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Abstract— This paper studies the proportional-integral (PI)
boundary feedback control problem for consensus of hyperbolic
multi-agent systems (MASs), and provides an application to the
synchronization of a multi-lane road traffic flow system. Firstly,
we propose a PI boundary consensus protocol for the hyperbolic
MASs of conservation laws in the presence of unknown constant
input disturbances. Secondly, we present the consensus analysis
under undirected communication topologies by employing the
Lyapunov approach, obtaining sufficient conditions w.r.t. the PI
boundary control matrices and Laplacian matrices for ensuring
the asymptotic consensus. We further integrate the spectral
decomposition technique with Lyapunov approach to derive
the sufficient conditions related to Laplacian eigenvalues, which
are more tractable, under the assumption that the undirected
graph is connected. Finally, we provide an application to
the synchronization of a multi-lane road traffic flow system
described by the Aw-Rascle equation, and give numerical
simulation results to demonstrate the effectiveness of the PI
boundary consensus protocol.

I. INTRODUCTION

Hyperbolic Partial Differential Equations (PDEs) are a
class of significant mathematical models that are widely used
to describe physical processes, such as gas flow in pipe
networks [1], water flow in networks of open channels [2]
and vehicle traffic flow [3]. In the last few decades, a great
deal of importance is attached to the study of multi-agent
systems with hyperbolic PDEs, in which the dynamics of
each agent is described by hyperbolic PDEs and the agents
interact through their boundaries. The controllability and
observability for a networked linear hyperbolic PDE system
with coupled boundary conditions were analyzed in [4], and
a stabilizing controller was also designed.

Consensus means that all agents reach an agreement
with a previously unknown value or trajectory, which has
been widely applied in connected vehicles [5], intelligent
transportation systems [6] and etc. However, extensive stud-
ies on consensus merely focused on MASs with Ordinary
Differential Equations (ODEs). With the consideration of
spatio-temporal characteristics, it is of greater practical and
theoretical significance to study the consensus of multi-
agent systems with PDEs. For example, the motion synchro-
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nization control of two-manipulator flexible beam systems
was discussed in [7], and the cooperative attitude tracking
problem of multiple flexible spacecrafts modelled by PDEs
was investigated in [8].

In recent years, consensus of networked PDE MASs has
attracted increasing attention. Qiu et al. investigated the
adaptive output feedback consensus problem for parabolic
PDE agents under undirected networks in [9], and they made
extensions to switching topologies in [10]. Lu et al. [11]
considered the consensus problem of networked hyperbolic
systems based on event-triggered boundary feedback control.
Chen et al. [12] studied the bipartite consensus problem for
a network of PDEs. More recently, Liu et al. [13] studied
the average consensus control of MASs with event-triggered
mechanism based on PDE.

On the other hand, proportional-integral (PI) control is one
of the most common control algorithms to regulate the output
or process variable of a system to approach a set-point, since
its advantage is to cancel forced oscillations and attenuate
load disturbances. Zhang et al. [14] investigated the PI
boundary feedback control for the linear hyperbolic system
of balance laws. Subsequently, they further considered the
PI boundary stabilization of nonlinear hyperbolic systems
of balance laws for the H2 -norm in [15]. To the best of
authors’ knowledge, PI boundary control for the consensus
of hyperbolic MASs has not been studied yet.

In this paper, we consider the PI boundary consensus
problem for multi-agent systems with hyperbolic PDEs.
Firstly, we propose a PI boundary consensus protocol for a
networked multi-agent system subject to unknown constant
input disturbances, in which each agent is modeled by a
hyperbolic system of two linear conservation laws. Secondly,
we perform consensus analysis for the networked system
under undirected topologies by using Lyapunov approach,
in which we give sufficient conditions with respect to the
PI boundary control matrices and Laplacian eigenvalues. In
addition, we present an application to the synchronization
of a multi-lane road traffic flow system based on Aw-Rascle
Equations.

