
Approximate Optimal Indirect Regulation of an
Unknown Agent with a Lyapunov-Based Deep

Neural Network
Wanjiku A. Makumi, Zachary I. Bell, Warren E. Dixon

Abstract—An approximate optimal policy is developed for a
pursuing agent to indirectly regulate an evading agent coupled
by an unknown interaction dynamic. Approximate dynamic
programming is used to design a controller for the pursuing
agent to optimally influence the evading agent to a goal location.
Since the interaction dynamic between the agents is unknown,
integral concurrent learning is used to update a Lyapunov-based
deep neural network to facilitate sustained learning and system
identification. A Lyapunov-based stability analysis is used to show
uniformly ultimately bounded convergence. Simulation results
demonstrate the performance of the developed method.

Index Terms—Deep neural networks, reinforcement learning,
adaptive control, Lyapunov methods, nonlinear control systems

This paper considers a class of indirect control problems
where the states of a dynamic system are regulated by an
influencing agent through an interaction dynamic. Specifically,
this paper considers indirect herding as a subset of this class
of problems. Unlike classical pursuit-evasion problems where
the goal is achieved upon capture, herding problems consist of
a pursuing agent intercepting and regulating an evading agent
to a desired goal location, such as in [1]–[5].

Optimal solutions for indirect herding problems are sought
in [6]–[8] using tools such as dynamic programming and
calculus of variations. Drawbacks of such methods include
computational inefficiency, due to the curse of dimensionality,
and the need for known dynamics. Approximate dynamic pro-
gramming (ADP) is an alternative approach that approximates
the optimal value function, and thus the optimal control policy,
via the Hamilton Jacobi Bellman (HJB) equation [9]. The
solution to the HJB equation is typically estimated online
using function approximation methods such as neural networks
(NNs). A measure of suboptimality known as the bellman error
(BE) is used as feedback to update the NNs and enhance the
value function approximation online.

In the presence of model uncertainty, the BE can use an
approximation of the model dynamics to update the value
function approximation. The previous ADP indirect herding
result in [10] used a NN to approximate the unknown drift
dynamics; however, recent evidence shows that using a deep

Wanjiku A. Makumi and Warren E. Dixon are with the Department of
Mechanical and Aerospace Engineering, University of Florida, Gainesville,
FL, USA. Email: {makumiw, wdixon}@ufl.edu. Zachary I. Bell is with the
Munitions Directorate, Air Force Research Laboratory, Eglin AFB, FL, USA.
Email: zachary.bell.10@us.af.mil.

This research is supported in part by AFOSR grant FA9550-19-1-0169,
AFRL grant FA8651-21-F-1027, and Office of Naval Research grant N00014-
21-1-2481. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the sponsoring agency.

neural network (DNN) for system identification results in
improved tracking performance [11].

Previously, [11] used a Lyapunov-based (Lb-) DNN for
a control affine system with concurrent learning (CL). CL
is an adaptive update scheme that uses input/output data to
guarantee parameter convergence without requiring persistent
excitation. CL requires estimates of the state derivatives if the
true values are not known or measurable. In this paper, we are
generalizing to a larger class of systems that are not control
affine, and not even directly controlled, by using integral
concurrent learning (ICL) to remove the need to measure the
state derivatives. In existing literature, DNNs have never been
used within an ICL-based system identification technique.
The result in [10] used ICL solely for the output weights
in a single-layer NN, but now we develop a framework that
uses the integral data to additionally train the Lb-DNN inner
features by optimizing an integral form of the loss.

In this paper, a multi-timescale Lb-DNN, similar to the one
introduced in [11] and [12], is used for system identifica-
tion. A multi-timescale framework is used to merge typically
offline deep learning techniques with online adaptation to
result in real-time deep learning. In contrast to those previous
works, this multi-timescale framework consists of output-
layer weights being updated in real-time via an ICL-based
adaptive update law and inner-layer features being updated
concurrent to real-time via iterative batch updates training on
integrated data sets. The challenges associated with applying
this framework to the ADP-based indirect herding problem
include piecewise-in-time discontinuities in the dynamics es-
timate, adaptation laws, and closed-loop error system from the
iterative updates of the inner-layer features. These challenges
restrict the adaptive update law used in [12] from being used
in this problem, resulting in a new analysis used in this paper
that considers piecewise-in-time discontinuities.

The primary contribution of this paper is the development
of the indirect herding pursuit-evasion problem using an ICL-
based multi-timescale Lb-DNN system identification approach
to approximate the agents’ unknown interaction dynamics
online. The integral data collected online is used to update
the output-layer weights and optimize the inner-layer features
of the Lb-DNN in a new ICL-based deep learning technique.
The deep learning and approximate optimal architecture is
informed by a Lb-analysis that ensures uniformly ultimately
bounded (UUB) convergence of the states as well as estimation
of the control policy to within a neighborhood of the optimal
control policy. Simulation results demonstrate the performance

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 5982

of the developed method and the improved function approxi-
mation compared to a single-layer NN.

