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Abstract— Through the use of the Fundamental Lemma
for linear systems, a direct data-driven state-feedback control
synthesis method is presented for a rather general class of
nonlinear (NL) systems. The core idea is to develop a data-
driven representation of the so-called velocity-form, i.e., the
time-difference dynamics, of the NL system, which is shown to
admit a direct linear parameter-varying (LPV) representation.
By applying the LPV extension of the Fundamental Lemma
in this velocity domain, a state-feedback controller is directly
synthesized to provide asymptotic stability and dissipativity of
the velocity-form. By using realization theory, the synthesized
controller is realized as a NL state-feedback law for the
original unknown NL system with guarantees of universal
shifted stability and dissipativity, i.e., stability and dissipativity
w.r.t. any (forced) equilibrium point, of the closed-loop behavior.
This is achieved by the use of a single sequence of data from
the system and a predefined basis function set to span the
scheduling map. The applicability of the results is demonstrated
on a simulation example of an unbalanced disc.

Index Terms— Data-driven Control, Nonlinear Systems, Lin-
ear Parameter-Varying Systems.

I. INTRODUCTION

Due to the ever-increasing performance requirements, con-
trol problems in engineering are getting increasingly more
complex, with the need to precisely address nonlinear (NL)
aspects of the behavior of the underlying systems. This in
turn also requires accurate modeling of such NL behav-
iors, which often becomes cumbersome or even impossible
with first-principle modeling techniques. While data-driven
methods provide an alternative, in the absence of a mature
NL identification for control theory, it is often difficult to
decide which part of the behavior is crucial to be captured
for control design and how the uncertainty of the estimated
model influences the subsequent control synthesis. For this
reason, data-driven control methods have been developed to
design controllers directly from data, eliminating the need
of a modeling step. In the linear time-invariant (LTI) case,
the Fundamental Lemma [1] has proven to be a key result,
allowing for direct data-driven analysis and control synthesis
with stability and performance guarantees, see [2]. Besides
of promising approaches based on feedback and online
linearizations, or polynomial bases [3]–[5], an analogous
result for general NL systems has not been achieved yet.

In this paper, we propose a novel extension of the Fun-
damental Lemma to a wide class of discrete-time (DT) NL
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systems that can be described in a state-space form with
differentiable state transition and output functions. Our result
is based on the use of the velocity-form of the NL system,
which describes the time-difference dynamics of the system
and it has two important properties: (i) stability and per-
formance of the velocity-form imply universal shifted, i.e.,
equilibrium-independent, stability and performance of the
original NL system [6]–[8], (ii) the velocity-form naturally
results in a linear parameter-varying (LPV) system. By
calculating time-differences of the data from the underlying
NL system, which characterizes the velocity form, our first
contribution (C1) is to show that the resulting data-equations
allow for convex data-driven analysis and controller synthesis
by the use of the recently introduced LPV Fundamental
Lemma [9] due to property (i). Then, by exploiting (ii), our
second main contribution (C2) is to show that the data-driven
controller for the velocity-form, obtained in the previous
step, exhibits a computable realization, and to prove that this
realization provides universal shifted guarantees for closed-
loop control of the original NL system.

In Section II, we formalize the NL data-driven control
problem that we intend to solve. Section III introduces the
data-based representation of the velocity-form of the NL
system using an LPV embedding and the LPV Fundamental
Lemma. Section IV uses the data-driven representation to
synthesize a state-feedback controller for the velocity-form,
which by realization to a NL state-feedback law provides
equilibrium independent guarantees. Section V demonstrates
the applicability of the results in a simulation example based
on an unbalanced disc system, while the conclusions on the
achieved results are given in Section VI.

Notation: The set of integers is denoted by Z, while the set
of real numbers is denoted by R. Moreover, R+

0 = [0,∞) ⊂
R. A function f : Rp → Rq is in Cn if it is n-times
continuously differentiable, while f : Rp → R belongs to
the class Qx∗ if it is positive definite and decrescent w.r.t.
x∗ ∈ Rp (see [10]). col(x1, . . . , xn) denotes [x⊤1 · · · x⊤n ]⊤.

