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Abstract— This paper presents a tractable framework for
data-driven synthesis of robustly safe control laws. Given noisy
experimental data and some priors about the structure of the
system, the goal is to synthesize a state feedback law such
that the trajectories of the closed loop system are guaranteed
to avoid an unsafe set even in the presence of unknown but
bounded disturbances (process noise). The main result of the
paper shows that for polynomial dynamics, this problem can
be reduced to a tractable convex optimization by combining
elements from polynomial optimization and the theorem of
alternatives. This optimization provides both a rational control
law and a density function safety certificate. These results are
illustrated with numerical examples.

I. INTRODUCTION

The goal of this paper is to develop a tractable frame-
work for data-driven synthesis of safe control laws that
are robust to unmeasurable, polytopic-bounded perturbations
during both data collection and execution. Specifically, given
experimental data generated by an unknown system and
some priors about its structure, the objective is to synthesize
a state feedback control law such that the trajectories of
the closed loop system starting in a given initial condition
set X0 are guaranteed to avoid an unsafe set Xu, even in
the presence of unknown but bounded disturbances. Our
main result shows that, for polynomial dynamics, the safe
Data Driven Control (DDC) problem can be posed as the
feasibility of a Sum of Squares (SOS) program. A substantial
reduction in the number of variables involved (and hence
computational complexity) is achieved by exploiting the
theorem of alternatives, leading to a Semidefinite Program
(SDP) that provides both a density-function based control
law and a robust safety certificate.

Safety verification and synthesis of safe control laws have
been the subject of intense research during the past decade.
Level-set methods separate the initial and unsafe set by the 0-
contour of a solved function. Barrier functions [1] are a level-
set method to certify the safety of trajectories, given that
the superlevel sets of the barrier function are invariant. This
superlevel invariance can be relaxed through slack (class-K)
conditions, while ensuring that the 0-level set is invariant [2],
[3]. The level-set certificate of stability may be solved jointly
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with a safety-guaranteeing control policy u(·) (Control Bar-
rier Function (CBF)). When a barrier function is given, the
min-norm controller will ensure safety of trajectories, and
can be found through quadratic programming [4]. Robustness
of given barrier functions to disturbances may be analyzed
using input-to-state stability [5]. Barrier functions and fun-
nels [6]–[8] contain bilinearities when jointly synthesizing
controllers and barriers. An alternative level-set certificate is
Density functions [9], which are based on Dual Lyapunov
methods for stability [10]. Controllers and density functions
can be simultaneously solved in a convex manner. In some
systems, density functions may exist and provide improved
performance as compared to barrier functions [11].

We briefly compare against other methods of safety-
constrained control. Interval analyses, such as Mixed Mono-
tonicity [12], offer real-time performance at the expense of
conservatism in safe generation. Hamilton-Jacobi reachabil-
ity [13] performs forward and backward reachable set analy-
sis based on level sets of a differential games’ value function,
whose computation could require solving PDEs or neural net
approximations. Reinforcement Learning necessitates train-
ing and prior information of safety properties (e.g. Lipschitz
bounds on dynamics), and does not generally exploit physical
principles and model structure [14]. Learning-based methods
in [15], [16] require Lipschitz bounds on error and an ϵ-net
discretization.

DDC is a methodology that synthesizes control laws di-
rectly from acquired system observations (with some priors)
and skips a system-identification/robust-synthesis pipeline
[17]. Amongst the vast literature in DDC, the closest ap-
proaches related to the present paper are those that pursue
a set membership approach, which seeks to find a con-
troller that stabilizes the set of all plants compatible with
the observed data (the consistency set) [18]–[24]. These
approaches provide a controller together with a stability
certificate, usually in the form of a common Lyapunov
function. Further, the methods can be extended to provide
worst case performance bounds (e.g. the H2, H∞ or L∞
sense), over the set of data-consistent plants. However, these
approaches cannot handle safety constraints beyond those
expressed in terms of these norms.

