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Abstract— The proliferation of neural networks in safety-
critical applications necessitates the development of effective
methods to ensure their safety. This paper presents a novel
approach for computing the exact backward reachable sets
of neural feedback systems with known linear system models
based on hybrid zonotopes. It is shown that the input-output
relationship imposed by a ReLU-activated neural network can
be exactly described by a hybrid zonotope-represented graph
set. Based on that, the one-step exact backward reachable set of
a neural feedback system is computed as a hybrid zonotope in
the closed form. In addition, a necessary and sufficient condition
is formulated as a mixed-integer linear program to certify
whether the trajectories of a neural feedback system can avoid
unsafe regions in finite time. Numerical examples are provided
to demonstrate the efficiency of the proposed approach.

I. INTRODUCTION

Neural Networks (NNs) have become increasingly preva-
lent in autonomous systems. However, it has been shown that
NNs are highly sensitive to even small perturbations in the
input space, despite performing well in nominal scenarios
[1]. Given the potential safety risks associated with using
NNs in safety-critical systems, there is a pressing need for
developing efficient tools to provide safety guarantees for
control systems with NN components.

Reachability analysis of neural feedback systems, which
are systems with NN controllers in the feedback loop, has
been investigated in recent works [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11]. The majority of these results focus on
forward reachability, which estimate the set of states that
can be reached from an initial set [2], [3], [4], [5], [6], [7].
On the contrary, the backward reachability problem is to
compute a set of states, known as the Backward Reachable
Set (BRS), from which the system’s trajectories can reach a
specified target set within a finite time. For a safety-critical
system (e.g., aircraft and autonomous vehicles), backward
reachability analysis can identify the states that lead to safety
violations when the target set is the set of unsafe states;
for example, in the aircraft collision avoidance protocol, the
unsafe target set would contain all the states where two
aircraft are within the minimum separation distance [12].

Although various techniques have been developed for
backward reachability analysis on systems without NNs [12],
[13], [14], they are not directly applicable to neural feedback
systems due to the highly nonlinear and nonconvex nature of
NNs. In [11], a method was presented to compute the exact
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BRS of a ReLU-activated NN by determining the activation
pattern, but it is only applicable to NNs in isolation, not
neural feedback systems. In [8], an algorithm was proposed
to over-approximate the BRS of a linear neural feedback
system using the convex relaxation of NNs. The result was
generalized in [9] for nonlinear system models with a guided
partition algorithm to reduce the conservatism induced by the
relaxation. A hybrid partition scheme was presented in [10]
to further reduce conservatism. Note that the BRSs computed
in these works are inexact, even for linear systems.

This paper aims to compute the exact BRS of a neural
feedback system where the controller is a Feedforward
Neural Network (FNN) with Rectified Linear Unit (ReLU)
activation functions. The main mathematical tool used is
Hybrid Zonotope (HZ), which can compactly represent a
finite union of polytopic sets [15], [16], [17], [18]. This work
builds on our previous work [18], which shows that an FNN
with ReLU activation functions can be exactly represented
by an HZ and provides algorithms to compute the exact
and approximated forward reachable sets of neural feedback
systems. The contributions of this work are at least threefold:
(i) An algorithm with a linear set complexity growth rate is
provided to represent the exact input-output relationship of a
ReLU-activated FNN as an HZ, which is an improvement on
the exponential set complexity growth rate given in [18]; (ii)
Based on the reachability analysis of FNNs in isolation, an
algorithm is proposed to compute the exact BRS of neural
feedback systems represented by HZs; (iii) A necessary and
sufficient condition formulated as a Mixed-Integer Linear
Program (MILP) is provided to certify the safety properties
of neural feedback systems. The performance of the proposed
method is demonstrated through two numerical examples.

Notation: The i-th component of a vector x ∈ Rn is
denoted by xi with i ∈ {1, . . . , n}. For a matrix A ∈ Rn×m,
A[i : j, :] denotes the matrix constructed by the i-th to j-th
rows of A. The identity matrix is denoted as I and ei is the
i-th column of I . The vectors and matrices whose entries are
all 0 (resp. 1) are denoted as 0 (resp. 1). Given sets X ⊂ Rn,
Z ⊂ Rm and a matrix R ∈ Rm×n, the Cartesian product
of X and Z is X × Z = {(x, z) | x ∈ X , z ∈ Z}, the
generalized intersection of X and Z under R is X ∩R Z =
{x ∈ X | Rx ∈ Z}, and the k-ary Cartesian power of X is
X k = X × · · · × X .