II. PROBLEM STATEMENT

Consider a DT NL system1, defined in terms of the state-
space representation

xk+1 = f(xk, uk), yk = xk, (1)

where xk ∈ X ⊆ Rnx is the state, uk ∈ U ⊆ Rnu is the input
and yk ∈ Y = X is the observed output at time moment
k ∈ Z. Here, yk is assumed to provide full state observation.

1As we intent to establish the core concepts on data-driven control of
NL systems via the Fundamental Lemma, in this work, we do not consider
disturbance or noise signals in (1). The extensions towards noise-affected
systems are objective of future research, e.g., based on [11].
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X and U are considered to be open sets containing the origin,
and f : X × U → X is assumed to be a C1 function. The
behavior, i.e., the set of all solution trajectories of (1), is

B =
{
(x, u, y) ∈ (X× U× Y)Z | (1) holds ∀k ∈ Z

}
. (2)

The set of all (forced) equilibrium points of (1) is given by

E = {(x∗, u∗, y∗) ∈ X×U×Y | x∗ = f(x∗, u∗), y∗ = x∗}.

Furthermore, let X∗ = πx∗E , U∗ = πu∗E , Y∗ = πy∗E ,
where π is the projection operator w.r.t. specific variables.

As highlighted in Section I, analyzing the time-difference
dynamics of (1) allows for giving equilibrium independent
guarantees on (1) [6], [7]. For this purpose, we introduce
the so-called velocity-form of (1) that will be an important
ingredient in our proposed method. For the increments

∆uk = uk − uk−1, ∆xk = xk − xk−1, ∆yk = yk − yk−1,
(3)

we obtain the time-difference dynamics as

∆xk+1 = f(xk, uk)− f(xk−1, uk−1), ∆yk = ∆xk. (4)

By the use of the Fundamental Theorem of Calculus, e.g.,
see [6, Lem. C.1.1], (4) can be rewritten in the equivalent
velocity-form:

∆xk+1 = Av(ξk, ξk−1)∆xk +Bv(ξk, ξk−1)∆uk, (5a)
∆yk = ∆xk, (5b)

where ξk = col(xk, uk), and

Av(xk, uk, xk−1, uk−1) =

∫ 1

0

∂f
∂x

(
x̄k(λ), ūk(λ)

)
dλ, (5c)

Bv(xk, uk, xk−1, uk−1) =

∫ 1

0

∂f
∂u

(
x̄k(λ), ūk(λ)

)
dλ, (5d)

with x̄k(λ) = xk−1 + λ(xk − xk−1) and ūk(λ) = uk−1 +
λ(uk − uk−1), λ ∈ [0, 1]. The solutions of (5) are collected
in the velocity behavior B∆, which is defined as

B∆ =
{
(∆x,∆u,∆y) ∈ (Rnx × Rnu × Rny)Z | the

relations in (3) hold ∀k ∈ Z, (x, u, y) ∈ B
}
. (6)

Analyzing stability and performance of the velocity-form (5)
by means of the concept of dissipativity yields universal
guarantees on (1). Hence, consider the following definitions:

Definition 1. The system (1) is velocity-stable, if (5) is stable
with ∆u = 0, i.e., for each ϵ > 0 there exists a δ(ϵ) such that
∥∆xk0∥ ≤ δ(ϵ) ⇒ ∥∆xk∥ ≤ ϵ, ∀k ≥ k0. It is asymptotic
velocity-stable, if it is velocity-stable and for ∆u = 0 we
have limk→∞ ∥∆xk∥ = 0.

Definition 2. The system (1) is velocity-dissipative w.r.t. the
supply function Sv : Rnu×Rny → R, if there exists a storage
function Vv : Rnx → R+

0 with Vv ∈ C0, Vv ∈ Q0, such that

Vv(∆xk1+1)− Vv(∆xk0) ≤
∑k1

k=k0
Sv(∆uk,∆yk), (7)

for all k0, k1 ∈ Z, k0 ≤ k1 and (∆x,∆u,∆y) ∈ B∆.