I. PROBLEM FORMULATION

The problem is formulated as a pursuing agent tasked with
optimally intercepting and escorting an uncooperative evading
agent to a desired goal state using unknown interaction dynam-
ics between the pursuer and evader.1 The evader dynamics are

ż = f (z, η) , (1)

where z : R≥t0 → Rn denotes the state of the evader, η :
R≥t0 → Rn denotes the state of the pursuer, t0 ∈ R≥0 denotes
the initial time, and f : Rn × Rn → Rn denotes the non-
affine, unknown locally Lipschitz interaction function. While
the evader dynamics in (1) cannot be directly controlled, the
evader can be influenced through interaction with the pursuer,
which is directly controllable. The pursuer dynamics are

η̇ = h (z, η) + g (η)u, (2)

where h : Rn × Rn → Rn denotes an unknown locally
Lipschitz function representing the pursuer drift dynamics,
g : Rn → Rn×mη denotes the known control effectiveness
matrix, and u : R≥t0 → Rmη is the pursuer’s control input.

To quantify the control objective, a regulation error denoted
by ez : R≥t0 → Rn is defined as

ez ≜ z − zg, (3)

where zg ∈ Rn denotes a fixed user-defined goal location
that is only known to the pursuer. It is not possible to
directly control the error in (3). To address this, a backstepping
formulation is used to design a virtual desired state that enables
the pursuer to indirectly minimize (3) by tracking a virtual
desired state denoted by ηd : R≥t0 → Rn.2 To quantify the
pursuer’s ability to track the virtual desired state, an auxiliary
error eη : R≥t0 → Rn is defined as

eη ≜ η − ηd. (4)

To quantify the virtual desired state objective, an additional
auxiliary error ed : R≥t0 → Rn is defined as

ed ≜ ηd − zg − kdez, (5)

where kd ∈ R denotes a positive control gain. The time deriva-
tive of the virtual desired state ηd is designed as η̇d ≜ µd,
where µd : R≥t0 → Rn is the subsequently designed virtual
input that minimizes (5). To facilitate the minimization of
(3)-(5), let x ≜

[
e⊤z , e

⊤
d , e

⊤
η

]⊤
and xd ≜

[
e⊤z , e

⊤
d , 01×n

]⊤
denote the concatenated state and desired concatenated state,
respectively. Additionally, the mappings s1, s2 : R3n → Rn

are defined as s1 (x) ≜ ez+zg and s2 (x) ≜ eη+ed+kdez+zg.
Using the error systems in (3)-(5), the evader and pursuer
states are represented as z = s1 (x) and η = s2 (x), respec-
tively.

1This problem formulation follows the development in [10], including
Assumptions 1 and 2 on the agent dynamics.

2Traditional backstepping cannot be used due to the nonlinear relationship
in the dynamics; hence, additional error system development is motivated by
backstepping approaches.

Following the problem formulation in [10], a composite
autonomous error system can be written as

ẋ = F (x) +G (x)µ, (6)

where µ ≜
[
µ⊤
η µ⊤

d

]⊤ ∈ Rm is the total vector of control
policies with m = mη + n, where µη : R≥t0 → Rmη is
defined as µη ≜ u− ud, ud : R≥t0 → Rmη denotes a desired
input defined as ud ≜ g+ (ηd) (µd − h (z, ηd)) where locally
Lipschitz pseudo inverse g+ : Rn → Rmη×n is defined as
g+ ≜

(
g⊤g

)−1
g⊤ , and F : R3n → R3n and G : R3n →

R3n×m are defined as

F (x) ≜

 f (s1 (x) , s2 (x))
−kdf (s1 (x) , s2 (x))

h (s1 (x) , s2 (x))− Fsd (x)

 ,

and

G (x) ≜

 0n×mη
0n×n

0n×mη
In

g (s2 (x)) Gsd (x)

 ,

where Fsd (x) ≜ g (s2 (x)) g
+ (s2 (xd))h (s1 (x) , s2 (xd)) ,

and Gsd (x) ≜ g (s2 (x)) g
+ (s2 (xd)) − In. The pursuer’s

objective is achieved if η → ηd and z, ηd → zg; hence, ez ,
eη , and ed → 0.