II. PRELIMINARIES & PROBLEM STATEMENT

A. Hybrid Zonotopes

Definition 1: [15, Definition 3] The set Z ⊂ Rn is a
hybrid zonotope if there exist c ∈ Rn, Gc ∈ Rn×ng ,
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Gb ∈ Rn×nb , Ac ∈ Rnc×ng , Ab ∈ Rnc×nb , b ∈ Rnc such
that

Z=


[
Gc Gb

] [ξc
ξb

]
+ c

∣∣∣∣∣∣∣∣
[
ξc

ξb

]
∈ Bng

∞ × {−1, 1}nb ,[
Ac Ab

] [ξc
ξb

]
= b

 ,

where Bng
∞ = {x ∈ Rng | ∥x∥∞ ≤ 1} is the unit hypercube

in Rng . The shorthand notation of the hybrid zonotope is
given by Z = ⟨Gc,Gb, c,Ac,Ab,b⟩.

Given an HZ Z = ⟨Gc,Gb, c,Ac,Ab,b⟩, the vector c is
called the center, the columns of Gb are called the binary
generators, and the columns of Gc are called the continuous
generators. For simplicity, we define the set B(Ac,Ab,b) =
{(ξc, ξb) ∈ Bng

∞ × {−1, 1}nb | Acξc +Abξb = b}.
Identities are provided to compute the linear map and

generalized intersection [15, Proposition 7], union operation
[19, Proposition 1], and Cartesian product of HZs [20,
Proposition 3.2.5]. The emptiness of an HZ can be verified
by solving an MILP [15].

Lemma 1: Given Z = ⟨Gc,Gb, c,Ac,Ab,b⟩ ⊂ Rn,
Z ̸= ∅ if and only if min{∥ξc∥∞ | Acξc +Abξb = b, ξc ∈
Rng , ξb ∈ {−1, 1}nb} ≤ 1.

B. Problem Statement

Consider the following discrete-time linear system:

x(t+ 1) = Adx(t) +Bdu(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and the control
input, respectively. We assume x ∈ X where X ⊂ Rn is
called the state set and the controller is given as u(t) =
π(x(t)), where π is an ℓ-layer FNN with ReLU activation
functions. The neural feedback system consisting of system
(1) and controller π is a closed-loop system denoted as:

x(t+ 1) = fcl(x(t)) ≜ Adx(t) +Bdπ(x(t)). (2)

Given a target set T ⊂ X for the closed-loop system (2),
the set of states in X that can be mapped into the target
set T by (2) in exactly t steps is defined as the t-step BRS
and denoted as Pt(T ) ≜ {x(0) ∈ X |x(t) ∈ T ,x(k) =
fcl(x(k − 1)), k = 1, 2, . . . , t}. Note that the t-step BRS is
always a subset of the state set X , i.e., Pt(T ) ⊆ X . For
simplicity, the one-step BRS is also denoted as P(T ), i.e.,
P(T ) = P1(T ).

The equivalence of an HZ and a union of constrained
zonotopes [15, Theorem 5] shows that an HZ can compactly
represent non-convex sets with flat faces. In this work, we
assume both the state set X and the target set T are rep-
resented by HZs. This assumption enables us to handle sets
and system dynamics using a unified HZ-based approach.

For the ℓ-layer FNN controller π, the k-th layer weight ma-
trix and bias vector are denoted as W (k−1) and v(k−1), re-
spectively, where k = 1, . . . , ℓ. Denote x(k) as the neurons of
the k-th layer and nk as the dimension of x(k). Then, for k =
1, . . . , ℓ − 1, we have x(k) = ϕ(W (k−1)x(k−1) + v(k−1)),
where x(0) = x(t) and ϕ is the vector-valued activation
function constructed by component-wise repetition of ReLU

function, i.e., ϕ(x) ≜ [ReLU(x1) · · · ReLU(xn)]
T . Only

the linear map is applied in the last layer, i.e., π(x(t)) =
x(ℓ) = W (ℓ−1)x(ℓ−1) + v(ℓ−1). The total number of hidden
neurons is denoted as Nπ = n1 + · · ·+ nℓ−1.

The following problem will be investigated in this work.
Problem 1: Given a target set T ⊂ X represented as an

HZ and a time horizon T ∈ Z>0, compute the exact BRS
Pt(T ) of the neural feedback system (2), for t = 1, 2, . . . , T .

III. EXACT BACKWARD REACHABILITY ANALYSIS

In this section, we first present a technique that can
represent the exact input-output relationship of a ReLU-
activated FNN as an HZ-based graph set that has a linear
set complexity growth rate. Then, based on that, we show if
the target set is given as an HZ, the exact BRS of the system
(2) can be also represented as HZs in closed form.

A. Representation of the Graph of FNNs via HZs

The problem of computing the BRS and invariant set
of controlled dynamical systems has been studied in many
works, such as [21], [22], [23]. A commonly-used technique
is to abstract the constraints imposed by the dynamic system
in the input-output space. For example, state-update sets
are proposed in [16] to compute successor and precursor
sets for hybrid systems. For neural feedback systems, the
imposed constraints can be identified by finding a proper
representation of the input-output relationship of the NN
controllers.