This paper is organized as follows. In section II, we
display the problem formulation. The consensus analysis
under undirected communication topologies is provided in
Section III. Section IV provides an application to multi-lane
traffic synchronization, and section V concludes the paper.

Notations: For a function f(x) = (f1(x), f2(x))T ∈
L2((0, L);R2), denote its L2-norm as ‖f(x)‖L2((0,L);R2) ,
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√∫ L
0

(f2
1 (x) + f2

2 (x)) dx. Given a real matrix A, AT de-
notes the transpose of A, A−1 denotes the inverse of A, A <
(≤) 0 denotes A is a negative definite (semi-definite) matrix,
and λmax(A) denotes the largest real part of eigenvalues of
A. For a diagonal real matrix Λ = diag{λ1, ..., λN}, |Λ| =
diag{|λ1|, ..., |λN |}. For a partitioned symmetric matrix, the
symbol ? stands for the symmetric blocks. 1 = (1, 1, ..., 1)T

and 0 = (0, 0, ..., 0)T are column vectors with appropriate
dimensions if no confusion arises.

II. PROBLEM FORMULATION

Consider a group of agents governed by hyperbolic sys-
tems of two linear conservation laws in Riemann coordinates:{

∂tξ
1
i (x, t) + γ1∂xξ

1
i (x, t) = 0

∂tξ
2
i (x, t)− γ2∂xξ

2
i (x, t) = 0

, i = 1, ..., N,

where ξji (x, t) : [0, L] × R+ → R with j = 1, 2, and γ1 >
0 > −γ2. Define ξi = (ξ1

i , ξ
2
i )T as the state for agent i, and

then we have

∂tξi(x, t) + Γ∂xξi(x, t) = 0, i = 1, ..., N, (1)

where Γ = diag{γ1,−γ2}.
Let ξi,in(t) = (ξ1

i (0, t), ξ2
i (L, t))T, and ξi,out(t) =

(ξ1
i (L, t), ξ2

i (0, t))T for all i = 1, ..., N . For each hyperbolic
agent i, the boundary condition is given as

ξi,in(t) = Aξi,out(t) + ui(t) + θi, (2)

where A ∈ R2×2 denotes the internal coupling matrix, and
ui(t) ∈ R2 denotes the boundary control of hyperbolic
agent i. θi ∈ R2 is an additive outside unknown disturbance
which corrupts system (1) on the boundaries of input. We
assume ui(t) follows the following proportional-integral (PI)
boundary consensus protocol:

ui(t) =KP

N∑
j=1

aij(ξj,out(t)− ξi,out(t))

+KI

N∑
j=1

aij

∫ t

0

(ξj,out(τ)− ξi,out(τ)) dτ,

(3)

where KP ,KI ∈ R2×2 are gain matrices, aij > 0 while
hyperbolic agent i receives the information of hyperbolic
agent j, and aij = 0 otherwise.

The communication topology among the group of hyper-
bolic agents is represented by a time-invariant undirected
graph G = {V, E ,A}, consisting of a node set V =
{1, 2, ..., N}, a time-invariant edge set E ⊆ {(i, j) : i, j ∈
V}, and a corresponding time-invariant adjacency matrix
A = [aij ] with non-negative entries aij ≥ 0 for all i, j.
Iff (j, i) ∈ E , (i, j) ∈ E , which means the information is
exchanged between node i and node j, and thus aij = aji >
0. An undirected graph is connected if there is a path between
any two nodes, which is a sequence of consecutive edges.
Self-loops are not considered in this paper. The Laplacian
matrix L = [lij ] is defined as lij = −aij for i 6= j and
lii =

∑
j 6=i aij for all i.

Definition 1: System (1)-(2) with PI boundary consensus
protocol (3) is said to achieve consensus asymptotically if

lim
t→+∞

‖ξi − ξj‖L2((0,L);R2) = 0, ∀i, j = 1, ..., N. (4)
In the next section, we aim to derive sufficient conditions

with respect to internal coupling matrix A, gain matrices
KP ,KI and Laplacian matrix L for ensuring the asymptotic
consensus of system (1)-(2) under PI boundary consensus
protocol (3).