Recent work on DDC under safety constraints includes
[25]–[28]. The method in [25] performs iterative model
predictive control for a discrete-time system by constraining
state trajectories to always lie in a sampled safe set (using
integer programming). The work in [26] uses contraction
methods to form robust adaptive CBFs under a set mem-
bership approach, but assumes that the input relation g(·)
is known. The approach in [27] uses a disturbance observer
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to provide robust CBFs by separating known and unknown
dynamics. In our setting, we assume only prior knowledge
of the system model (polynomial up to a specified degree)
and cannot generally provide this separation. The work in
[28] uses polynomial matrix inequalities to enforce Nagumo
invariance certificates [29] for polynomial systems using data
corrupted by L2-bounded noise. However, the controller is
designed to only enforce nominal invariance and a degree
of robustness is achieved through a tuning parameter ϵ, not
directly related to the perturbation w. Further, the computa-
tional scaling of the Positive Semidefinite (PSD) matrices in
the matrix SOS constraints suffers as the degree increases as
compared to scalar SOS constraints.

Our work involves continuous-time dynamics and inter-
pretable (density) certificates of robust safety. To the best of
our knowledge, our approach is the first DDC method under
safety constraints that simultaneously explicitly considers
disturbances both during the data-collection and run-time
execution.

Contributions of this work are,
• A DDC framework for density-based robust safe con-

trol.
• Tractable synthesis of robustly safe density functions by

exploiting the theorem of alternatives.
• Numerical examples demonstrating robustly safe control

on polynomial systems.
This paper has the following structure: Section II reviews

preliminaries such as density functions for safety, and SOS
polynomials. Section III performs data-driven synthesis of
safe controllers using density functions and SOS methods in
the case where polytopic-bounded disturbances are present
both during data collection and run time execution. Section
IV demonstrates the effectiveness of our approach on several
example systems. Section V concludes the paper.

II. PRELIMINARIES

A. Notation
Rn Set of n-tuples of real numbers
x,x,X Scalar, vector, matrix
1,0, I Vector/matrix of all 1s, 0s, identity matrix
∥x∥∞ L∞-norm of vector x
X ⪰ 0 X is positive semi-definite
⊗ Kronecker product
vec(X) Column-wise vectorization of matrix X
ρ ∈ Cd ρ has a continuous dth derivative
∇ρ Gradient of scalar function ρ
∇ · f Divergence of vector function f

B. Sum-of-Squares

We briefly review the concept of SOS polynomials and
certificates of nonnegativity [30]. A polynomial p ∈ R[x]
is SOS (and hence nonnegative) if there exist polynomials
{qℓ ∈ R[x]}Lℓ=1 such that p(x) =

∑L
ℓ=1 qℓ(x)

2.
The cone of SOS polynomials is Σ[x], and its up-to-

degree 2d restriction is Σd[x]. The cone Σd[x] is semidefinite
representable as p(x) = v(x)TQv(x) where v(x) is the
monomial vector up to degree d and Q ⪰ 0 is the Gram

matrix. A sufficient condition for a polynomial p to be
nonnegative over the semialgebraic region {x | hi(x) ≥
0, i = 1 . . . Nc} is that there exists σ0, . . . , σNc

∈ Σ[x]
such that p(x) = σ0 +

∑Nc

i=1 σihi [31].

C. Level-Set-Based Safety Certification

Consider a continuous-time system of the form

ẋ = f(x,w), (1)

where x ∈ Rn is the state and w(·) ∈ W is a disturbance.
Further, assume that w(·) is such that the trajectories of (1)
are well defined for any initial condition x0 ∈ X0. In the
sequel, we will denote these trajectories as x(t,w,x0).

Definition 1: Given an initial condition set X0 ⊆ Rn and
an unsafe set Xu ⊆ Rn, system (1) is W-robustly safe if,
for all t, all initial conditions x0 ∈ X0 and all w(·) ∈ W ,
x(t,w,x0) ̸∈ Xu.