The goal is to formulate an optimal control problem to
regulate the states based on a given cost function. To minimize
the errors in (3)-(5), µd and µη are designed to minimize the
cost function

J (x, µ) ≜
∫ ∞

t0

Q (x) + P (x) + µ⊤Rµ dτ, (7)

where Q : R3n → R≥0 is a user-defined positive-definite
(PD) function that satisfies q ∥x∥2 ≤ Q (x) ≤ q ∥x∥2 for
all x ∈ R3n, where q, q ∈ R>0, R ≜ blkdiag {Rη, Rd},
Rη ∈ Rmη×mη and Rd ∈ Rn×n are user-defined PD
symmetric cost matrices, and P : R3n → R is a positive
semi-definite (PSD) user-defined penalty function described
in [10].3

Following the standard actor-critic-based approximate op-
timal control framework (see [9], [13]) in [10], the optimal
value function approximation V̂ : R3n × RL → R is defined
as

V̂
(
x, Ŵc

)
= Ŵ⊤

c σ (x) , (8)

where Ŵc ∈ RL is the critic weight estimate, and σ : R3n →
RL is a user-selected bounded vector of basis functions. The
control objective is to determine an approximation of the
optimal control policy µ̂ : R3n × RL → Rm, defined as

µ̂
(
x, Ŵa

)
= −1

2
R−1G (x)

⊤ ∇σ (x)
⊤
Ŵa, (9)

where Ŵa ∈ RL is the actor weight estimate, to minimize the
cost given in (7). Minimizing this cost ensures that the errors
in (3)-(5) are regulated to zero.

3In this paper, both the Euclidean norm for vectors and the Frobenius norm
for matrices are denoted by ∥·∥.

5983

II. SYSTEM IDENTIFICATION

A challenge for the control objective is that the approximate
optimal control formulation requires the dynamic model of
the pursuer and the evader. Since the interaction dynamics
and pursuer dynamics are unknown, an approximation of
the composite dynamics F (x) must be used to approximate
the solution to the HJB equation. The interaction dynamics
between the pursuer and evader in (1) must be estimated using
data collected online and in real-time to achieve the control
objective since interaction data will often be unavailable a
priori. The result in [10] estimated F (x) online using a single
layer NN and CL; however, recent evidence has shown that
DNNs can learn more complex features and improve function
approximation performance [14]. The recent results in [11] and
[15] demonstrated a novel method for estimating dynamics
online using a multi-timescale Lb-DNN framework with CL
for system identification and control. Building on the previous
results, this section develops an advanced ICL-based multi-
timescale Lb-DNN framework.

The ICL-based multi-timescale learning framework approx-
imates functions online by pairing a Lb-ICL adaptive update
law for the output-layer weights of a DNN with a concurrent
to real-time iterative ICL batch update for the inner-layer
features of the DNN. Specifically, data is collected online
in batches and each batch iteratively updates the inner-layer
features of the Lb-DNN concurrent to real-time control using
integral history stack data in a user-defined loss function and
an optimizer such as Adam [16]. Since the inner-layer features
are updated concurrent to real-time, but not in real-time like
the output-layer weights, the inner-layer features actively used
by the controller are iteratively switched to the most recently
updated inner-layer features after a batch update.

Motivated by improved function approximation, (1) and (2)
can be stacked and represented as

˙̆x = ϕ (Φ (x)) θ + ϵθ (x) + Ğ (x, u) , (10)

where the concatenated state derivative vector is de-
fined as ˙̆x ≜ [kdż η̇]

⊤ ∈ R2×n, and Ğ (x, u) ≜[
0n×1 g (x)u

]⊤ ∈ R2×n.4 The drift dynamics are ap-
proximated on a compact set C ⊂ Rn with a DNN where
θ ≜

[
θ⊤z θ⊤η

]⊤ ∈ Rp×n denotes an unknown bounded
ideal output-layer weight matrix with the subscripts z and η
representing the evader and pursuer dynamics, respectively,
and p = pz + pη is the total number of rows of θ. Addi-

tionally, ϕ (Φ (x)) ≜

[
ϕ⊤
z (Φz (x)) 01×pη

01×pz
ϕ⊤
η (Φη (x))

]
where

ϕ : R2p → R2×p denotes the user-defined basis functions
and Φ (x) : R3n → R2p denotes a function that represents
the ideal DNN inner-layer features as Φ ≜

[
Φ⊤

z Φ⊤
η

]⊤
,

and ϵθ (x) : R3n → R2×n denotes the function approximation
errors. The ith DNN-based estimate of the system dynamics
is defined as

ˆ̇
x̆i = ϕ

(
Φ̂i (x)

)
θ̂ + Ğ (x, u) , (11)

4To streamline the subsequent development, a stacked matrix representation
is used rather than a stacked vector representation.

where θ̂ ∈ Rp×n is the output-layer ideal weight matrix θ
estimate, and Φ̂i : R3n → R2p is the ith iteration selection of
the inner features consisting of estimated inner-layer weights
and user-selected activation functions.