It is well-known that dissipativity implies asymptotic
stability if Sv is a negative definite function under zero
input, i.e., there is a strictly decreasing α : R+

0 → R+
0 with

α(0) = 0, s.t. Sv(0,∆y) < α(∥∆y∥) for all ∆y ∈ Rny [6].
It has been shown in [6] that velocity-stability and

velocity-dissipativity implies strong equilibrium independent
stability and performance notions in terms of universal
shifted (asymptotic) stability (US(A)S) and universal shifted
dissipativity (USD), which are defined as:

Definition 3. The system (1) is USS if it is stable w.r.t. all
(x∗, u∗, y∗) ∈ E , i.e., if for each ϵ > 0 there exists a δ(ϵ)
such that ∥xk0

− x∗∥ ≤ δ(ϵ) ⇒ ∥xk − x∗∥ ≤ ϵ, ∀k ≥ k0.
It is USAS if it is USS and for all (x∗, u∗, y∗) ∈ E we
have limk→∞ ∥xk − x∗∥ = 0 with (x, u, y) ∈ B for which
u ≡ u∗.

Definition 4. The system (1) is USD w.r.t. the supply
function Ss : U×U∗×Y×Y∗ → R, if there exists a storage
function Vs : X × U∗ → R+

0 , which ∀(x∗, u∗) ∈ πx∗,u∗E
satisfies Vs(·, u∗) ∈ C0, Vs(·, u∗) ∈ Qx∗ , and

Vs(xk1+1, u∗)−Vs(xk0
, u∗) ≤

∑k1

k=k0
Ss(uk, u∗, yk, y∗), (8)

for all k0, k1 ∈ Z, k0 ≤ k1 and (x, u, y) ∈ B.

The key-observation is that in [6] it is proven that velocity-
dissipativity implies US(A)S, i.e., (asymptotic) stability of
(1) w.r.t. any equilibrium point in E . Furthermore, under cer-
tain conditions2 velocity-dissipativity implies USD, i.e., per-
formance of (1) w.r.t. any equilibrium point in E . This allows
for the design and synthesis of controllers for (1) through
the velocity-form, which, after appropriate realization, will
guarantee universal shifted stability and performance of the
closed-loop NL system. In [6], this has been accomplished
in the model-based setting using an LPV form of (5). We
aim to extend this result to the data-based setting by solving
the following problem:

Problem statement: Consider a system represented by (1)
from which N samples of input-state data have been obtained
and collected in the data-dictionary DNL

N = {udk, xdk}Nk=1.
How to synthesize a state-feedback controller for (1), purely
based on DNL

N , such that the controller guarantees universal
shifted stability and performance of the closed-loop system?

III. DATA-BASED VELOCITY REPRESENTATIONS

To realize our objective, we first show that the velocity-
form admits an LPV embedding and that we can obtain an
LPV data-driven representation of B∆ purely based on DNL

N .

A. LPV embedding of the velocity-form

To apply the embedding principle, we will need to start
with the following assumption:

Assumption 1. We are given a set of basis functions
ψ1, . . . , ψnp with ψ : (X × U)2 → Rnp , such that there

2See [6, Sec. 8.3] for the conditions, and the discussion in Section IV-C.
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exist A0, . . . , Anp
∈ Rnx×nx and B0, . . . , Bnp

∈ Rnx×nu

for which

Av(ξk, ξk−1) = A0 +
∑np

i=1Aiψi(ξk, ξk−1), (9a)
Bv(ξk, ξk−1) = B0 +

∑np

i=1Biψi(ξk, ξk−1), (9b)

with ξk = col(xk, uk).

Remark 1. By a polynomial basis set in xk, uk, xk−1, uk−1,
one can approximate any Av and Bv in the velocity form (5)
under the condition that f ∈ C∞, which can be easily
shown based on the Taylor series of f . Alternatively, one
can use kernel-based methods to learn ψ from data. Hence,
explicit prior knowledge of f is not necessary for choosing
an effective ψ. Only the number of basis np, governing the
approximation error, is required to be determined in advance.