III. MAIN RESULTS

The boundary condition (2) for each hyperbolic system i
under the boundary consensus protocol (3) can be expressed
as:

ξi,in(t) = Aξi,out(t) +KP

N∑
j=1

aij(ξj,out(t)− ξi,out(t))

+KI

N∑
j=1

aij

∫ t

0

(ξj,out(τ)− ξi,out(τ)) dτ + θi.

(5)

Let w = (w1, w2, ..., wN )T with wi = 1/N, i =
1, 2, ..., N . Let ξ∗ =

∑N
i=1 wiξi, and then following (1), we

have
∂tξ
∗ + Γ∂xξ

∗ = 0. (6)

Let θ∗ =
∑N
i=1 wiθi, and the boundary condition (5) w.r.t.

ξ∗ can be rewritten as

ξ∗in = Aξ∗out + θ∗. (7)

Define ei = ξi − ξ∗ , θ̃i = θi − θ∗ for all i = 1, ..., N .
Then following (1), (5) and (6)-(7), we have

∂tei + Γ∂xei = 0, (8)

ei,in(t) = Aei,out(t) +KP

N∑
j=1

aij(ej,out(t)− ei,out(t))

+KI

N∑
j=1

aij

∫ t

0

(ej,out(τ)− ei,out(τ))dτ + θ̃i

(9)

for all i = 1, ..., N .
Define e = (eT

1, e
T
2, ..., e

T
N )T, ein =

(eT
1,in, e

T
2,in, ..., e

T
N,in)T, eout = (eT

1,out, e
T
2,out, ..., e

T
N,out)

T,

and θ̃ = (θ̃T
1 , θ̃

T
2 , ..., θ̃

T
N )T. Then system (8)-(9) can be

rewritten into the following compact form:

∂te+ (IN ⊗ Γ)∂xe = 0, (10)

ein(t) = (IN⊗A−L⊗KP )eout(t)−L⊗KI

∫ t

0

eout(τ)dτ+θ̃.

(11)
Then we can obtain that the asymptotic consensus of sys-
tem (1) under boundary condition (5) is equivalent to the
asymptotic stability of error system (10)-(11).

Lemma 1: The linear hyperbolic MAS (1)-(2) with PI
boundary consensus protocol (3) achieves consensus asymp-
totically, if KI is reversible and there exist diagonal matrix
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P1 ∈ R2×2 , symmetric matrix P2 ∈ R2×2, matrix P3 ∈
R2×2, and a real constant µ > 0 such that the following
matrix inequalities

P =

[
P1 P3

? P2

]
> 0, (12)

Ω(x) =

 Ω11(x) Ω12(x) Ω13(x)
? Ω22 Ω23

? ? Ω33

 < 0, (13)

hold for all x ∈ [0, L], where

Ω11(x) = −µ(IN ⊗ |Γ|P1(x))

Ω12(x) = −µ(IN ⊗ |Γ|P3(x))

Ω13(x) = −L⊗ P3(x)

Ω22 =
1

L
[eµLIN ⊗KT

I |Γ|P1KI + eµLIN ⊗KT
I |Γ|P3

+ eµLIN ⊗ P T
3 |Γ|KI ]

Ω23 =
1

L
[eµLIN ⊗KT

I |Γ|P1A− eµLL ⊗KT
I |Γ|P1KP

+ eµLIN ⊗ P T
3 |Γ|A− eµLL ⊗ P T

3 |Γ|KP

− IN ⊗ |Γ|P3]− L⊗ P2

Ω33 =
1

L
[eµLIN ⊗AT|Γ|P1A− eµLLT ⊗KT

P |Γ|P1A

− eµLL ⊗AT|Γ|P1KP + eµLL2 ⊗KT
P |Γ|P1KP

− IN ⊗ |Γ|P1]

with P1(x) = P1diag{eµ(L−x), eµx}, P3(x) =
P3diag{eµ(L−x), eµx}.