Assumption 1. There is a constant weight matrix θ and known
positive constants θ, ϕ, ∇xϕ, ϵθ, and ∇xϵθ ∈ R≥0, such
that ∥θ∥ ≤ θ, sup

x∈C
∥ϕ (·)∥ ≤ ϕ, sup

x∈C
∥∇xϕ (x)∥ ≤ ∇xϕ,

sup
x∈C

∥ϵθ (x)∥ ≤ ϵθ, and sup
x∈C

∥∇xϵθ (x)∥ ≤ ∇xϵθ [17, Ch. 4].

Assumption 2. The inner-layer features selection of Φ̂i en-
sures that Φ(x) − Φ̂i (x) ≤ Φ̃i (x) , where Φ̃i : R3n → R2p

is the function approximation error of the ith iteration inner-
layer Lb-DNN features, and sup

x∈C, i∈N

∥∥∥Φ̃i (x)
∥∥∥ ≤ Φ̃, where

Φ̃ ∈ R≥0 is a bounded constant for all i. Using the Mean
Value Theorem,

∥∥∥ϕ (Φ (x))− ϕ
(
Φ̂i (x)

)∥∥∥ ≤ ∇xϕ Φ̃ [11].

Unlike the result in [11], which uses CL to learn the
unknown ideal weights of the DNN, this result uses an ICL-
based weight update policy. Following the ICL strategy in
[18], let ∆tθ ∈ R>0 be the time window of integration,
where the integral of (10) at time tj ∈ [∆tθ, t] can be
represented as ∆x̆j = x̆ (tj) − x̆ (tj −∆tθ) = φjθ + Ej +
Gj where φj = φ

(
Φ̂i (tj)

)
≜
∫ tj
tj−∆tθ

ϕ
(
Φ̂i (x (τ))

)
dτ,

Ej = E (tj) ≜
∫ tj
tj−∆tθ

ϵθ (x (τ)) dτ, and Gj = G (tj) ≜∫ tj
tj−∆tθ

Ğ (x (τ) , u (τ)) dτ. An ICL-based parameter estimate
update law is designed as

˙̂
θ (t) = kθΓθ

M∑
j=1

φ⊤
j

(
∆x̆j − Gj − φj θ̂

)
, (12)

where kθ,Γθ ∈ R>0 are update gains, and M ∈ Z>0 is the
amount of data points saved for the history stack.

Remark 1. The ith approximation of Φ is updated with the
i+1th batch optimization using the ICL history stack data in
the loss function

Li+1 =
1

M

M∑
j=1

∥∥∥∆x̆j − Gj − φj θ̂
∥∥∥2

and using Adam for the offline training optimization method.5

Assumption 3. There exists T1 ∈ R>0 such that T1 > ∆tθ,
and there exists a constant λ1 ∈ R>0 that facilitates λ1Ip ≤∑M

j=1 φ
⊤
j φj , ∀t ≥ T1 [18].

III. ONLINE LEARNING

A. Bellman Error

The optimal value function V ∗ : R3n → R≥0 and optimal
control policy µ∗ : R3n → Rm satisfy the HJB equation

0 = ∇V ∗ (x) (F +Gµ∗) +Q (x) + P (x) + µ∗⊤Rµ∗, (13)

5The estimates Φ̂i are not computed a priori. Concurrent to real-time
learning, input-output data is saved in a history stack, and then Φ̂ is
recomputed during the batch update.

5984

where V ∗ (0) = 0. While (13) represents the HJB equation
under optimal conditions, substituting the approximate terms
from (8) , (9), and (11), yields the BE

δ
(
x, θ̂, Ŵc, Ŵa

)
≜ Q (x) + P (x) + µ̂⊤Rµ̂

+∇V̂
(
x, Ŵc

)(
F̂i

(
x, θ̂
)
+G (x) µ̂

(
x, Ŵa

))
, (14)

where

F̂i

(
x, θ̂

)
≜

[(
1

kd
θ̂⊤z ϕz

(
Φ̂z,i (x)

))⊤

,
(
−θ̂⊤z ϕz

(
Φ̂z,i (x)

))⊤
,

(
θ̂⊤η ϕη

(
Φ̂η,i (x)

))⊤
−

(
g (xη) g

+ (ηd) θ̂
⊤
η ϕη

(
Φ̂η,i (xd)

))⊤
]⊤

and µ̂
(
x, Ŵa

)
≜

[
µ̂⊤
η

(
x, Ŵa

)
, µ̂⊤

d

(
x, Ŵa

)]⊤
from (9). The pursuer controller is û

(
x, θ̂, Ŵa

)
≜

µ̂η

(
x, Ŵa

)
+ ûd

(
x, θ̂, Ŵa

)
, where ûd

(
x, θ̂, Ŵa

)
≜

g+ (ηd)
(
µ̂d

(
x, Ŵa

)
− θ̂Tη ϕη

(
Φ̂η,i (xd)