Based on Assumption 1, we use the given set of functions
to define a so-called scheduling variable, a signal that can
represent all the variation of the nonlinearities in (9):

pk = ψ(xk, uk, xk−1, uk−1) ∈ P ⊆ Rnp . (10)

Note that pk can be computed from measurements of yk =
xk and uk through ψ, hence using the available data set DNL

N .
Here, P can be constructed as the convex hull of the image
of X×U or DNL

N through ψ, where convexity is required by
the analysis and synthesis tools we will use in Section IV.

With (10), the LPV embedding of (5) is formulated as

∆xk+1 = Āv(pk)∆xk + B̄v(pk)∆uk, (11a)
∆yk = ∆xk, (11b)

with Āv(pk) = A0 +
∑np

i=1Aipi,k and B̄v(pk) = B0 +∑np

i=1Bipi,k. To make (11) a linear surrogate representation
of (4), in the LPV framework, pk ∈ P in (11) is assumed to
vary independently from (∆xk,∆uk). The resulting behavior
of (11) is defined as

BLPV ={(∆x,∆u,∆y) ∈ (X× U× Y)Z | ∃p ∈ PZ s.t.
(11) holds ∀k ∈ Z}.

The assumption of the independent variation of pk implies
that B∆ ⊂ BLPV, resulting in an embedding of the velocity
behavior B∆ into a solution set of a linear representation.
While the price for this linearity is payed in the conservatism
of the resulting LPV representation, linearity in itself enables
the derivation of a data-driven representation concept through
the LPV extension of the Fundamental Lemma.

Remark 2. The velocity-form is key to accomplish the
LPV embedding, because (i) (5a) naturally appears in an
LPV form compared to the required non-unique factorization
of f and h for the direct LPV embedding of (1) (as is
used in, e.g., [12]), and (ii) ensuring (asymptotic) stability
and dissipativity guarantees on (11) results in equilibrium
independent guarantees on (1), while this is not the case with
a direct LPV embedding and LPV analysis of (1), see [13]
for further details.

B. Data-driven closed-loop velocity representations

To make a data-driven synthesis for the velocity form and
a subsequent realization of the controller for the original NL
system (1) possible, we require as a first step a data-driven
representation of (4) in closed-loop with the to-be-designed
controller. By exploiting the LPV embedding concept (11)
of (1), we can derive such a closed-loop representation based
on [14] using DNL

N+1 = {udk, xdk}
N+1
k=1 , measured from (1).

Based on DNL
N+1, we can construct the signals that

constitute (11), resulting in the data-dictionary D∆
N =

{∆xdk, pdk,∆udk}
N+1
k=2 and the data matrices

U∆ =
[
∆ud2 · · · ∆udN

]
∈ Rnu×N−1, (12a)

Up
∆ =

[
pd2 ⊗∆ud2 · · · pdN ⊗∆udN

]
∈ Rnunp×N−1, (12b)

X∆ =
[
∆xd2 · · · ∆xdN

]
∈ Rnx×N−1, (12c)

X
p
∆ =

[
pd2 ⊗∆xd2 · · · pdN ⊗∆xdN

]
∈ Rnxnp×N−1, (12d)

−→
X∆ =

[
∆xd3 · · · ∆xdN+1

]
∈ Rnx×N−1, (12e)

where ‘⊗’ denotes the Kronecker product. Moreover, for

G∆ :=
[
X⊤

∆ Xp
∆

⊤
U⊤
∆ Up

∆
⊤
]⊤

, define D∆
N being

persistently exciting (PE) if G∆ has full row-rank, i.e.,
rank(G∆) = (1 + np)(nx + nu).

Consider the velocity controller in terms of the LPV
control law

∆uk = Kv(pk)∆xk =
[
Kv

0 K̄v
] [ ∆xk
pk ⊗∆xk

]
, (13)

with Kv(pk) = Kv
0 +

∑np

i=1K
v
i pi,k and K̄v =[

Kv
1 · · · Kv

np

]
. Interconnection of this controller with the

embedded velocity-form (11), can be formulated as a fully
data-driven closed-loop representation. This is summarized
in the following Corollary, derived from [14, Thm. 1].