One of the major difficulties in analyzing NNs is the
composition of nonlinear activation functions [6]. To simplify
the analysis of NNs, quadratic constraints have been utilized
to abstract the constraints imposed by the NNs on the pre-
and post-activation signals [6], [24]. Building upon these
methodologies, our approach employs an HZ to capture the
constraints imposed by NNs in an exact manner. Specifically,
we denote G(π,X ) = {(x,u) | u = π(x),x ∈ X} ⊂ Rn+m

as the graph of the ReLU-activated FNN π over the state
space domain X , and we will show that there exists an HZ
Hπ = ⟨Gc

π,G
b
π, cπ,A

c
π,A

b
π,bπ⟩, such that G(π,X ) = Hπ .

To that end, we first consider the representation of a scalar-
valued ReLU function x = ReLU(z) = max{z, 0} over an
interval domain [−α, β] where α, β ∈ R>0. The graph of the
ReLU function over the interval domain is plotted in Fig. 1.

It is obvious that the set of points satisfying the ReLU
function over [−α, β] form two line segments which can be
exactly represented as two HZs H1 and H2 given as follows:

H1=

〈[
α
2
0

]
, ∅,

[−α
2
0

]
, ∅, ∅, ∅

〉
,H2=

〈[
β
2
β
2

]
, ∅,

[
β
2
β
2

]
, ∅, ∅, ∅

〉
.

The union of H1 and H2 can be directly computed as
a single HZ H using Proposition 1 in [19]. We use the
approach presented in Algorithm 3 of [18] to identify two
redundant continuous generators. We then apply Proposition
3 in [18] with proper transformation matrices to remove the
redundant continuous generators and obtain

H = H1 ∪H2 = ⟨Gc
h,G

b
h, ch,A

c
h,A

b
h,bh⟩, (3)
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Fig. 1. The graph of the ReLU function as the union of two HZs H1 and
H2, over the interval domain [−α, β].

where

Gc
h =

[
−α

2 −β
2 0 0

0 −β
2 0 0

]
,Gb

h =

[
−α

2
0

]
, ch =

[
β
2
β
2

]
,

Ac
h =

[
1 0 1 0
0 1 0 1

]
,Ab

h =

[
1
−1

]
,bh =

[
1
1

]
.

Note that a similar formulation was presented in [25,
Lemma 1] to represent the ReLU as an HZ for forward
reachability analysis. Their formulation was built on the
relationship of three zonotopes while the graph set H in (3)
was computed based on the union of two line segments.

Using (3), we get the exact representation of the graph
of the ReLU function over [−α, β] using HZ, i.e., H =
{(z, x) ∈ R2 | x = ReLU(z), z ∈ [−α, β]}. Note that the
graph of a ReLU function can be also linearly approximated
using intervals, symbolic intervals, and polytopes, as stated
in [26]; however, the nonlinear nature of the ReLU function
makes it impossible for these convex relaxation-based set
representations to exactly represent its graph.

In the following lemma, the analysis described above on
the ReLU function is extended to the vector-valued activation
function ϕ over a domain represented as an HZ.

Lemma 2: Given a domain represented as an HZ Z ⊂
Rnk , the graph of the k-th layer’s vector-valued activation
function ϕ : Rnk → Rnk over Z can be exactly represented
by the following HZ:

G(ϕ,Z) = (P · Hnk) ∩[I 0] Z, (4)

where P = [e2 e4 · · · e2nk
e1 e3 · · · e2nk−1]

T ∈
R2nk×2nk is a permutation matrix and H is given in (3).

Proof: Since the HZ Z is a closed set, we can always
find large enough scalars α, β ∈ R>0 such that the interval
I = [−α1, β1] ⊂ Rnk is an enclosure of Z , i.e., Z ⊆ I.
Let z(k) denote the input of function ϕ and x(k) denote the
output. The graph of ϕ over the domain I is G(ϕ, I) =
{(z(k),x(k)) | x(k) = ϕ(z(k)), z(k) ∈ I} ⊂ R2nk . As
the vector-valued activation function ϕ is constructed by
component-wise repetition of ReLU functions, i.e., x(k)

i =

ReLU(z
(k)
i ), we have [z

(k)
1 x

(k)
1 z

(k)
2 x

(k)
2 · · · z(k)nk x

(k)
nk ]

T ∈
Hnk ⊂ R2nk . To reassemble the pairs of input and out-
put elements in the same order of [z(k)T ,x(k)T ]T , we
use the permutation matrix P and get [z(k)T ,x(k)T ]T =

[z
(k)
1 · · · z

(k)
nk x

(k)
1 · · ·x

(k)
nk ]