))
. To facilitate the

subsequent stability analysis, the BE can also be expressed
in terms of the error W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa.
Subtracting (14) from (13) and, substituting (8) and (9), the
BE in (14) can be rewritten as

δ = −ω⊤W̃c +
1

4
W̃⊤

a GσW̃a −W⊤∇σF̃i +O (15)

where ω ≜ ∇σ
(
F̂i +Gµ̂

)
, F̃i ≜ F−F̂i , Gσ ≜ ∇σGR∇σ⊤,

GR ≜ GR−1G⊤, and O is uniformly bounded over the
compact set Ω.

As explained in [19], the user-selected state xe can be used
to evaluate the BE in (14) at off-trajectory points within the
state space Ω. The extrapolated BEs are evaluated as δe ≜
δ
(
xe, θ̂, Ŵc, Ŵa

)
.

B. Actor and Critic Weight Update Laws

The on and off-trajectory BEs are used in the subsequently
defined adaptive update laws to improve the actor and critic
weight approximations online. The critic weight update law is
defined as

˙̂
W c ≜ −Γc

(
kc1

ω

ρ2
δ +

kc2
N

N∑
e=1

ωe

ρ2e
δe

)
, (16)

and the least-squares gain matrix update law is defined as

Γ̇c ≜ βcΓc − Γckc1
ωω⊤

ρ2
Γc − Γc

kc2
N

N∑
e=1

ωeω
⊤
e

ρ2e
Γc, (17)

where ρ ≜ 1+γ1ω
⊤ω, ρe ≜ 1+γ1ω

⊤
e ωe, ωe ≜ ω

(
δe, θ̂, Ŵa

)
,

and kc1, kc2, γ1, βc ∈ R>0 are user-defined learning gains. The
actor weight update law is defined as

˙̂
W a ≜ −Kaka1

(
Ŵa − Ŵc

)
+Ka

kc1
4

G⊤
σ Ŵa

ω⊤

ρ2
Ŵc

−Kaka2Ŵa +Ka
kc2
4N

N∑
e=1

G⊤
σeŴa

ω⊤
e

ρ2e
Ŵc, (18)

where ka1, ka2 ∈ R≥0 are user-defined learning gains, and
Ka ∈ RL×L is a user-defined positive-definite symmetric
matrix.

Assumption 4. There exist constants T2, c1, c2, c3 ∈ R≥0

such that

c1IL ≤ inf
t∈R≥t0

1

N

N∑
e=1

ωeω
⊤
e

ρ2e
,

c2IL ≤
∫ t+T2

t

(
1

N

N∑
e=1

ωe (τ)ω
⊤
e (τ)

ρ2e (τ)

)
dτ, ∀t ∈ R≥t0 ,

c3IL ≤
∫ t+T2

t

(
ω (τ)ω⊤ (τ)

ρ2 (τ)

)
dτ, ∀t ∈ R≥t0 ,

where T2 and at least one of the constants c1, c2, or c3 is
strictly positive [20].

Remark 2. See [10] for insight into Assumption (4).

IV. STABILITY ANALYSIS

Let Bζ ⊂ R3n+2L+np represent a closed ball with
a radius ζ ∈ R>0 centered at the origin. Let Z ∈
R3n+2L+np denote a concatenated state vector defined as
ZL ≜

[
x⊤, W̃⊤

c , W̃⊤
a , Z⊤

θ

]⊤
where Zθ = vec

(
θ̃
)

and θ̃ ≜ θ − θ̂. Let VL : R3n+2L+np × R≥t0 → R denote a
candidate Lyapunov function defined as

VL (ZL, t) ≜ V ∗ (x, t) +
1

2
W̃⊤

c Γ−1
c (t) W̃c +

1

2
W̃⊤

a K−1
a W̃a

+ Vθ (Zθ, t) , (19)

where Vθ (Zθ, t) ≜ 1
2 tr
(
θ̃⊤Γ−1

θ (t) θ̃
)

, that can be bounded
by class K functions vl, vl : R → R≥0 as

vl (∥ZL∥) ≤ VL (ZL, t) ≤ vl (∥ZL∥) (20)

for all t ∈ R≥t0 where ZL ∈ R3n+2L+np. The sufficient
conditions for ultimate boundedness of Z are derived based
on the subsequent analysis as

kd ≥ 1, λmin {H} > 0,

√
l

κ
≤ v−1

l (vl (ζ)) , (21)

where H ≜

(
ka1+ka2

3 − φa

)
−φac

2 0

−φac

2
kc2c
3 −φcθ

2

0 −φcθ

2
kθλmin[Σθ]