Typically, safety is certified through the use of barrier
functions, defined as:

Definition 2: A differentiable B(x) : Rn → R is a robust
barrier function for (1) with respect to X0 and Xu if

B(x) ≤ 0, ∀x ∈ X0, B(x) > 0, ∀x ∈ Xu (2)
∂B

∂x
f(x,w) < 0, ∀w ∈ W whenever B(x) = 0. (3)

As shown for instance in [1], existence of a barrier
function is a sufficient condition to certify safety. Note
however that the conditions above are non-convex, even
when w ≡ 0, due to the constraint (3). For instance, in the
case of polynomial dynamics and semialgebraic X0 and Xu,
if B(x) is also polynomial, this constraint can be enforced
by introducing a polynomial multiplier h(x) and imposing
that

−∂B
∂x

f(x,w) + h(x)B(x) ∈ Σ[x]. (4)

The condition above cannot be written as a single
semi-definite optimization due to the multiplication of two
coefficient-unknown polynomials, h and B. Possible re-
laxations include choosing a fixed multiplier h, or simply
dropping the B(x) = 0 quantifier [2]. An alternative, convex
approach based on the use of densities was proposed in [9].

Theorem 1 ( [9]): Given open sets X0 and Xu, ẋ = f(x)
is safe if there exists a scalar function ρ(x) ∈ C1 such that

∇ · [ρ(x)f(x)] > 0, ∀x ∈ Rn (5a)
ρ(x) > 0, ∀x ∈ X0, ρ(x) ≤ 0, ∀x ∈ Xu. (5b)

The advantage of this approach is that it leads to a
convex problem in ρ. On the other hand, imposing that the
divergence condition holds everywhere can be unnecessarily
conservative.

The concepts above can be easily extended to the case
where the goal is to synthesize a control action that keeps
a system robustly safe by introducing the concept of robust
CBFs (RCBFs).

Definition 3: A function B(x) is an RCBF for the system
ẋ = f(x, u,w) if there exists a control law u(x) such
that B(x) is a robust barrier function for the closed loop
dynamics ẋ = f(x, u(x),w).
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In principle, a CBF and associated control law can be
found by modifying (4) to

−∂B
∂x

f(x, u(x),w) + h(x)B(x) ∈ Σ[x]. (6)

Problem (6) is bilinear in the coefficients of B, u even when
restricted to polynomial dynamics and control laws and a
fixed multiplier h, necessitating the use of relaxations. On
the other hand, as shown in [9], the density based formulation
can be easily modified to lead to problems that are jointly
convex in ρ and ψ .

= ρu.

III. DATA-DRIVEN SAFE CONTROL

A. Problem Statement

The goal of this paper is to design a safe control law
based on (noisy) experimental measurements for unknown
polynomial systems where only minimal a-priori information
is available. Specifically, we consider single-input control
affine nonlinear systems of the form

ẋ(t) = f(x) + g(x)u(t) +w(t), (7)

where u ∈ R is the control and w satisfying ∀t ≥ 0: w(·) ∈
W represents a bounded disturbance. We further assume
that there exists a set W such that W is the class of
signals that can switch arbitrarily quickly within W , and
that W admits a polytopic description of the form W

.
=

{w : Ww ≤ dw}. The only information available about the
ground-truth dynamics (7) is that they can be expressed as
linear combinations of functions ϕ : Rn → Rdf , γ : Rn →
Rdg with

f(x) = Fϕ(x); g(x) = Gγ(x) (8)

for some unknown system parameter matrices F ∈
Rn×df and G ∈ Rn×dg . Our training data D =
{(ẋs,xs, us)}s=t1...tT consist of T derivative-state-input tu-
ples sampled from the trajectories of (7) under some bounded
disturbance w ∈ W , indexed by the observations times
t1 . . . tT . In this context, the problem under consideration
can be formally stated as:

Problem 1: Given a disturbance set description (W,dw),
training data D = {(ẋs,xs, us)}s=t1...tT , and basic semi-
algebraic sets X0, Xu, find a state-feedback control law
u(x) that renders all closed-loop systems consistent with the
observed data and priors W-robustly safe with respect to X0

and Xu.

