), can be preserved in a semi-
global and practical sense, for the multi-processor NCS (10).

B. Stability of the multi-processor NCS

We present the main result of the paper below, whose proof
can be found in the appendix.

Theorem 1: Suppose the set A :=
{((x, e), (τs, τr, κs)) ∈ X × T : x = 0, e = 0} is
uniformly globally asymptotically stable3 for the average
system (16). Then, for the multi-processor NCS (10)
with µ = 1/M , the set A is semi-globally practically
asymptotically stable as ε → 0+ [21]. That is, there exists
β ∈ KL such that for any compact set K ⊂ Rnq and
any ν > 0, there exist ε∗ > 0 and δ > 0 such that any
ε ∈ (0, τMACI], with τMACI ∈ (0,min{δ/(2L(R + 1)), ε∗}),
implies any solution to (10) initialised in K satisfies

|q(t, j)|A ≤ β(|q(0, 0)|A, t+ j) + ν, (17)

for all (t, j) ∈ dom q, where R and L are as per Lemmas 1
and 2, respectively. □

Theorem 1 shows that, provided set A is UGAS for
the average system (16), then stability is preserved in a
semi-global practical sense for the multi-processor NCS
(10), under sufficiently fast computations. A large difference
between the multi-processor and average systems, quantified
by the bound L in (14), leads to faster computations for
stability. Ensuring stability of the average system can be
done through existing results in the literature on nonlinear
NCS. Particularly, the average system (16) coincides with
the centralised NCS models adopted in e.g., [9], [11], [12].
Therefore, stability of (16) can be ensured by the latter.

V. NUMERICAL EXAMPLE

We consider a single-link flexible joint robot as in
[23]. The system dynamics are nonlinear and can be de-
scribed as ẋp = Axp + Bu + Φ(xp) and y = Cxp,
with B⊤ = (0, 21.6, 0, 0), C = (1, 0, 0, 0), Φ(xp)

⊤ =

(0, 0, 0,−7.93 sin(xp,3)), and A =

[
0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

]
.

To stabilise the plant, we consider the observer-based cen-
tralised controller from [23], which has the form ẋc =
Axc + Bu + Φ(xc) − L(y − Cxc) and u = Fxc,
with gains L⊤ = (6.057, 9.609, 5.918, 5.300) and F =
(6.528, 2.637, 0.861, 3.889). Only the plant output y is sent
over the network (i.e., e = ŷ − y) with τMATI = 0.005 and
τMIATI = 0.001. The norm of x = (xp, xc) for the centralised
NCS described above is plotted in Fig. 2 (solid blue), with
x(0, 0) = (−1, 1,−1, 1, 0, 0, 0, 0).

We now implement the centralised controller over four
processors with the parallel computing method described

3The set A is UGAS for system (16) if there exists β ∈ KL such that any
solution ξ to (16) satisfies |ξ(t, j)|A ≤ β(|ξ(0, 0)|, t+j), ∀(t, j) ∈ dom ξ.

0 1 2 3 4 5 6

0

1

2

3

4

Fig. 2: Comparison between centralised NCS and multi-
processor NCS for three values of computation interval ε.

in Section II-B. That is, processor P1 computes ẋc,1 =
(1/4)(xc,2 + 6.057(xp,1 − xc,1 + e)), P2 computes xc,2 =
(1/4)(−58.2xc,1−1.25xc,2+48.6xc,3+21.6u+9.609(xp,1+
e)), P3 computes ẋc,3 = (1/4)(xc,4+5.918(xp,1−xc,1+e)),
and P4 computes ẋc,4 = (1/4)(14.2xc,1 − 19.5xc,3 −
7.93 sin(xc,3)+5.3(xp,1+e)) in a Round-Robin fashion. We
plot |x(·, ·)| for the multi-processor NCS in Fig. 2 for three
different values of computation interval ε. We can see that, as
ε is reduced, the behaviour of the centralised NCS (average
system) is preserved for the multi-processor implementation.
Also, larger ε leads to instability.