Proof: We construct the Lyapunov function candidate
in the following form as

V (t) =

∫ L

0

[
e
η

]T [
IN ⊗ P1(x) IN ⊗ P3(x)

? IN ⊗ P2

] [
e
η

]
dx,

(14)
where

η(t) = −L⊗
∫ t

0

eout(τ)dτ + IN ⊗K−1
I θ̃. (15)

The first step of the proof is to compute the time-derivative
of V along the solution (e, η). It yields:

V̇ (t) =

∫ L

0

[2eT
t (IN ⊗ P1(x))e+ eT

t (IN ⊗ P3(x))η

+ eT(IN ⊗ P3(x))η̇ + η̇T(IN ⊗ P T
3 (x))e

+ ηT(IN ⊗ P T
3 (x))et]dx+ 2Lη̇T(IN ⊗ P2)η

= V̇1 + V̇2 + V̇3

with

V̇1 , 2

∫ L

0

eT
t (IN ⊗ P1(x))edx,

V̇2 ,
∫ L

0

[eT
t (IN ⊗ P3(x))η + eT(IN ⊗ P3(x))η̇

+ η̇T(IN ⊗ P T
3 (x))e+ ηT(IN ⊗ P T

3 (x))et]dx,

V̇3 , 2Lη̇T(IN ⊗ P2)η.

Then, using the error system (10) and integration by parts
for V̇1 and V̇2, substituting the PI boundary condition (11)
into V̇1 and V̇2, and letting K̃P = IN ⊗ A − L ⊗ KP and
K̃I = IN ⊗KI , we have

V̇1 = 2

∫ L

0

[−(IN ⊗ Γ)ex]T(IN ⊗ P1(x))edx

= −eT
out(IN ⊗ |Γ|P1)eout + [K̃P eout + K̃Iη]T(eµLIN⊗

|Γ|P1)[K̃P eout + K̃Iη]− µ
∫ L

0

eT(IN ⊗ |Γ|P1(x))edx

=

∫ L

0

 e
η
eout

T  −µ(IN ⊗ |Γ|P1(x)) 0

?
K̃T
I(eµLIN⊗|Γ|P1)K̃I

L
? ?

0
K̃T
I(eµLIN⊗|Γ|P1)K̃P

L
K̃T
P (eµLIN⊗|Γ|P1)K̃P−IN⊗|Γ|P1

L


 e

η
eout

 dx,
(16)

and

V̇2 =

∫ L

0

[
[−(IN ⊗ Γ)ex]T(IN ⊗ P3(x))η + ηT(IN ⊗ P T

3 (x))

[−(IN ⊗ Γ)ex]
]
dx+

∫ L

0

[eT(IN ⊗ P3(x))(−L⊗ I)eout

+ eT
out(−L⊗ I)(IN ⊗ P T

3 (x))e]dx

= −eT
out(IN ⊗ |Γ|P3)η − ηT(IN ⊗ P T

3 |Γ|)eout
+ [K̃P eout + K̃Iη]T(eµLIN ⊗ |Γ|P3)η

+ ηT(eµLIN ⊗ P T
3 |Γ|)[K̃P eout + K̃Iη]

− µ
∫ L

0

[
eT(IN ⊗ |Γ|P3(x))η + ηT(IN ⊗ P T

3 (x)|Γ|)e
]
dx

−
∫ L

0

[
eT(L ⊗ P3(x))eout + eT

out(L ⊗ P T
3 (x))e

]
dx

=

∫ L

0

 e
η
eout

T 0 −µ(IN ⊗ |Γ|P3(x))

?
K̃T
I(eµLIN⊗|Γ|P3)+(eµLIN⊗P T

3 |Γ|)K̃I
L

? ?

