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Abstract— In this paper, we propose a novel computational
method for sparse control, also known as maximum hands-off
control, using the minimax concave penalty. The sparse control
problem is formulated as an L0-optimal control problem, which
is known to be hard to solve. To overcome this difficulty, we
propose using the minimax concave penalty as a surrogate for
the L0 norm. We demonstrate the equivalence between the
original and proposed control problems without relying on
the normality assumption, which is typically required when
approximating the L0 norm with the L1 norm. Furthermore,
we present an effective numerical algorithm for the proposed
optimal control based on the Alternating Direction Method of
Multipliers (ADMM). A design example is shown to illustrate
the effectiveness of the proposed method.

I. INTRODUCTION

Sparse control [1], [2], [3], [4], also known as maximum
hands-off control, is a type of control that has the minimum
support length. In other words, sparse control deactivates
actuation for as long as possible. Such a control can reduce
not only consumption of energy but also generation of
harmful exhaust gases in a vehicle, for example. Due to these
benefits, sparse control is often referred to as green control
[5]. Theoretical results on sparse control have been actively
reported for various systems, including stochastic control
systems [6], infinite-dimensional systems [7], discrete-time
linear systems [8], [9], [10], and nonlinear systems [11], [12].
Additionally, applications in diverse fields have been pro-
posed, such as thermally activated building systems (TABS)
[13], mobility networks [14], quadrotors [15], spacecrafts
[16], [17], [18], and robotics [19].

Mathematically, the design of continuous-time sparse con-
trol is formulated as an optimal control problem with L0

norm minimization, which is challenging due to its non-
convex and discontinuous nature. A common approach to
circumvent this difficulty is to approximate the L0 norm by
the L1 norm, simplifying the control problem to the classical
minimum-fuel control problem [20]. Under the assumption
of normality of the L1 optimal control problem, the two
optimal control problems are proved to be equivalent [1],
[4]. Specifically, for linear time-invariant systems, sparse
control computation can be efficiently addressed as a convex
optimization problem after time-discretization. However, if
the system matrix A is nonsingular, the normality assumption
may not hold for certain initial states, which precludes the
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use of the L1 optimization. Indeed, a gap between the
optimal solutions of L0 and L1 optimal control have been
observed in some systems [3].

The objective of this study is to address this problem using
a nonconvex function known as the minimax concave penalty
(MCP) [21], [22], [23], which has been used for finite-
dimensional optimization problems in signal processing.
Namely, we approximate the L0 norm in the sparse optimal
control problem with the minimax concave penalty. This
paper first establishes the equivalence between the newly
formulated control problem and the original L0 optimal
control, notably without the normality assumption. Subse-
quently, we show an advantage of employing the minimax
concave penalty over other non-convex functions such as the
smoothly clipped absolute deviation (SCAD) and the log-
sum penalty (LSP). in numerical computations. It has been
shown in [24] that the nonconvex optimal control problem
can be directly formulated as difference-of-convex (DC) pro-
gramming after time discretization for non-convex penalty
functions such as MCP, SCAD, and LSP. However, we show
that the problem can also be equivalently transformed into
an optimization problem that can be more effectively solved
by the alternating direction method of multipliers (ADMM)
[25], [26] compared to the DC programming. Actually, the
computational time of the proposed algorithm is comparable
with the convex optimization algorithm based on L1-norm
regularization as shown in the numerical example in Section
V.

The organization of this paper is as follows: Section II
formulates the sparse optimal control problem. Section III
proposes adopting the minimax concave penalty to solve
the control problem, and show the equivalence between the
original and proposed control problems. Section IV shows a
numerical computation for the proposed control, which can
be reduced to an optimization problem that can be effectively
solved by ADMM. Section V illustrates an example of sparse
control to show the effectiveness of the proposed method.
Finally, Section VI makes concluding remarks.

II. SPARSE CONTROL PROBLEM

Consider the following state equation.