B. Model Based Safety

In order to solve Problem 1, in this section we first develop
a convex condition, less conservative than (5), that guarantees
robust controlled safety of a model of the form (7) assuming
that f(.) and g(.) are known.

Lemma 1: Assume that the set Xu has a description:

Xu
.
= {x : hi(x) ≥ 0, i = 1 . . . Nc} .

If there exist scalar functions ρ(x), ψ(x) ∈ C1 such that: (i)
u(x)

.
= ψ(x)

ρ(x) is well defined over the safe region ρ(x) ≥ 0,
(ii) for all w(·) ∈ W and initial condition x0 ∈ X0, the

trajectories of (7) are well defined, and (iii) the following
conditions hold:

∇ · [ρ(x) (f(x) +w) + ψ(x)g(x)]− ρ(x)h(x) > 0 (9a)
∀x ∈ Rn and w ∈W

ρ(x) ≥ 0, ∀x ∈ X0, ρ(x) < 0, ∀x ∈ Xu, (9b)

where h .
= mini {hi(x)}, then the control law u(x) renders

the closed loop system robustly safe with respect to Xu.
Proof: Since by assumption ρ, ψ ∈ C1 and u is well

defined when ρ ≥ 0 by condition (i), (9a) is equivalent to
(omit x):

∂ρ

∂x
(f + gu+w) + ρ (∇ · (f + gu)− h) > 0, (10)

where we used the fact that ψ = ρu. Hence, for all w ∈W ,

dρ

dt
+ ρ (∇ · (f + gu)− h) > 0

along the closed loop trajectories, which implies that dρdt > 0
when ρ[x(t)] = 0. Assume that there exists a trajectory
x(t | x0,wp(·)) that starts at x0 ∈ X0 and such that
x(T | x0,wp(·)) ∈ Xu. By continuity, there exists some
0 < t1 < T and some dt such that ρ(t1) = 0 and ρ(t) < 0
for all t ∈ [t1, t1 + dt]. However, this contradicts the fact
that dρ

dt |t=t1 > 0 .
Remark 1: Since mini {hi(x)} has a semialgebraic repre-

sentation by Lemma 3 of [32], finding polynomial functions
ρ and ψ reduces to an SOS optimization via standard
arguments.

Remark 2: Problem (9) is an infinite-dimensional Linear
Program (LP) in the values of (ρ, ψ) at each x, possessing
both strict and non-strict inequality constraints. When com-
pared against (6), this formulation has two advantages: (i) it
avoids using an arbitrary, fixed multiplier h(x), and (ii) it
leads to jointly convex (in ρ and ψ) optimization problems
for safe control synthesis. On the other hand, (9), while
retaining the desirable convexity properties of (5), is less
conservative: since the second term in (9a) is nonnegative
over the safe region, it does not require the first term to be
positive everywhere, as is the case with (5). Note that any
feasible solution to (5) is also feasible for (9).

C. Safe Data Driven Control

This section presents the main result of the paper: a
tractable, convex reformulation of Problem 1. We begin by
presenting a tractable characterization of all systems that
could have generated the observed data.

Given training data D = {(ẋs,xs, us)}s=t1...tT and
the uncertainty description (W,dw), the consistency set C,
which contains all systems that are consistent with the data
is defined, under the restrictions (8), as:

C .
= {f, g : W [ẋs − f(xs)− g(xs)us] ≤ dw, s = t1 . . . tT }

(11)
Exploiting the property of the Kronecker product

vec(PXQ) = (QT ⊗ P )vec(X),
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with f = vec(F T ), g = vec(GT ) leads to an equivalent
representation of (11)

C =

{
f , g :

[
A B

] [f
g

]
≤ ξ − 1⊗ dw

}
(12)

using the matrix blocks (with f(xs) = vec(ϕ(xs)TF T ))

A
.
=

W ⊗ ϕT (t1)
...