2

 ,

κ ≜ min
{

1
2q,

1
4kθλmin [Σθ] ,

1
6kc2c,

1
6 (ka1 + ka2)

}
,

c ≜
(

βc

2kc2Γc
+

c1
2

)
, φa ≜ (kc1+kc2)

4 ∥Gσ∥ kρ√
γ1

∥W∥ +

1
2

1
λmin{Ka}∥∇WGR∇σ⊤∥, Σθ ≜

[∑M
j=1 φ

⊤
j φj

]
,

φac ≜ ka1 + kc1+kc2

4 ∥Gσ∥∥W∥ kρ√
γ1

+
1
2

1
Γc
∥∇W∥∥GR∥∥∇σ⊤∥, φcθ ≜

(kc1 + kc2)
kρ√
γ1

(
∥W⊤∥∥∇σ∥∥ϕ∥

(
1 + 1

kd
+ ∥g∥∥g+∥

))
,

and l ∈ R>0 is a constant that depends on the bounded NN
constants.

In contrast to the result in [10], the multi-timescale Lb-
DNN identifier introduces piecewise-in-time discontinuities in
the dynamics which complicates the stability analysis in the
sense that common actor-critic methods cannot be readily
applied in the stability analysis of the closed-loop system. The
following theorem contains a Lyapunov-like stability analysis
which considers functions containing discontinuities that are
piecewise continuous in time.

5985

Theorem 1. Provided all assumptions are satisfied, and
conditions in (21) are met, then the error state x, the critic
weight estimate error W̃c, the actor weight estimate error W̃a,
and the parameter estimation error θ̃ are UUB. Hence, the
approximate control policy µ̂ converges to a neighborhood of
the optimal control policy µ∗.

Proof: Taking the time derivative of (19), and substituting
(13), V̇ ∗ (x) = ∇V ∗ (F (x) +G (x)µ), ˙̃

W c ≜ Ẇ − ˙̂
W c,

˙̃
W a ≜ Ẇ − ˙̂

W a, and Ẇ ≜ ∇W (x) (F (x) +G (x)µ) yields

V̇L = ∇V ∗ (F +Gµ) + V̇θ (Zθ)−
1

2
W̃⊤

c

(
Γ−1
c Γ̇cΓ

−1
c

)
W̃c

+ W̃⊤
c Γ−1

c

(
∇W (F +Gµ)− ˙̂

W c

)
+ W̃⊤

a K−1
a

(
∇W (F +Gµ)− ˙̂

W a

)
.

Using (14), the update laws in (12) and (16)-(18) [10, eqs.
(29)-(31)], Ŵa = W − W̃a, Ŵc = W − W̃c, Assumptions
1-4, and implementing bounding and completing the square
yields V̇L ≤ −κ ∥ZL∥2 − κ ∥ZL∥2 + l − Z⊤

v HZv , where

Zv ≜
[∥∥∥W̃a

∥∥∥ , ∥∥∥W̃c

∥∥∥ , ∥Zθ∥
]⊤

. Specifically, Assump-
tion 2 is used to bound the system identification parameter
estimation term V̇θ in the Lyapunov function. Provided the
sufficient conditions in (21) are met, then V̇L can be bounded
as

V̇L ≤ −κ ∥ZL∥2 , ∀ ∥ZL∥ ≥
√

l

κ
> 0. (22)

As a result of the discontinuities in the update laws in (12)
and (16)-(18) being piecewise continuous in time, and by using
(21) and (22), [21, Theorem 4.18] can be enforced to conclude

that ZL is UUB such that ∥ZL∥ ≤ v−1

(
v

(√
l
κ

))
and µ̂

converges to a neighborhood around the optimal policy µ∗.
Since ZL ∈ L∞, then x, W̃c, W̃a, θ̃ ∈ L∞ and thus µ ∈
L∞. Moreover, since x ∈ L∞, and since W is a continuous
function of x, it follows that W (x) ∈ L∞. Furthermore, since
x ∈ L∞, then eη, ez, ed ∈ L∞. Using (3)-(5), z ∈ L∞, and
ηd ∈ L∞; hence, η, (z − η) ∈ L∞ follows. Lastly, since
ηd, µ, g

+, θ̃ ∈ L∞, it follows that θ̂, ud ∈ L∞ and u ∈ L∞.

V. SIMULATIONS

An example scenario is simulated to illustrate the perfor-
mance of the developed ICL-Lb-DNN ADP architecture where
an evader and pursuer are uniformly randomly placed in a
1000×1000 unit area with the goal of position control (n = 2).
The goal region is set to a uniformly random location within
a 100 unit radius of the pursuer while the evader is uniformly
randomly initialized at least 500 units from the goal region.
The pursuer must therefore leave the goal area to catch the
evader, learn the interaction dynamics in real-time using the
deep ICL learning architecture, and approximate the optimal
influencing policy using ADP. The typical performance of the
architecture in simulation is shown in Figure 1 to indirectly
control the position of the evader, where the pursuer is initially
in the top-right (blue circle with white plus) near the goal

(orange circle) and the evader is initially in the bottom-left
(orange circle with white plus).