Corollary 1. Given a PE D∆
N generated by (1) based on

which
−→
X∆ and G∆ are constructed. Then, the interconnection

of (11), i.e., (5), and a given Kv(pk) under the feedback law
(13) is represented equivalently as

∆xk+1 =
−→
X∆V

 ∆xk
pk ⊗∆xk

pk ⊗ pk ⊗∆xk

 , (14)

where V ∈ RN−1×nx(1+np+n2
p) is any matrix that satisfies

Inx 0 0
0 Inp

⊗ Inx
0

Kv
0 K̄v 0
0 Inp

⊗Kv
0 Inp

⊗ K̄v

 = G∆V. (15)

Proof. The proof follows directly from [14, Thm 1]. ■

We can now apply the direct data-driven LPV state-
feedback controller synthesis methods from [14] to synthe-
size the LPV velocity controller Kv(pk) for the system (11),
i.e., a controller for the velocity-form of (1).
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IV. DATA-DRIVEN STATE-FEEDBACK CONTROL OF NL
SYSTEMS WITH GUARANTEES

A. Data-driven velocity state-feedback synthesis
Using the closed-loop data-driven representation of the

velocity-form of (1), we now formulate synthesis of Kv(pk)
with the objectives of stabilization of (5) and optimal per-
formance in terms of the quadratic infinite-time horizon cost

J(∆x,∆u) =
∑∞

k=1∆x
⊤
k Q∆xk +∆u⊤k R∆uk, (16)

where Q,R ≻ 0 are user-defined matrices that encode
the performance expectations. Velocity-dissipativity of the
closed-loop system (the velocity-form (5) driven by the feed-
back law (13)) w.r.t. the supply function Sv(∆uk,∆xk) =
−(∆x⊤k Q∆xk+∆u⊤k R∆uk) implies that (16) is finite. The
following Corollary derived from [14, Thm. 4] gives a fully
data-based algorithm for the synthesis of a velocity controller
Kv(pk) that ensures this and even minimizes (16).

Corollary 2. Given a PE D∆
N generated by (1). Let

Z = Z⊤ ∈ Rnx×nx , with Z ≻ 0, be the minimizer
of supp∈P trace(Z), such that there exist multipliers F ∈
RN−1×nx(1+np+n2

p), FQ ∈ R(N−1)(1+np)×nx(1+np), Ξ ∈
R4nxnp×4nxnp , Y0 ∈ Rnu×nx , and Ȳ ∈ Rnu×nxnp satisfying[

∗
∗

]⊤ [
Ξ 0
0 W

]⊤  L11 L12

I 0
L21 L22

 ≺ 0, (17a)

[
∗
∗

]⊤ [
Ξ11 Ξ12

Ξ⊤
12 Ξ22

]
︸ ︷︷ ︸

Ξ

[
I
P

]
⪯ 0, Ξ22 ≻ 0, (17b)


Z 0 0
0 Inp

⊗ Z 0
Y0 Ȳ 0
0 Inp

⊗ Y0 Inp
⊗ Ȳ

 = G∆F , (17c)

F
[

Inx

p⊗Inx

p⊗p⊗Inx

]
=

[
IN−1

p⊗IN−1

]⊤
FQ

[
Inx

p⊗Inx

]
, (17d)

for all p ∈ P, where P = diag(p)⊗ I2nx
, and

W =


Z0 F⊤

Q

−→
X ⊤

∆

[
Q

1
2Z 0

]⊤ Y⊤R
1
2

−→
X∆FQ Z0 0 0[
Q

1
2Z 0

]
0 Inx

0

R
1
2Y 0 0 Inu

 ,
Z0 = blkdiag(Z, 0nxnp×nxnp

), Y = [Y0 Ȳ ],
−→
X∆ = blkdiag(

−→
X∆, Inp

⊗
−→
X∆),

L11 = 02nxp×2nxp
, L12 =

[
1np

⊗ I2nx
02nxp×nxu

]
,

L21 =


0nx×2nxp

Inp
⊗ Γ1

0nx×2nxp

Inp ⊗ Γ2

0nxu×2nxp

 , L22 =


Γ1 0

1np
⊗ 0nx×2nx

0
Γ2 0

1np ⊗ 0nx×2nx 0
0 Inxu

 ,
Γ1 =

[
Inx

0
]
, Γ2 =

[
0 Inx

]
, (18)

with nxp = nxnp, nxu = nx + nu. Then, the state-feedback
controller Kv(pk) with Kv