W ⊗ ϕT (tT )

 ,B .
=

W ⊗ ut1γ
T (t1)

...
W ⊗ utT γ

T (tT )

, ξ .
=

Wẋ(t1)
...

Wẋ(tT )


(13)

Combining this description with the polytopic description
of the disturbances leads to an augmented consistency set
describing the set of all possible plants and disturbances:

P1
.
=

f, g,wp :

[
A B 0
0 0 W

]f
g
w

 ≤
[
ξ − 1⊗ dw

dw

]
(14)

It follows that a pair (ρ(x), ψ(x)) solves Problem 1 if

∇· [ρ(x)f(x)+ψ(x)g(x)+ρ(x)w]−ρ(x)h(x) > 0 (15)

holds for all x and all (f , g,w) ∈ P1. In principle, this
condition can be reduced to an SOS optimization over the
coefficients of ρ, ψ by a straight application of Putinar’s Pos-
itivstellensatz [31]. However, this approach quickly becomes
intractable. As we show next, computational complexity can
be substantially reduced by exploiting duality.

For a given pair (ρ, ψ), consider the set of all systems
of the form (7) that are rendered safe by the control action
u = ψ

ρ , along with the admissible perturbations, that is, the
set of all (f , g,w) such that (15) holds for all x ∈ Rn.

For each x, this set is a polytope of the form:

P2
.
=

f , g,w : −

(∇ · [ρ(In ⊗ ϕT )])T

(∇ · [ψ(In ⊗ γT )])T

(∇ρ)T

T f
g
w

 < −ρh


(16)

where the divergence operator is applied column-wise to the
matrix. The term ∇·[ρ(x)(In⊗ϕ(x)T )]f may be interpreted
as ∇ · vec(ρ(x)ϕ(x)TF T ) = ∇ · [ρ(x)f(x)].

It follows that (15) holds for all admissible disturbances
w ∈ W (w(·) ∈ W) and all plants in the consistency C
set if and only if P1 ⊆ P2. This inclusion can be enforced
through duality as follows:

Lemma 2: Assume that the data and priors are consistent
(e.g. C ≠ ∅). Then P1 ⊆ P2 if there exists a vector
function y(x) ≥ 0,y(x) ∈ R2nT+2n such that the following
functional set of affine constraints is feasible:

yT (x)N = r(x) and yT (x)e < −ρ(x)h(x), (17)

where

N
.
=

[
A B 0
0 0 W

]
, e

.
=

[
ξ − 1⊗ dw

dw

]
,

r(x)
.
= −

[
∇ · [ρ(In ⊗ ϕT )] ∇ · [ψ(In ⊗ γT )] ∇ρ

] (18)

Proof: From section 5.8.1 in [33] it follows that the
systems of inequalities[

N
−r

]f
g
w

 ≤
[
e
ρh

]
and

yTN − µr = 0
yTe+ µρh < 0
y ≥ 0, µ ≥ 0

(19)

are (weak) alternatives. Thus, feasibility of the right set of
inequalities in (19), implies that the left inequalities are
infeasible. Further, since C ̸= ∅ and µ > 0, we can take
µ = 1 without loss of generality. {Hence, if (17) holds, a
triple (f, g,w) ∈ P1 if and only if

[
fT gT wT

]
rT < −ρh,

that is (f, g,w) ∈ P2.
Remark 3: If P1 is compact, then (19) are strong alterna-

tives and (17) are necessary and sufficient for P1 ⊆ P2.
Remark 4: Proceeding as in Theorem 2 in [19], it can

be shown that if ϕ(x),γ(x) are continuous functions, then
y(x) can be chosen to be continuous.

The observations above lead to our main result:
Theorem 2: A sufficient condition for the existence of a

state-feedback control law u(x) such that all systems in the
consistency set C are rendered robustly safe, is that there
exists a continuous vector function y(x) ≥ 0 and functions
ρ ∈ C1, ψ ∈ C1 such that

yT (x)N = r(x), ∀x ∈ Rn (20a)

yT (x)e < −ρ(x)h(x), ∀x ∈ Rn (20b)
|ψ(x)| ≤ −ρ(x)h(x), ∀x ∈ Rn (20c)
ρ(x) ≥ 0, ∀x ∈ X0 (20d)
ρ(x) < 0, ∀x ∈ Xu. (20e)

The corresponding control law is given by u(x) = ψ(x)
ρ(x) .