ẋ(t) = Ax(t) + bu(t), t ∈ [0, T ], x(0) = ξ ∈ Rd, (1)

where A ∈ Rd×d and b ∈ Rd are fixed, and x(t) ∈ Rd

indicates the state and u(t) ∈ R the control at time t. T
represents the terminal time, and ξ is the initial state. For
this linear system, we consider the optimal control problem
of finding the control u(t) that minimizes the following cost
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Fig. 1. Minimax concave penalty function with α = 1, β = 1

function:

J(u) = ‖x(T )‖22 + λ‖u‖0, (2)

where λ > 0, and ‖u‖0 indicates the L0 norm (the length of
the support) of function u. We also consider the following
magnitude constraint on the control:

|u(t)| ≤ 1, ∀t ∈ [0, T ]. (3)

This problem is hard to solve due to the nonconvexity and
discontinuity of the L0 norm. In the next section, we adopt
the minimax concave penalty as a surrogate for the L0 norm
for efficiently solving the control problem.

The optimal control problem is the Bolza type with the
cost function including the ℓ2 norm of the final state x(T ).
This is different from the original formulation of maximum
hands-off control [1] in which the final state constraint
x(T ) = 0 is used and the cost function does not include
x(T ), namely the Lagrange type. The method and theory in
the following sections are still valid when we consider the
original formulation.

III. SPARSE CONTROL VIA MINIMAX CONCAVE
PENALTY

Here we introduce the minimax concave penalty function
ψMC(u;α, β) : R 7→ R+ with hyperparameters α > 0 and
β > 0 defined by

ψMC(u;α, β) ≜


α|u| − 1

2β
u2, |u| ≤ αβ,

1

2
βα2, |u| > αβ.

(4)

Figure 1 shows the curve of the minimax concave penalty
function with α = 1 and β = 1. From this figure, we can
see that the function is non-convex, but sharply pointed at
the origin. This property is known to induce sparsity more
effectively than the commonly used ℓ1 norm.

We note that for a multi-input system with control input
u(t) ∈ Rm, we define the vector minimax concave (VMC)
penalty function [22] defined by

ψVMC(u;α, β) ≜
n∑

i=1

ψMC(ui;α, β).

For simplicity, we focus on single-input systems, but the
results shown below are the same for multi-input systems.

We fix the hyperparameters α and β, and we reformulate
the original sparse control problem in Section II with the
following function as a surrogate for the L0 norm:

ψ(u) =
ψMC(u;α, β)

ψMC(1;α, β)
. (5)

Note that this function has the following properties, which
are used to show the equivalence theorem below:
(i) ψ(0) = 0,

(ii) ψ(1) = ψ(−1) = 1,
(iii) ψ(u) ≤ u0 for any u ∈ [−1, 1],
where u0 = 1 if u 6= 0 and 00 = 0. Then the proposed
optimal control problem with the minimax concave penalty
is described as follows:

Problem 1: Given ξ ∈ Rd, T > 0, λ > 0, α > 0, and
β > 0, find a control u over [0, T ] that solves

minimize
u

‖x(T )‖22 + λ

∫ T

0

ψ(u(t))dt

subject to ẋ(t) = Ax(t) + bu(t), t ∈ [0, T ],

x(0) = ξ,

|u(t)| ≤ 1, t ∈ [0, T ].
Throughout the paper, we denote by JMC the cost function
in Problem 1.

First, we show that the optimal control has the following
property called the bang-off-bang property:

Lemma 1 (bang-off-bang property): Suppose that there
exists at least one optimal solution to Problem 1. Then, any
optimal solution to Problem 1 takes values belonging to the
set {0,±1} almost everywhere.