VI. CONCLUSIONS AND FUTURE WORK

We showed how to implement a centralised nonlinear
controller in a decentralised manner that preserves stability
under the context of NCS and parallel computing. We as-
sumed the communication between processors is reliable and
accessible through a shared memory bus. Future work will
explore message-passing architectures, where each processor
has its own local memory and communicates through an
interconnection network. This will open the door for fully
distributed control in asynchronous scenarios, even with
distant processors. We are keen on establishing explicit
MACI bounds, especially for linear systems. Additionally,
we plan to explore optimisation-based networked control in
parallel/distributed computing as part of our future research.

APPENDIX

Proof of Lemma 1: (i) This item follows from continuity of
the maps Fp,Fc,

∂gp
∂xp

, ∂gc
∂xc

and the fact that |∆(τ)| ≤ 1,∀τ ∈
R≥0. (ii) The only τ -dependent component of F(q, τ) in (10)
corresponds to 1

µ∆(τ)Fc(x, e). By definition, we know that
∆(τ + M) = ∆(τ) for any τ ∈ R≥0. Therefore, F(q, τ +
T) = F(q, τ) for all (q, τ) ∈ C × R≥0, with T = M . ■
Proof of Lemma 2: (i) Let µ = 1/M and
(q, τ) ∈ C × R≥0, and we recall that F(q, τ) =(
Fp(x, e),

1
µ∆(τ)Fc(x, e), g(xp, xc, τ), 1, 0, 0

)
, where

g(xp, xc, τ) =
(
− ∂gp

∂xp
Fp(x, e),− ∂gc

∂xc
(1/µ)∆(τ)Fc(x, e)

))
.

Then, it suffices to compute 1
T

∫ T

0
1
µ∆(s)Fc(x, e)ds, as

all the other terms are independent of τ . We proceed
component-wise. Let Fc = (Fc,1, . . . ,Fc,M), then
1
T

∫ T

0
1
µδi(s)Fc,i(x, e)ds =

1
µT Fc,i(x, e), by definition of δi

and since T = M . Consequently, since µ = 1/M , Fav(q) =(
Fp(x, e),Fc(x, e),− ∂gp

∂xp
Fp(x, e),− ∂gc

∂xc
Fc(x, e), 1, 0, 0

)
,

completing the proof of item (i).

5449

(ii) Let K ⊂ Rnq be a compact set and (q, t), (w, s) ∈ (K ∩
C) × R≥0. We first prove (14). By item (i) above, we can
write, for any (q, τ) ∈ C × R≥0,

F(q, τ)−Fav(q) =
(
0,M∆(τ)Fc(x, e)−Fc(x, e), 0,

− (∂gc/∂xc) [M∆(τ)Fc(x, e)−Fc(x, e)] 0, 0, 0
)
. (18)

Define σ̃(q, t) :=
∫ t

0
[M∆(n)Fc(x, e)−Fc(x, e)] dn, for

any (q, t) ∈ C × R≥0. Given t ∈ R≥0, let κ ∈
Z≥0 and T̃ ∈ [0, T) satisfying t = κT + T̃ . We
proceed element-wise. For any i ∈ M , σ̃i(q, t) =∫ t

0
Ji(n)dn =

∫ T

0
Ji(n)dn +

∫ 2T

T
Ji(n)dn + · · · +∫ κT+T̃

κT
Ji(n)dn, where Ji(n) := Mδi(n)Fc,i(x, e) −

Fc,i(x, e). Note that σ̃i(q, κM) = 0 for each κ ∈ Z≥0. Then,
|σ̃i(q, t)| =

∣∣ ∫ κT+T̃

κT
[Mδi(n)Fc,i(x, e)−Fc,i(x, e)] dn

∣∣ ≤
(M − T̃)cK,i, where cK,i := maxq∈K |Fc,i(x, e)|; noting
that T̃ < M . From (18) we thus get |σ(q, t)| ≤ LA,
with LA := (1 + bK)McK , bK := maxq∈K

∣∣∣ ∂gc∂xc
(xc)