Proof: The proof follows from the fact that from
Lemma 2, (20a) and (20b) guarantee that (15) holds for all
plants in C and all admissible disturbances w(·) ∈ W . Hence
the conditions in Lemma 1 hold for all plants that could have
generated the observed data.

Remark 5: Constraint (20c) is a convex tightening of the
condition that ψ = 0 when ρ = 0 in the safe zone ρ(x) ≥ 0.
This ensures satisfaction of Assumption (i) in Lemma 1.

D. Sum-of-Squares Safety Program

In order to solve the infinite-dimensional Problem (20)
in a tractable manner, we restrict the variables ρ, ψ,y to be
polynomials. Under this polynomial restriction, the extracted
controller u(x) = ψ(x)/ρ(x) is then a rational function.

Let X0 = {x : k(x) ≥ 0} and Xu = {x : h(x) ≥ 0}
denote the initial condition and unsafe sets, respectively.
Algorithm 1 is an SOS-based finite-degree tightening of (20)
for robustly safe control. Successful execution of algorithm
1 is sufficient for finding a robustly safe control law.

E. Computational Complexity Analysis

A straightforward application of Putinar’s Positivstellen-
satz to solve (15) requires considering polynomials in the
indeterminates (x,f , g,w) with a total dimension dp =
df + dg + 2n. Thus, for an SOS relaxation of order dr,
the total number of variables (hence the maximal size of
Gram matrices) in the optimization is

(
dr+dp
dr

)
. In contrast, by

exploiting duality, Algorithm 1 only requires Gram matrices
of maximal size

(
2+dr
dr

)
. In the case where (f, g, ρ, ψ) are

all defined by degree 2 polynomials (df = dg = 6), the
maximal Gram matrix size dr = 3 drops from 969 to 10.
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Algorithm 1: Data-Driven Safe Control Design
Input: sample data D, and degrees df , dg, dρ, dψ
Let 2d1 ≥ max {df + dρ, dg + dψ} , 2d2 ≥ max {dρ, dψ}
Solve: the feasibility problem with c1, c2 > 0

coeffx(yTN − r) = 0 (A.1)
−ρh− yTe− c1, ∀i : yi ∈ Σd1 [x] (A.2)

−ρh− ψ, −ρh+ ψ ∈ Σd2 [x] (A.3)
ρ− s1k, −ρ− s2h− c2 ∈ Σd2 [x] (A.4)

s1, s2 ∈ Σd2 [x] (A.5)

Output: the safe control law u = ψ/ρ or a certificate of
infeasibility at degree (d1, d2)

IV. NUMERICAL EXAMPLES

The proposed algorithm is tested on a pair of examples.
Both experiments are implemented in MATLAB 2020b with
Yalmip [34] and solved by Mosek [35]. Code to generate
experiments and plots is publicly available at https://
github.com/J-mzz/ddc-safety.

Example 1: Consider the Flow system [9] with

f =
[
x2; −x1 + 1

3x
3
1 − x2

]
, g =

[
0; 1

]
(21)

The initial and unsafe sets are the (union of) disks:

X0 = {x | 0.25− x21 − (x2 + 3)2 ≥ 0},
Xu = {x | h1(x) = 0.16− (x1 + 1)2 − (x2 + 1)2 ≥ 0 ,

OR h2(x) = 0.16− (x1 + 1)2 − (x2 − 1)2 ≥ 0}.