−L⊗ P3(x)
(eµLIN⊗P T

3 |Γ|)K̃P−IN⊗|Γ|P3

L
0

 e
η
eout

 dx.
(17)

Moreover, the time-derivative of V3 can be rewritten as

V̇3 =

∫ L

0

 e
η
eout

T  0 0 0
? 0 −L⊗ P2

? ? 0

 e
η
eout

 dx.
(18)

Finally, by combining (16)-(18), and substituting K̃P , K̃I ,
we have the time-derivative of V as

V̇ =

∫ L

0

 e
η
eout

T Ω11(x) Ω12(x) Ω13(x)
? Ω22 Ω23

? ? Ω33

 e
η
eout

 dx.
(19)
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Due to the condition (13) that Ω(x) < 0, there exists a
constant v = −λmax(Ω(x))

λmax(P ) > 0 for all x ∈ [0, L], such that

V̇ ≤ λmax(Ω(x))

∫ L

0

 e
η
eout

T  e
η
eout

 dx
≤ −vV. (20)

Further, we can obtain that V (t) ≤ exp(−vt)V (0), and
therefore limt→∞ V (t) = 0. Through the definition of V (t),
limt→∞ V (t) = 0 implies limt→∞ ‖e(x, t)‖L2 = 0, which
indicates that system (10)-(11) is asymptotically stable in
L2-norm.

To ensure the consensus of system (1) under boundary
condition (5), the sufficient condition is closely related to
the Laplacian matrix L. Following the condition (13) given
in Lemma 1, we need to judge the negative definiteness of
a 6N -dimensional matrix, and thus it is difficult to check
when N is large. We will employ the spectral decomposition
technique to derive a sufficient condition in relation to the
Laplacian eigenvalues in place of the Laplacian matrix L,
which will make the condition more tractable.

Before giving the main result of this paper, an assumption
is given as follows.

Assumption 1: The communication topology G is undi-
rected and connected.

Let λi, i = 1, ..., N , and 0 = λ1 < λ2 ≤ ... ≤ λN denote
the eigenvalues of L. Since G is undirected, w = 1N/N is the
non-negative left eigenvector of L associated with eigenvalue
0.

Theorem 1: The linear hyperbolic MAS (1)-(2) with PI
boundary consensus protocol (3) achieves consensus asymp-
totically, if Assumption 1 holds, KI is reversible and there
exist diagonal matrix P1 ∈ R2×2 , symmetric matrix P2 ∈
R2×2, matrix P3 ∈ R2×2, and a real constant µ > 0 such
that the following matrix inequalities

P =

[
P1 P3

? P2

]
> 0,

Πi(x) =

 Π11(x) Π12(x) Πi,13(x)
? Π22 Πi,23

? ? Πi,33

 < 0, (21)

hold for all x ∈ [0, L] and all i = 2, ..., N , where

Π11(x) = −µ|Γ|P1(x),

Π12(x) = −µ|Γ|P3(x),

Πi,13(x) = −λiP3(x),

Π22 =
1

L
(eµLKT

I |Γ|P1KI + eµLKT
I |Γ|P3 + eµLP T

3 |Γ|KI),

Πi,23 =
1

L
[eµLKT

I |Γ|P1A+ eµLP T
3 |Γ|A− |Γ|P3

− λi(eµLKT
I |Γ|P1KP + eµLP T

3 |Γ|KP + LP2)],

Πi,33 =
1

L
[eµLAT|Γ|P1A− |Γ|P1 − λi(eµLKT

P |Γ|P1A

+ eµLAT|Γ|P1KP ) + λ2
i e
µLKT

P |Γ|P1KP ].