Figure 1. Simulation example where the pursuer is initialized in the bottom-
right (blue circle with white plus), the goal region is to the left of the
pursuer (orange circle), and the evader is initialized in the top-left (orange
circle with white plus). The pursuer trajectory and evader trajectory over the
experiment are shown in blue and orange, respectively. Simulation shows
evader initially flees towards top-left; however, the pursuer approximates the
interaction dynamics and optimal policy in real-time and quickly escorts the
evader to the goal region.

Without loss of generality, the dynamics for the pursuer
were h (z, η) = 02×1 and g (η) = I2×2. The evader dynamics
were f (z, η) = (z − η) exp

(
− 1

20,000 (z − η)
⊤
(z − η)

)
. In

the simulation, the ICL-DNN function approximation was
implemented using PyTorch, and all the history stack data was
collected online in real-time (approximately 45 Hz). The ICL-
Lb-DNN and the history stack remained on the graphics card
for optimization using a maximum of approximately 1GB of
memory. At each time step, the data was added to the history
stack which was a sliding buffer containing the most recent
second of data (∆tθ = 1.0 second). At each time step the
integrals of the data were approximated using the trapezoidal
rule to update the output weights using (12) and update the
DNN inner-layer features using the loss discussed in Remark
1, where a single optimizer step was performed for each sim-
ulation step on a batch of integral data from the history stack
using Adam with a linearly annealing learning rate (initialized
to 0.001 and linearly decayed to 0.0001). To enable online
optimization, the DNN was constrained to 3 inner layers, each
with 64 neurons and hyperbolic tangent activation functions
while the final layer had 64 output weights. The output weights
and inner-layer weights were randomly initialized using a zero
mean and standard deviation of 0.01 (θ̂z (0) ∼ N (0, 0.01))
with Γθ = 0.1 and kθ = 1.0. The function approximation
results in Figure 2 show that in the 35 second simulation, the
ICL-DNN function approximation converges to within 10% of
the true value of the nonlinear interaction dynamics while the
loss converges to 0.04. Additionally, the shallow NN (SNN)
from [10], with 256 output weights, converges to within 50%
of the true value of the dynamics demonstrating the DNN
outperforms the SNN used in [10].

The efficient StaF kernels method from [20] was used
to approximate the optimal policy online in real-time (ap-
proximately 45 Hz) while simultaneously estimating the dy-

5986

Figure 2. Function approximation where the true values are shown in solid
lines and the estimated values are shown in dashed lines. The ICL-DNN esti-
mates quickly converged near the true values using the data collected online.
The left figure shows the ICL-DNN approximation and right figure shows the
ICL-SNN approximation demonstrating that the ICL-DNN outperforms the
ICL-SNN.

Figure 3. The evader tracking error steadily decays after the evader initially
flees. The auxiliary errors also converge to a small radius of the goal.

namics using the ICL-DNN function approximation. The
value function was approximated using 7 StaF kernels
σ (x, c (x)) =

[
σ1 (x, c1 (x)) . . . σ7 (x, c7 (x))

]⊤
where

each kernel σq (x (t) , cq (x (t))) =
x⊤(t)cq(x(t))

∥x(0)∥2 , cq (x (t)) =

x (t) + ∥x (0) ∥ν (x (t)) dq , ν (x (t)) = x⊤(t)x(t)+0.01∥x(0)∥2

∥x(0)∥2+x⊤(t)x(t)
,

and dq are the vertices of a 6-simplex. The actor and critic
weights were initialized as Ŵa(0) = 17 and Ŵc (0) =

2Ŵa (0) while Γc (0) = 5I7×7. The gains used to update the
weights were selected as kc1 = 0.9, kc2 = 0.1, Ka = 1.0,
ka1 = 0.25, ka2 = 0.005, βc = 0.001, γ1 = 0.75, and N = 10
extrapolation points were selected within a radius of ν (x) of
x. The cost and control gains selected were Q = 0.0001I6×6,
R = 0.01, and kd = 1.3. Using the selected gains resulted in
excellent tracking performance as shown by the tracking errors
in Figure 3 where the tracking error ez → 0. These results
demonstrate that the DNN-ICL-based ADP architecture is an
excellent approach for real-time approximation of the optimal
policy when dynamics are unknown and highly nonlinear.