(a) open-loop (b) robust closed-loop

Fig. 1: Flow (21) simulations for Example 1

(a) no process noise (b) with process noise

Fig. 2: Safe controllers synthesized without process noise
may be unsafe when process noise is applied

Results of the control design for Example 1 are shown
in Fig. 1 and 2. In each figure, 30 trajectories (blue curves)
start from within the initial set X0 (black circle). The unsafe
set Xu is the pair of red disks, implemented as h(x) =
−h1(x)h2(x) ≥ 0. Some of the open-loop trajectories in
Fig. 1a enter the unsafe set Xu when starting in X0.

The prior knowledge of the system model is that f is
a two-dimensional cubic polynomial vector with f(0) = 0
and that g is a two-dimensional constant vector, where the
cubic polynomials in f and the constant terms in g are
both unknown. 80 datapoints were collected and used to
design a robustly safe controller under a disturbance with
∥w∥∞ ≤ 2, yielding a polytope P2 from (14) with 22
dimensions (dimf , g,w = 18, 2, 2) and 324 faces (91 of the
faces P2 are nonredundant [36]). Algorithm 1 was used to
find ρ, ψ ∈ R[x]≤4, yielding 99 Gram matrices of maximal
size

(
6
4

)
= 15 and the rational control law u = ψ/ρ. Fig. 1b

plots trajectories associated with this safe control law, and
also features the ρ = 0 level set in green.

Fig. 2 highlights the importance of robustness in execution
as well as in data-collection. The controller in Fig. 2 was
computed with the same noisy training data as in Fig. 1 but
assuming no run time disturbances. Fig. 2a shows that the
control is safe under disturbance-free trajectory execution.
Fig. 2b is zoomed into the lower red disk, and demonstrates
that some controlled trajectories pass through the ρ = 0
contour and enter Xu when a disturbance with ∥w∥∞ ≤
2 is applied in execution (trajectories are terminated when
u ≥ 104, which is caused by numerical issues and stiffness
near the ρ = 0 contour).

To summarize this example, ρ ≥ 0 is an invariant set
for all consistent systems under a disturbance w when the
robust controller is applied. The level set ρ = 0 separates
initial set X0 and unsafe set Xu. Uncontrolled (Fig. 1a) and
non-robustly-safe (Fig. 2b) trajectories may enter Xu.

Example 2: Consider the Twist system with [37]:

f =

−2.5x1 + x2 − 0.5x3 + 2x31 + 2x33
−x1 + 1.5x2 + 0.5x3 − 2x32 − 2x33
1.5x1 + 2.5x2 − 2x3 − 2x31 − 2x32

 , g =

00
1

 (22)

The initial and unsafe sets are the spheres:

X0 = {x | 0.01− (x1 + 0.5)2 − x22 − x23 ≥ 0},
Xu = {x | 0.01− (x1 + 0.1)2 − x22 − x23 ≥ 0}.

Results for Example 2 are are shown in Fig. 3 with the
initial set X0 (black sphere), the unsafe set Xu (red sphere)
and 30 trajectories (blue curves). The open-loop system is
unsafe as shown in Fig. 3a. A prior knowledge of the system
model is that f is a three-dimensional cubic polynomial
vector with f(0) = 0 and that g is a three-dimensional
constant vector. 80 datapoints were collected and used to
design a robust safe controller under a disturbance with
∥w∥∞ ≤ 1, yielding a polytope P2 with 63 dimensions
(dim[f , g,w] = 38, 3, 3) and 304 faces (all nonredundant).
Using Algorithm 1 to find ρ, ψ ∈ R[x]≤4 yields a rational
control law u = ψ/ρ. Fig. 3b features the ρ = 0 level set
surface in green.
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(a) open-loop (b) robust closed-loop

Fig. 3: Twist (22) simulations for Example 2.

V. CONCLUSION

This paper uses density functions to find provably safe
controllers for systems whose data-observations and execu-
tions are both corrupted by L∞-bounded noise. The output
of Algorithm 1 (if successful) is a rational controller u, along
with a density certificate ρ that guarantees robust safety
of all trajectories starting in the initial set. Future work
involves steering safe trajectories to a destination set, adding
performance objectives, and extension to other noise and
disturbance models (e.g. L2 or semidefinite bounded signals).
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