Proof: Let us take any solution u∗ to Problem 1. It
follows from Theorem 22.2 and Corollary 22.3 in [27] that
there exists a function p that satisfies

u∗(t) ∈ arg max
u∈[−1,1]

(p(t)⊤bu− λψ(u)) (6)

almost everywhere. For any t ∈ [0, T ], the function ϕ(u) ≜
p(t)⊤bu − λψ(u) is convex and is not constant over [0, 1]
from the definition of ψ. Hence, we have

arg max
u∈[0,1]

ϕ(u) ⊂ {0, 1}. (7)

Similarly, we have

arg max
u∈[−1,0]

ϕ(u) ⊂ {−1, 0}. (8)

The result immediately follows from (6), (7), and (8).
By using the bang-off-bang property, we have the following
equivalence theorem between the original and the proposed
optimal controls.

Theorem 1 (equivalence): Suppose that there exists at
least one optimal solution to Problem 1. Let us denote
by U∗

0 and U∗
MC the sets of all optimal solutions to the

sparse optimal control problem in Section II and Problem 1,
respectively. Then, we have U∗

0 = U∗
MC.



Proof: Let us take any u∗MC ∈ U∗
MC. From Lemma 1,

the control satisfies u∗MC(t) ∈ {0,±1} almost everywhere,
and let us put

E0 ≜ {t ∈ [0, T ] : u∗MC(t) = 0},
E1 ≜ {t ∈ [0, T ] : |u∗MC(t)| = 1}.

Note that the sets E0 and E1 are disjoint and µL(E0) +
µL(E1) = T , where µL denotes the Lebesgue measure.
Then, we have∫ T

0

ψ(u∗MC(t))dt =

1∑
i=0

∫
Ei

ψ(u∗MC(t))dt

=

∫
E1

ψ(u∗MC(t))dt

=

∫
E1

ψ(1)dt = µL(E1) = ‖u∗MC‖0.

(9)

Note also that we have∫ T

0

ψ(u(t))dt ≤ ‖u‖0 (10)

for any u ∈ U , where U ≜ {u : |u(t)| ≤ 1 on [0, T ]}, since
ψ(u(t)) ≤ u(t)0 for any t. Hence, for any u ∈ U , we have

J(u∗MC) = JMC(u
∗
MC) ≤ JMC(u) ≤ J(u),

where the first relation follows from (9), the second relation
follows from the optimality of u∗MC ∈ U∗

MC, and the third
relation follows from (10). This implies u∗MC ∈ U∗

0 . Hence,
the set U∗

0 is not empty, and U∗
MC ⊂ U∗

0 .
We next take any u∗0 ∈ U∗

0 . For any u ∈ U , we have

JMC(u
∗
0) ≤ J(u∗0) = J(u∗MC) = JMC(u

∗
MC) ≤ JMC(u),

where the first relation follows from (10), the second relation
follows from U∗

MC ⊂ U∗
0 , the third relation follows from (9),

and the fourth relation follows from the optimality of u∗MC ∈
U∗
MC. This implies u∗0 ∈ U∗

MC, and hence U∗
0 ⊂ U∗

MC. This
gives the result.

From this theorem, we can focus on solving Problem 1
for sparse optimal control. In the next section, we show that
Problem 1 can be reduced to an optimization problem that
can be numerically solved after time discretization.

IV. NUMERICAL SOLUTION VIA ADMM

Here we show a numerical computation method for solv-
ing Problem 1.

A. Time discretization

First, we discretize Problem 1 by time discretization. For
this, we split the time interval [0, T ] into n subintervals. Let
the width of time discretization be h > 0, and let T ≜ nh.
Then, we assume the zero-order hold assumption [28] on the
control u(t). Namely, the control u(t) is constant in each
subinterval, that is,

u(t) ≜ u(jh) ≜ ud[j], t ∈ [jh, (j + 1)h),

j = 0, 1, . . . , n− 1.

Then, the state equation (1) can be described as the following
discrete-time state equation:

xd[j + 1] = Adxd[j] + bdud[j],

j = 0, 1, . . . , n− 1, xd[0] = ξ,

where xd[j] represents the discrete-time state defined by
xd[j] ≜ x(jh), and

Ad ≜ eAh, bd ≜
∫ h

0

eAtbdt.