VI. CONCLUSION

A deep ICL-based implementation of ADP is presented to
achieve an approximate optimal online solution to the indirect
regulation herding problem for unknown agents. An ICL-based
system identifier is facilitated by a Lb-DNN to estimate the
unknown interaction dynamic between the pursuer and evader.
A Lb-analysis is provided to prove UUB convergence of the
evader to the desired goal location known by the pursuer.

The simulation shows that the pursuer is able to intercept and
regulate the evader towards the desired goal location and that
the Lb-DNN system identifier outperforms the SNN system
identifier. Further investigations into directly learning the Q-
function are motivated from offline learning results such as
[22]. Other potential future work includes investigating the
optimality of the evader’s behavior.

REFERENCES

[1] R. Licitra, Z. I. Bell, E. Doucette, and W. E. Dixon, “Single agent indi-
rect herding of multiple targets: A switched adaptive control approach,”
IEEE Control Syst. Lett., vol. 2, pp. 127–132, January 2018.

[2] R. Licitra, Z. Bell, and W. Dixon, “Single agent indirect herding of
multiple targets with unknown dynamics,” IEEE Trans. Robotics, vol. 35,
no. 4, pp. 847–860, 2019.

[3] A. Pierson and M. Schwager, “Controlling noncooperative herds with
robotic herders,” IEEE Trans. Robot., vol. 34, no. 2, pp. 517–525, 2018.

[4] V. S. Chipade and D. Panagou, “Multiagent planning and control for
swarm herding in 2-d obstacle environments under bounded inputs,”
IEEE Trans. Robot., vol. 37, no. 6, pp. 1956–1972, 2021.

[5] K. Elamvazhuthi, Z. Kakish, A. Shirsat, and S. Berman, “Controllability
and stabilization for herding a robotic swarm using a leader: A mean-
field approach,” IEEE Trans. Robot., vol. 37, no. 2, pp. 418–432, 2020.

[6] P. Kachroo, S. A. Shedied, J. S. Bay, and H. Vanlandingham, “Dynamic
programming solution for a class of pursuit evasion problems: the
herding problem,” IEEE Trans. Syst. Man Cybern., vol. 31, pp. 35–41,
Feb. 2001.

[7] A. D. Khalafi and M. R. Toroghi, “Capture zone in the herding pursuit
evasion games,” Appl. Math. Sci., vol. 5, no. 39, pp. 1935–1945, 2011.

[8] S. A. Shedied, “Optimal trajectory planning for the herding problem:
a continuous time model,” International Journal of Machine Learning
and Cybernetics, vol. 4, no. 1, pp. 25–30, 2013.

[9] R. Kamalapurkar, P. S. Walters, J. A. Rosenfeld, and W. E. Dixon,
Reinforcement learning for optimal feedback control: A Lyapunov-based
approach. Springer, 2018.

[10] P. Deptula, Z. Bell, F. Zegers, R. Licitra, and W. E. Dixon, “Approxi-
mate optimal influence over an agent through an uncertain interaction
dynamic,” Automatica, vol. 134, pp. 1–13, Dec. 2021.

[11] M. Greene, Z. Bell, S. Nivison, and W. E. Dixon, “Deep neural network-
based approximate optimal tracking for unknown nonlinear systems,”
IEEE Trans. Autom. Control, vol. 68, no. 5, pp. 3171–3177, 2023.

[12] R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E. Dixon,
“Lyapunov-based real-time and iterative adjustment of deep neural
networks,” IEEE Control Syst. Lett., vol. 6, pp. 193–198, 2022.

[13] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal Adaptive
Control and Differential Games by Reinforcement Learning Principles.
The Institution of Engineering and Technology, 2013.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[15] Z. Bell, R. Sun, K. Volle, P. Ganesh, S. Nivison, and W. E. Dixon,
“Target tracking subject to intermittent measurements using attention
deep neural networks,” IEEE Control Syst. Lett., vol. 7, pp. 379–384,
2023.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] F. L. Lewis, S. Jagannathan, and A. Yesildirak, Neural network control
of robot manipulators and nonlinear systems. Philadelphia, PA: CRC
Press, 1998.

[18] A. Parikh, R. Kamalapurkar, and W. E. Dixon, “Integral concurrent
learning: Adaptive control with parameter convergence using finite
excitation,” Int J Adapt Control Signal Process, vol. 33, pp. 1775–1787,
Dec. 2019.

[19] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Model-based reinforce-
ment learning for approximate optimal regulation,” Automatica, vol. 64,
pp. 94–104, 2016.

[20] R. Kamalapurkar, J. Rosenfeld, and W. E. Dixon, “Efficient model-
based reinforcement learning for approximate online optimal control,”
Automatica, vol. 74, pp. 247–258, Dec. 2016.

[21] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice Hall,
3 ed., 2002.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

5987