Proof: Choose ψi ∈ RN such that ψT
i L = λiψ

T
i , and

define an orthogonal matrix Ψ = (1N/
√
N,ψ2, ..., ψN ) to

transform L into a diagonal form

Λ , diag{0, λ2, ..., λN} = ΨTLΨ. (22)

Let ẽ = (Ψ⊗ I2)Te, η̃ = (Ψ⊗ I2)Tη, ẽout = (Ψ⊗ I2)Teout,
where ẽ1 = 1/

√
N
∑N
i=1 ei = 0, η̃1 = 1/

√
N
∑N
i=1 ηi = 0,

ẽ1,out = 1/
√
N
∑N
i=1 ei,out = 0. According to (22), we have

eTΩ11(x)e = ẽT(ΨT ⊗ I2)[−2µ(IN ⊗ |Γ|P1(x))](Ψ⊗ I2)ẽ

= ẽT[−2µ(ΨTINΨ⊗ |Γ|P1(x))]ẽ

=

N∑
i=2

ẽT
i [−2µ|Γ|P1(x)]ẽi, (23)

eTΩ12(x)η =

N∑
i=2

ẽT
i [−µ|Γ|P3(x)]η̃i, (24)

eTΩ13(x)eout =

N∑
i=2

ẽT
i [−λiP3(x)]ẽi,out, (25)

ηTΩ22η =

N∑
i=2

ηT
i [

1

L
(eµLKT

I |Γ|P1KI + eµLKT
I |Γ|P3

+ eµLP T
3 |Γ|KI)]η̃i, (26)

ηTΩ23eout = η̃T[
1

L
(eµLΨTINΨ⊗KT

I |Γ|P1A

− eµLΨTLΨ⊗KT
I |Γ|P1KP + eµLΨTINΨ⊗ P T

3 |Γ|A
− eµLΨTLΨ⊗ P T

3 |Γ|KP −ΨTINΨ⊗ |Γ|P3)

−ΨTLΨ⊗ P2]ẽout

= η̃T[
1

L
(eµLIN ⊗KT

I |Γ|P1A− eµLΛ⊗KT
I |Γ|P1KP

+ eµLIN ⊗ P T
3 |Γ|A−eµLΛ⊗ P T

3 |Γ|KP −IN ⊗ |Γ|P3)

− Λ⊗ P2]ẽout

=

N∑
i=2

η̃T
i [

1

L
(eµLKT

I |Γ|P1A− eµLλiKT
I |Γ|P1KP + eµL

P T
3 |Γ|A− eµLλiP T

3 |Γ|KP − |Γ|P3)− λiP2]ẽi,out, (27)

eT
outΩ33eout = ẽT

out[
1

L
(eµLΨTINΨ⊗AT|Γ|P1A

− eµLΨTLTΨ⊗KT
P |Γ|P1A−eµLΨTLΨ⊗AT|Γ|P1KP

+ eµLΨTLTLΨ⊗KT
P |Γ|P1KP−ΨTINΨ⊗ |Γ|P1)]ẽout

=

N∑
i=2

ẽT
i,out[

1

L
(eµLAT|Γ|P1A− eµLλiKT

P |Γ|P1A

−eµLλiAT|Γ|P1KP+eµLλ2
iK

T
P |Γ|P1KP−|Γ|P1)]ẽi,out.

(28)

Then V̇ (t) in (19) can be rewritten into

V̇ (t) =

N∑
i=2

∫ L

0

 ẽi
η̃i

ẽi,out

T

·

 Π11(x) Π12(x) Πi,13(x)
? Π22 Πi,23

? ? Πi,33

 ẽi
η̃i

ẽi,out

 dx. (29)
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Following the similar arguments in the proof of Lemma 1, we
prove that system (1) with boundary condition (5) achieves
consensus asymptotically, since (21) holds for all x ∈ [0, L]
and all i = 2, ..., N .

Remark 1: Since undirected graphs are assumed in this
paper, the final agreed is equal to the averaged state ξ∗

following dynamics (6)-(7) with the initial state ξ∗(x, 0) =∑N
i=1 ξi(x, 0)/N .

IV. APPLICATION TO MULTI-LANE TRAFFIC
SYNCHRONIZATION

In this section, we present an application to a multi-
lane traffic synchronization problem. Consider a traffic flow
system on a multi-lane road that comprises N lanes and
operates under boundary consensus control.