0 = Y0Z
−1, and K̄v = Ȳ (Inp ⊗

Z)−1 is a stabilizing controller for (11), and achieves the

Fig. 1. Realization of the controller.

minimum of (16) over all initial conditions ∆x1 ∈ Rnx and
scheduling trajectories p ∈ PN.

Proof. See [14, Thm. 4]. ■

Note that (17d) can be easily satisfied by defining F =
[F1 F2 F3] in terms of a permutation of FQ =

[
F11 F12

F21 F22

]
,

where F1 = F11, F2 is constructed from the rows and
columns of F21 and F12, respectively, and F3 is a permuta-
tion of F22. By reformulation of (17) and assuming that P is
compact, the synthesis algorithm of Corollary 2 corresponds
to a semi-definite program (SDP) with a finite set of linear
matrix inequality (LMI) constraints. The resulting controller
Kv(pk) provides stability and performance guarantees for
the LPV surrogate form under all possible variations of p.
This –through the embedding principle– implies stability and
performance in terms of Definition 1, 2 of the closed-loop
velocity-form (5) with Kv(ψ(xk, uk, xk−1, uk−1)) where pk
is substituted by (10). Hence, using only the data-dictionary
D∆

N from the NL system (1), we synthesized a NL controller
for the velocity-form, which corresponds to our contribu-
tion C1. The problem that remains is to show that there
exists a NL controller KNL for which Kv is its velocity-form,
enabling to prove that that applying KNL on the unknown
system (1) will imply USAS and USD guarantees of the
closed-loop operation.

B. Realization of the NL controller
For the controller realization, we use the time-difference

and summing operators ∆ and Σ on signals, such that
Σ∆xk = xk, ∆xk = ∆xk and ∆(Σ∆xk) = ∆xk. Note
that these are the DT equivalents of the time-integration and
differentiation operators in continuous-time (CT). Hence, if
we apply these to the closed-loop as depicted in Fig. 1, we
can define the NL controller as

KNL :


χk+1 =

[
0 0

−Kv(pk) I

]
χk +

[
I

Kv(pk)

]
xk,

uk =
[
−Kv(pk) I

]
χk + Kv(pk) xk,

pk = ψ(xk, uk, χk),

(19)

where χk =
[
x⊤k−1 u⊤k−1

]⊤
. This is easily derived by

noting that uk = ∆uk + uk−1, i.e.,

∆uk = Kv(pk)∆xk, (20a)
(uk − uk−1) = Kv(pk)(xk − xk−1), (20b)

uk = Kv(pk)(xk − xk−1) + uk−1. (20c)

Hence, the interconnection of Kv(pk) with (5) is in fact the
velocity-form of the interconnection of (19) with (1). Note
that to compute uk in the output equation of KNL, pk is
also dependent on uk. This means that computation of uk
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requires the solution of a fixed point problem, for which many
reliable solvers exist, or one can use uk−1 instead of uk in
the computation of pk as an approximative solution.

C. Stability and performance guarantees
With the realization of the controller for the original form

of the NL system established, we are ready to present the
main result of the paper:

Theorem 1. Given a PE D∆
N from (1), based on which

a stabilizing controller Kv is synthesized via Corollary 2.
Then, the interconnection of the realized controller KNL (19)
and the NL system (1) is guaranteed to be USAS.