∣∣∣ and

cK :=
∑M

i=1 cK,i.
We now focus on (15). Similarly to above, we

first consider σ̃, and assume s ≤ t without loss of
generality. To save space, we will also use the slight
abuse of notation Fc(q) = Fc(x, e). Like before, we
let s = κT + T̃s, with T̃s ∈ [0, T). By definition of
σ̃, we can write σ̃i(q, t) − σ̃i(w, s) =

∫ t

0
[Mδi(m) −

1]Fc,i(q)dm −
∫ s

0
[Mδi(m) − 1]Fc,i(w)dm = (Fc,i(q) −

Fc,i(w))
∫ s

0
[Mδi(m)−1]dm+Fc,i(q)

∫ t

s
[Mδi(m)−1]dm ≤

|Fc,i(q)−Fc,i(w)| |M − T̃s| + |Fc,i(q)||M − 1||t − s|,
where, in the last term, we used the fact that δi(m) ≤ 1
for any m ∈ R≥0. Thus, |σ̃i(q, t) − σ̃i(w, s)| ≤
MLFc,i |q−w|+ cK,i|M − 1||t− s| ≤ L̃i(|q−w|+ |t− s|),
where L̃i := max{MLFc,i , cK,i|M − 1|} and LFc,i

denotes the Lipschitz constant of Fc,i. Naturally,
|σ̃(q, t) − σ̃(w, s)| ≤ L̃(|q − w| + |t − s|), with
L̃ :=

∑M
i=1 L̃i. From (18), we can see that it

remains to find
∣∣∣ ∂gc∂xc

(w)σ̃(w, s)− ∂gc
∂xc

(q)σ̃(q, t)
∣∣∣ =∣∣∣ ∂gc∂xc

(q) [σ̃(w, s)− σ̃(q, t)] +
[
∂gc
∂xc

(w)− ∂gc
∂xc

(q)
]
σ̃(w, s)

∣∣∣ ≤
bKL̃ (|w − q|+ |t− s|) + Lg|w − q|McK ≤
L̂ (|w − q|+ |t− s|), where L̂ := max{bKL̃ +
LgMcK , bKL̃} and Lg denotes the Lipschitz constant
for (∂gc/∂xc) for the given compact set K. Then,
|σ(q, t) − σ(w, s)| ≤ (L̃ + L̂)(|q − w| + |t − s|), and thus
(14) and (15) are satisfied with L = max{LA, L̃+ L̂}. ■
Proof of Theorem 1: The proof relies on Lemmas 1 and
2, along with [21, Theorem 2]. Our multi-processor NCS
in (10) fits the class of rapidly varying hybrid systems
in [21]. Additionally, the conditions in [21, Theorem 2]
(Assumptions 2-4) hold for (10), given Lemmas 1 and 2,
since A is compact. Thus, the proof is complete. ■

REFERENCES

[1] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
Internet of Things: A cyber-physical systems perspective,” IEEE
Access, vol. 6, pp. 78 238–78 259, 2018.

[2] S. Hegde, D. Plöger, R. Shrivastava, O. Blume, and A. Timm-Giel,
“High-density platooning in cellular vehicle-to-everything systems: On
the importance of communication-aware networked control design,”
IEEE Vehicular Technology Magazine, vol. 16, no. 3, pp. 66–74, 2021.

[3] G. Macher, A. Höller, E. Armengaud, and C. Kreiner, “Automotive
embedded software: Migration challenges to multi-core computing
platforms,” in IEEE International Conference on Industrial Informat-
ics, 2015, pp. 1386–1393.

[4] S. Grubmüller, G. Stettinger, D. Nešić, and D. Watzenig, “Concepts for
improved availability and computational power in automated driving,”
e & i Elektrotechnik und Informationstechnik, vol. 135, no. 4, pp.
316–321, 2018.

[5] A. B. Khaled, M. B. Gaid, N. Pernet, and D. Simon, “Fast multi-
core co-simulation of cyber-physical systems: Application to internal
combustion engines,” Sim. Model. Practice and Theory, vol. 47, pp.
79–91, 2014.