A. Multi-lane Traffic Flow Model

We use the Aw-Rascle Equations to illustrate each lane of
the multi-lane road traffic flow system:{

∂tρi + ∂x(ρivi) = 0
∂tvi + (vi − aρi)∂xvi = 0

, i = 1, ..., N. (30)

ρi(x, t) and vi(x, t) are the vehicle density and average
speed respectively for the i-th lane at position x ∈ [0, L]
and time t ∈ [0,+∞) with L representing the length of
the road. The term aρi represents the traffic pressure with
a = vf/ρm, where vf denotes the free speed and ρm denotes
the maximum density.

The aim of the multi-lane traffic synchronization is to
guide the traffic flow states of all lanes to an agreement at any
position on the road, i.e. limt→∞ (ρi(x, t)− ρj(x, t)) = 0
and limt→∞ (vi(x, t)− vj(x, t)) = 0 for all x ∈ [0, L] and
all i 6= j, so that we can avoid lane-changing behaviors in
order to improve the road safety.

Define (ρ∗, v∗) as a steady state, and ρ̃i = ρi − ρ∗, ṽi =
vi − v∗ as the deviation state. Similarly, let wi = vi + aρi,
denote w∗ = v∗ + aρ∗, and let w̃i = wi −w∗. Then system
(30) could be linearized under the Riemann coordinate as

∂tξi + Γ∂xξi = 0, i = 1, ..., N, (31)

where ξi = (w̃i, ṽi)
T, and Γ = diag{v∗, v∗ − aρ∗}. ρ∗ and

v∗ are pre-set constants satisfying v∗ − aρ∗ < 0, which
illustrates the speed of vehicle is shifted from downstream to
upstream and the steady traffic state is in congestion mode.

B. PI Boundary Consensus Control

By using the coil or video technologies, we assume that
we can measure the average speed vi(0, t) at the upstream
boundary and the vehicle density ρi(L, t) at the downstream
boundary. Then, they can be transmitted to neighboring
lanes through the vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication. Suppose the multi-lane
road traffic flow consists of connected autonomous vehicles,
and we can autonomously adjust their velocities and head-
ways. Therefore, it is reasonable to assume that vi(L, t) at the
downstream boundary and ρi(0, t) at the upstream boundary

are the control variables. Then, the boundary consensus
control law is as follows

vi(L, t) = k1ṽi(0, t) + k2v̂i(0, t) + k2

∫ t
0
v̂i(0, τ)dτ + v∗

ρi(0, t) = k3ṽi(0, t) + k4v̂i(0, t) + k5

∫ t
0
v̂i(0, τ)dτ

+k6

(
ρ̃i(L, t) + k2

k1
ρ̂i(L, t) + k2

k1

∫ t
0
ρ̂i(L, τ)dτ

)
+k2k6

a

(
v̌i(0, t) +

∫ t
0
v̌i(0, τ)dτ

)
+ δi + ρ∗

(32)
for i = 1, ..., N , where k1, k2, k3, k4, k5, k6 are feedback
gains, δi represents an unknown constant input disturbance
at the upstream boundary,

v̂i(0, t) =

N∑
j=1

aij(vj(0, t)− vi(0, t)),

ρ̂i(L, t) =

N∑
j=1

aij(ρj(L, t)− ρi(L, t)),

v̌i(0, t) =

N∑
j=1

aij(v̂j(0, t)+

∫ t

0
v̂j(0, τ)dτ− v̂i(0, t)−

∫ t

0
v̂i(0, τ)dτ),

aij = 1 if the i-th lane receives the information from the
j-th lane, and aij = 0 otherwise.