Proof. With the synthesis of Kv, we know that the velocity-
form (5) in closed-loop with Kv is asymptotically stable. Re-
alization of the controller KNL ensures that its velocity-form
is Kv and (1) in closed-loop with KNL has a velocity-form
that is the interconnection of (5) with Kv. Under these con-
ditions, asymptotic stability of the velocity-interconnection
implies USAS of the closed-loop interconnection of (1) with
KNL based on [6, Thm. 8.3]. ■

Conjecture 1. Given a PE D∆
N from (1) based on which

a stabilizing controller Kv is synthesized via Corollary 2.
Then, the interconnection of the realized controller KNL (19)
and the NL system (1) is USD w.r.t. the supply function
Ss(uk, u∗, xk, x∗) = −(xk − x∗)

⊤Q(xk − x∗) − (uk −
u∗)

⊤R(uk − u∗).

We introduced the implication of performance as a con-
jecture, because the link between velocity-dissipativity and
general USD has not been formally proven – only under
certain technical conditions, see [6, Sec. 8.3]. However, the
analysis of USD through the velocity-form shares strong
similarities with analysis of a stronger dissipativity notion
called incremental dissipativity [6]. Hence, there are strong
indications that velocity-dissipativity w.r.t. a quadratic supply
function implies USD w.r.t. a quadratic supply function.

Finally, we want to note that the universal shifted
controller guarantees convergence to an equilibrium point
(x∗, u∗) ∈ E . To ensure that the system is driven to a desired
equilibrium point, we can add integrators to Kv, see [6,
Cor. 8.2] for the description of the approach and the example
in Section V.

V. SIMULATION STUDY

We demonstrate the applicability of our results on a simu-
lator of an unbalanced disc system, for which we synthesize
a universal shifted data-driven state-feedback controller and
compare it with a data-driven state-feedback LPV controller
that uses a direct LPV embedding of the NL system, cf. [14].
For comparison, we also synthesize an LTI data-driven
controller. The CT dynamics of the unbalanced disc system
mimic those of an inverted pendulum and are thus described
by the following ordinary differential equation

θ̈(t) = −mgl
J sin(θ(t))− 1

τ θ̇(t) +
Km

τ u(t), (21)

where θ is the angular position of the disc in radians, u is the
input voltage to the system, which is its control input, and

m, g, l, J, τ,Km are the physical parameters of the system
that we take from [14, Tab. I]. Discretizing the dynamics
using a first-order Euler method and writing them in the
form of (1) gives

x1,k+1 = x1,k + Tsx2,k, (22a)

x2,k+1 = (Ts

τ − 1)x2,k − Tsmgl
J sin(x1,k) +

TsKm

τ uk, (22b)

where xk = [ θk θ̇k ]
⊤. We choose the sampling-time as

Ts = 0.01 [s], which gives a negligible discretization
error through the Euler scheme. The control objective is
to design a controller that tracks a reference for θk with
zero steady-state error, which requires integrator action. We
introduce the integrator behavior with the tuning parameter
α, see [6, Cor. 8.2]. For the direct LPV design, we introduce
integrator behavior by adding an augmented state xaug,k+1 =
αxaug,k + θref,k − x1,k. Note that with the extra state, we
require a larger data-dictionary for the construction of the
direct data-driven LPV representation.

The velocity-form of (22) can be computed analytically:

∆xk+1 = Av(x1,k, x1,k−1)∆xk +Bv∆uk, (23a)
∆yk = ∆xk, (23b)

where Bv =
[
0 TsKm

τ

]⊤
and

Av(x1,k, x1,k−1) =

[
1 Ts

−Tsmgl
J sind(x1,k, x1,k−1) 1− Ts

τ

]
,

with sind(a, b) := sin(a)−sin(b)
a−b , which is obtained by

solving the integral in (5). For the data-driven design of
the NL universal shifted controller, we choose3 pk :=
ψ(x1,k, x1,k−1) = sind(x1,k, x1,k−1), which allows for
an LPV embedding of the velocity-form (23). Note that
limx1,k⇄x1,k−1