The terminal state x(T ) is given as

x(T ) = xd[n] = Φu− ζ,

where ζ ≜ −An
dξ ∈ Rd and

Φ ≜
[
An−1

d bd An−2
d bd · · · bd

]
∈ Rd×n,

u ≜
[
ud[0] ud[1] . . . ud[n− 1]

]⊤ ∈ Rn.

From this, the first term of the cost function (2) is
represented as ‖x(T )‖22 = ‖Φu − ζ‖22. The second term
of (2) is also transformed as

λ

∫ T

0

ψ
(
u(t)

)
dt =

λ

ψMC

(
1;α, β)

∫ T

0

ψMC

(
u(t);α, β)dt

=
λh

ψMC

(
1;α, β)

n−1∑
j=0

ψMC

(
ud[j];α, β)

= λ̃‖u‖MC

where

λ̃ ≜ λh

ψMC

(
1;α, β)

, ‖u‖MC ≜
n−1∑
j=0

ψMC

(
ud[j];α, β)

Finally, the constraint (3) on the control input is described
as ‖u‖∞ ≤ 1.

Consequently, the optimal control problem (Problem 1) is
transformed into

minimize
u∈Rn

‖Φu− ζ‖22 + λ̃‖u‖MC

subject to ‖u‖∞ ≤ 1.
(11)

Although the cost function in (11) is nonconvex, the opti-
mization problem can be efficiently solved by the alternating
direction method of multipliers (ADMM) as shown in the
next subsection.

B. ADMM algorithm

Here we derive the ADMM-based algorithm for the opti-
mization problem in (11).

First, let us define the constraint set C by

C ≜ {u ∈ Rn : ‖u‖∞ ≤ 1}, (12)

and its indicator function IC by

IC(u) ≜
{

0, u ∈ C,

+∞, u /∈ C.
(13)



Fig. 2. Firm thresholding function with c1 = 1, c2 = 2

Then, the optimization problem (11) is equivalently de-
scribed by

minimize
u∈Rn

‖Φu− ζ‖22 + λ̃‖u‖MC + IC(u).

Defining new variables z0 ∈ Rd, z1, z2 ∈ Rn by

z0 = Φu, z1 = z2 = u,

we obtain the following optimization problem suitable for the
alternating direction method of multipliers (ADMM) [25]:

minimize
u∈Rn,z∈Rm

‖z0 − ζ‖22 + λ̃‖z1‖MC + IC(z2)

subject to z = Ψu,
(14)

where m ≜ d+ 2n, and

z ≜

z0z1
z2

 ∈ Rm, Ψ ≜

ΦI
I

 ∈ Rm×n.

Although the function λ̃‖z1‖MC is nonconvex, it has the
following useful property [23], [22]:

Lemma 2: Let y ∈ Rn and γ > 0. Define f : Rn 7→ R
by

f(x) =
1

2
‖y − x‖22 + γλ̃‖x‖MC.

If β ≥ γλ̃ holds, then f is convex. Moreover, the minimizer
of f is given by

x∗ = firm(y;αγλ̃, αβ),

where α > 0 and β > 0 are the hyperparematers in the
minimax concave penalty function in (4), and firm(y; c1, c2)
is the firm thresholding function (see Figure 2) defined by

[firm(y; c1, c2)]i ≜


0, |yi| ≤ c1,

sgn(yi)
c2(|yi|−c1)

c2−c1
, c1 < |yi| ≤ c2,

yi, |yi| > c2,

for i = 1, 2, . . . , n with c2 > c1 > 0.