Then the boundary condition of the system under the
consensus control is

ξi,in =Aξi,out +KP

N∑
j=1

aij(ξj,out − ξi,out)

+KI

N∑
j=1

aij

∫ t

0

(ξj,out(s)− ξi,out(s)) ds+ θi,

where

A=

[
k6 ak3 − k1k6 + 1
0 k1

]
,KP=

[
k2k6
k1

ak4 − k1k2k6 − k2k6

0 k2

]
,

KI =

[
k2k6
k1

ak5 − k1k2k6 − k2k6

0 k2

]
, θi =

[
aδi 0

]T
.

C. Simulation

In our simulation, the multi-lane road traffic flow system
(30) consists of three lanes. Set related traffic and road
parameters as L = 1 km, ρ∗ = 80 veh./km, v∗ =
30 km/h, ρm = 160 veh./km and vf = 120 km/h. The
upstream boundary input disturbance δ1,2,3 = −1, 0, 1. The
initial states of the three-lane road traffic flow system are as
follows:

ρ1(x, 0) = 100 + 5 cos(πx)
v1(x, 0) = 25− 5 sin(πx)
ρ2(x, 0) = 80 + 8 cos(0.6πx)
v2(x, 0) = 30 + 8 sin(0.6πx)
ρ3(x, 0) = 60 + 3 cos(0.8πx)
v3(x, 0) = 35− 3 sin(0.8πx)

, x ∈ [0, L].

Set k1 = 1, k2 = 0.3, k3 = −2.8, k4 = k5 = − 14
15 , and

k6 = −1. Thus, we have

A =

[
−1 −0.1
0 1

]
,KP = KI =

[
−0.3 −0.1

0 0.3

]
.

Considering the undirected communication topology for
the three-lane road traffic flow system as shown in Fig. 1,
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Fig. 1. Communication topology of the three-lane road traffic flow system.
we have L = [2 − 1 − 1;−1 2 − 1;−1 − 1 2], and hence
λ2(L) = λ3(L) = 3.

Solving the inequality conditions (12) and
(21), we obtain P1 = [5.2743 0; 0 2.6871],
P2 = [22.3531 − 10.6835;−10.6835 25.5264], and
P3 = [3.3108 4.1817; 4.1817 0.6132]. Hence the sufficient
conditions for ensuring the asymptotic consensus given in
Theorem 1 are satisfied.

As shown in Fig. 2, we can see the spatio-temporal
evolution of state deviations between any two lanes. In more
specific words, as shown in Fig. 2(a), for all x ∈ [0, L],
ρ1 − ρ2 and ρ1 − ρ3 converge to 0. As shown in Fig. 2(b),
for all x ∈ [0, L], v1 − v2 and v1 − v3 converge to 0.
We can conclude that the multi-lane traffic synchronization
is achieved. Especially, in Fig. 3, we can see the spatial
trajectories of ρ1 and v1 at t = 0.6 hr, demonstrating that
the final agreed traffic density and speed vary with x instead
of being stabilized to (ρ∗, v∗).

(a)

(b)
Fig. 2. The spatio-temporal evolution of state deviations between any two
lanes. (a) ρ1 − ρ2 and ρ1 − ρ3; (b) v1 − v2 and v1 − v3.
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Fig. 3. The spatial trajectory of the final state of lane 1.

V. CONCLUSION

This paper has proposed a PI boundary consensus protocol
for hyperbolic multi-agent systems with input disturbances,

and presented an asymptotic consensus analysis under undi-
rected communication topologies. We have employed the
Lyapunov approach to prove that the proposed PI bound-
ary consensus protocol could drive the hyperbolic multi-
agent systems reach asymptotical consensus, in which the
sufficient conditions w.r.t. the PI boundary control matrices
and Laplacian matrices are derived. Then, we integrate the
spectral decomposition technique with Lyapunov approach to
derive sufficient conditions related to Laplacian eigenvalues,
which are more tractable. Furthermore, we have provided an
application to the synchronization of a multi-lane road traffic
flow system, and simulation results have been provided to
verify the theoretical results.

Our future research may include exploring sufficient con-
sensus conditions with less number of LMIs and extending
the results to the directed communication topology case.
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