[6] S. E. Li, Z. Wang, Y. Zheng, Q. Sun, J. Gao, F. Ma, and K. Li,
“Synchronous and asynchronous parallel computation for large-scale
optimal control of connected vehicles,” Transportation Research Part
C: Emerging Technologies, vol. 121, p. 102842, 2020.

[7] J. Svennebring, J. Logan, J. Engblom, and P. Strömblad, “Embedded
multicore: An introduction,” Technical Report, Freescale, 2009.

[8] D. Nešić and A. Teel, “Input-output stability properties of networked
control systems,” IEEE Transactions on Automatic Control, vol. 49,
no. 10, pp. 1650–1667, 2004.

[9] D. Carnevale, A. Teel, and D. Nešić, “A Lyapunov proof of an
improved maximum allowable transfer interval for networked control
systems,” IEEE Trans. on Autom. Control, vol. 52, no. 5, p. 892, 2007.

[10] W. Heemels, A. Teel, N. Van De Wouw, and D. Nešić, “Networked
control systems with communication constraints: Tradeoffs between
transmission intervals, delays and performance,” IEEE Transactions
on Automatic Control, vol. 55, no. 8, pp. 1781–1796, 2010.

[11] S. H. Heijmans, R. Postoyan, D. Nešić, and W. Heemels, “An average
allowable transmission interval condition for the stability of networked
control systems,” IEEE Transactions on Automatic Control, vol. 66,
no. 6, pp. 2526–2541, 2020.

[12] M. Hertneck and F. Allgöwer, “Reverse average dwell time con-
straintsenable arbitrary maximum allowabletransmission intervals,” in
IFAC Symposium on Nonlinear Control Systems, 2023, pp. 379–384.

[13] X. Ge, F. Yang, and Q.-L. Han, “Distributed networked control
systems: A brief overview,” Information Sciences, vol. 380, pp. 117–
131, 2017.

[14] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless
control network: A new approach for control over networks,” IEEE
Trans. on Automatic Control, vol. 56, no. 10, pp. 2305–2318, 2011.

[15] D. Zhang, S. K. Nguang, and L. Yu, “Distributed control of large-scale
networked control systems with communication constraints and topol-
ogy switching,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 47, no. 7, pp. 1746–1757, 2017.

[16] P. Wu, C. Fu, T. Wang, M. Li, Y. Zhao, C. J. Xue, and S. Han,
“Composite resource scheduling for networked control systems,” in
IEEE Real-Time Systems Symposium, 2021, pp. 162–175.

[17] J. Lavaei, “Decentralized implementation of centralized controllers for
interconnected systems,” IEEE Transactions on Automatic Control,
vol. 57, no. 7, pp. 1860–1865, 2011.

[18] A. Deshmukh and A. Ghosh, “Decentralized implementation of a class
of centralized LTI controllers for two-channel systems using periodic
control,” IEEE Transactions on Automatic Control, vol. 67, no. 6, pp.
3180–3187, 2021.

[19] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[20] É. Picard, “Sur l’application des méthodes d’approximations suc-
cessives à l’étude de certaines équations différentielles ordinaires,”
Journal de Mathématiques Pures et Appliquées, vol. 9, pp. 217–272,
1893.

[21] A. R. Teel and D. Nešić, “Averaging for a class of hybrid systems,”
Dynamics of Continuous, Discrete and Impulsive Systems, vol. 17,
no. 6, pp. 829–851, 2010.

[22] S. H. Heijmans, R. Postoyan, D. Nešić, and W. M. H. Heemels,
“Computing minimal and maximal allowable transmission intervals
for networked control systems using the hybrid systems approach,”
IEEE Control Systems Letters, vol. 1, no. 1, pp. 56–61, 2017.

[23] M. Ekramian, “Observer-based controller for lipschitz nonlinear sys-
tems,” International Journal of Systems Science, vol. 48, no. 16, pp.
3411–3418, 2017.

5450