ψ(x1,k, x1,k−1) exists and for all trajectories
of (22) ψ(x1,k, x1,k−1) ∈ [−1, 1]. Hence, we take this
interval as P. For the direct data-driven LPV design, we
follow [14] to formulate an LPV embedding of (22) where
we choose pk =

sin(x1,k)
x1,k

, which is well-defined for x1,k = 0.
We are now ready to construct the LPV data-driven

representations and synthesize controllers for the velocity-
form and the original system. To construct well-posed data-
driven representations for both approaches, while using the
same data-set, we need rank(G) = (1+np)(nx+1+nu) = 8,
i.e., we need N ≥ 8. The data-dictionary DNL

N+1 is obtained
by applying white noise udk ∼ N (0, 3) to (22) under an initial
condition xd1 ∼ U(0, 1). The resulting DNL

N+1 is shown in
Fig. 2, where the additional data-points required for the aug-
mented LPV representation are given in gray. Using DNL

N+1,
we construct the direct data-driven LPV representation as
in [14] and for the velocity-form we construct (12) and verify
that indeed rank(G∆) = (1 + np)(nx + nu) = 6, giving a
well-posed data-driven representation of (23).

Using the constructed representations, we design an LPV
controller and a universal shifted controller (with integral
action) using [14, Thm. 4] and Corollary 2, respectively, with

3This basis is used for simplicity and comparison purposes with the direct
LPV design, but one could alternatively choose a polynomial basis.
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Fig. 2. Data-dictionary DNL
N+1 used for the NL and LPV control synthesis

with N = 8. The extra gray ( ) data-points are required for the direct LPV
representation because of the added state for the integrator behavior.

Fig. 3. Response of the unbalanced disc with the universal shifted controller
( ) and the LPV controller ( ) in closed-loop for a step reference ( ). An
LTI controller ( ) designed with the same specifications diverges directly.

the tuning parameters Q = I , R = 2, α = 0.9. Running the
synthesis algorithms yield the parameters of Kv and KLPV.
We want to highlight here that (22) in closed-loop with
the universal shifted controller with Kv as above implies
USAS of the closed-loop system, while the LPV controller
only guarantees stability of the origin of the NL closed-loop
system. The latter is problematic for reference tracking [13],
which we showcase in the following simulation study.

We simulate4 (22) in closed-loop with the LPV and univer-
sal shifted controller for the initial condition x1 =

[
π
4 5

]⊤
.

The system must follow a step-reference of magnitude π
2 ,

which pushes the closed-loop away from the origin. The
simulated responses of the closed-loops are plotted in Fig. 3,
which shows that both controllers can regulate the system
back to the origin. However, when the step reference is
applied, only the universal shifted controller can drive the
system to the reference, while the LPV controller ends up in
a limit cycle. We also design a data-driven LTI state-feedback
controller using [15, Thm. 4] under the same performance
specifications and data. Note that the LTI data-driven design
spans an LTI behavior based on DNL

N+1, which results in a
local approximation of the NL system. As outside of this
local range, the LTI behavior is not valid anymore, the
stability guarantee fails and the closed-loop system quickly
diverges with the LTI controller, see Fig. 3.

This example shows that we can synthesize state-feedback
controllers for general NL systems of the form (1) that are
universally shifted stabilizing and performing while using
only measured data from the system and a given a set of
basis functions ψ that is assumed to span the nonlinearities.

VI. CONCLUSIONS

By connecting results on velocity-dissipativity/stability
and universal shifted dissipativity/stability with data-driven
controller design, we have shown that the data-driven
velocity-form of a general NL system with full state-
observation enables direct data-driven control of NL sys-
tems with equilibrium independent stability and performance
guarantees. The elegance and effectiveness of this concept is
demonstrated on a simulation example of a NL unbalanced

4See youtu.be/NeOC9PBipMY for an animation of the simulations.

disc system. The presented concepts in this paper can be seen
as the first approach that achieves direct data-driven analysis
and control in the general NL setting. For future research,
we aim to use the data-driven velocity-form for general NL
input-output-representations and derive the corresponding
analysis and synthesis methods under a dynamic output-
feedback setting. Moreover, handling noise and the correct
choice for ψ are interesting open problems.
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