Algorithm 1 ADMM algorithm for solving optimization
problem (14)

Initial values: z[0],v[0] = [v0[0]
⊤,v1[0]

⊤,v2[0]
⊤]⊤

Positive constants: α > 0, β > 0, γ > 0, λ̃ > 0
Maximum iteration number: MAX ITER > 0
Initial iteration number: k := 0
while k < MAX ITER do
u[k + 1] := (Ψ⊤Ψ)−1Ψ⊤(z[k]− v[k])

z[k + 1] :=

 1
2γ+1

(
2γζ + (Φu[k + 1] + v0[k])

)
firm

(
u[k + 1] + v1[k];αγλ̃, αβ

)
ΠC(u[k + 1] + v2[k])


v[k + 1] := v[k] + Ψu[k + 1]− z[k + 1]
k := k + 1

end while
return u[k], z[k],v[k]

Now, the ADMM-based algorithm for the optimization
problem (14) is given in Algorithm 1. In this algorithm, ΠC

is the projection operator onto the set C in (12) defined by

ΠC(v) =
[
sat(v1), sat(v2), . . . , sat(vn)

]⊤
where sat(vi) ≜ sgn(vi)min(1, |vi|), and vi is the i-th
element of vector v. Although the optimization is non-
convex, the convergence of this algorithm is guaranteed [22].

V. NUMERICAL EXAMPLE

We here consider the following double integrator:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), x(0) =

[
ξ1
ξ2

]
.

It is reported in [3] that with the initial state (ξ1, ξ2) =
(10,−3) and the terminal time T = 5, the L1-optimal control
problem is not normal and hence we cannot adopt the L1-
norm approximation to obtain sparse control for this system.
On the other hand, our method does not require the normality
assumption on the optimal control problem, and hence we
can obtain a sparse control signal for this system.

For time discretization, we set the sampling time h = 0.05,
and the number of subintervals n = 100. We solve the
sparse control problem (Problem 1) with hyperparameters
α = 1 and β = 1 for the minimax concave panalty in
(4). We change the regularization parameter λ̃ in the range
[0.0001, 4]. We compare the conventional L1 optimization
that minimizes

‖x(T )‖22 + λ

∫ T

0

|u(t)|dt.

Figure 3 shows the ℓ2 norm of the terminal state, i.e.,
‖x(T )‖2 for each value of the regularization parameter λ̃
after time discretization. It can be observed that the control
performance measured by ‖x(T )‖2 by the proposed control
is always better than or equal to that by the L1 optimization
for any regularization parameters.



Fig. 3. The relation between λ̃ and ∥x(T )∥2 by the proposed method
(solid line) and the L1 optimization (dashed line).

Fig. 4. The relation between λ̃ and the sparsity by the proposed method
(solid line) and the L1 optimization (dashed line).

Figure 4 shows the number of subintervals on which the
control is zero, which is a measure of sparsity, against the
regularization parameter. We can see that for small values
of the regularization parameter λ̃, the proposed method
gives sparse control while the L1-based control exhibits no
sparsity.

To clearly illustrate the advantage of the proposed method,
we choose regularization parameters of the two control
methods such that ‖x(T )‖2 = 0.087. Figure 5 shows the
control signals by the proposed and the L1-based methods.
The sparsity of the proposed method is 41 while that of the
L1-based control is 0, that is, no sparse control. Moreover,
we show the computational time by the proposed method
is almost the same as that by the L1-based method. The
comparison is summarized in Table I. This result well
illustrates the effectiveness of the proposed method. The
MATLAB codes in this example can be downloaded at [29].

Fig. 5. The control signals that achieve ∥x(T )∥2 = 0.087: proposed
(solid line) and L1-optimal (dashed line)

method sparsity computatinal time (s)
proposed method 41 0.1086
L1-based method 0 0.1153

TABLE I
COMPARISON OF SPARSITY AND COMPUTATIONAL TIME

VI. CONCLUSION

In this paper, we have proposed a sparse control method
using the minimax concave penalty. This method is particu-
larly advantageous for sparse control problems that are non-
normal where L1-based approaches may fail. To illustrate
this, we provided a numerical example that demonstrates the
effectiveness of our method in addressing such non-normal
problems. Future work will focus on constructing an equiv-
alence theorem for discrete-time systems, and determining
the optimal choice of the hyperparameters α and β in the
minimax concave penalty.
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