T = P [z
(k)
1 x

(k)
1 · · · z(k)nk x

(k)
nk ]

T .
Since HZs are closed under the linear map and generalized
intersection [15, Proposition 7], the graph of ϕ over the

Algorithm 1: Exact graph set computation of FNN via
HZs

Input: HZ domain X , number of layers ℓ, weight
matrices {W (k−1)}ℓk=1, bias vectors
{v(k−1)}ℓk=1, large scalars α, β > 0

Output: exact graph set as an HZ Hπ = G(π,X )
1 X (0) ← X = ⟨Gc

x,G
b
x, cx,A

c
x,A

b
x,bx⟩;

2 H ← compute the graph of ReLU using (3);
3 for k ∈ {1, 2, . . . , ℓ− 1} do
4 Z(k−1)←W (k−1)X (k−1)+v(k−1); // Input set
5 G(k) ← (P · Hnk) ∩[I 0] Z(k−1); // Using (4)
6 X (k) ← [0 I] · G(k) ; // Output set

7 X (ℓ) ← W (ℓ−1)X (ℓ−1) + v(ℓ−1); // Last layer
8 ⟨Gc,Gb, c,Ac,Ab,b⟩ ← X (ℓ);
// Stack input and output

9 Hπ ← ⟨
[
Gc

x 0
Gc

]
,

[
Gb

x 0
Gb

]
,

[
cx
c

]
,Ac,Ab,b⟩;

10 return Hπ

interval I is an HZ as G(ϕ, I) = P · Hnk . Then, we have
G(ϕ,Z) = {(z(k),x(k)) | x(k) = ϕ(z(k)), z(k) ∈ Z} =
G(ϕ, I)∩[I 0] Z = (P · Hnk)∩[I 0] Z , which is also an HZ.
This completes the proof.

Remark 1: Lemma 2 shows that the graph set of a vector-
valued ReLU activation function can be exactly represented
by an HZ. Lemma 4 in [6] abstracts the input-output re-
lationship of the ReLU function using quadratic constraints.
However, their proposed approach will only provide an over-
approximation of the graph set.

From the structure of the FNN π, it is obvious that each
layer is a composition of the activation function ϕ and the lin-
ear map with weight matrix W and bias vector v. Therefore,
to construct the HZ representation Hπ = G(π,X ) for the
graph of the entire network π, we can repeat the procedures
described in Lemma 2 layer-by-layer and connect the input
of the k-th layer z(k) and the output of the (k − 1)-th layer
x(k−1) with the linear map z(k) = W (k−1)x(k−1)+v(k−1).
The details on the iterative construction of the HZ Hπ are
summarized in Algorithm 1.

Theorem 1: Given an ℓ-layer ReLU-activated FNN π :
Rn → Rm and an HZ X ⊂ Rn, the output of Algorithm 1
Hπ is an HZ that can exactly represent the graph set of π
over the domain X , i.e. Hπ = G(π,X ).

Proof: For the ℓ-layer ReLU-activated FNN π, it is
easy to check that the input set Z(k−1), graph set G(k) and
output set X (k) of the k-th layer activation function ϕ are
computed iteratively for k = 1, . . . , ℓ − 1 in Line 4-6 of
Algorithm 1. For the last layer, only a linear map is applied
and the output set of FNN π is computed as X (ℓ) in Line 7.
Note that from the construction, the equality constraints in
the domain set X are included in X (ℓ). In Line 8, Hπ stacks
the input and output of π as Hπ = {(x,u) | x ∈ X ,u =
π(x)} = G(π,X ), which is an exact representation of the
graph set of π over X .

Denote ng,x, nb,x and nc,x as the number of continuous
generators, binary generators and equality constraints of the
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HZ X , respectively. The set complexity growth of the graph
set Hπ is given by ng,π = ng,x + 4Nπ, nb,π = nb,x +
Nπ, nc,π = nc,x + 3Nπ. The output set X (ℓ) of the FNN
π computed in Algorithm 1 has the same set complexity as
Hπ . In our previous work [18], it has been shown that a
ReLU-activated FNN can be exactly represented by an HZ;
however, the set complexity of the computed HZ there will
grow exponentially with the number of neurons in the FNN.
In comparison. the HZ representation of FNN produced by
Algorithm 1 has a linear set complexity growth rate.

B. Computation of Exact BRS for Neural Feedback Systems

In this subsection, we will consider the computation of
exact BRS for the neural feedback system (2). Inspired by
the precursor set formulation for Mixed Logical Dynamical
(MLD) systems given by [16, Theorem 2], the following
theorem provides the closed-form of the one-step BRS, P(T )
with a given target set represented by an HZ, T .

Theorem 2: Given any HZ X ⊂ Rn, let Hπ = ⟨Gc
π,G

b
π,

cπ,A
c
π,A

b
π,bπ⟩ be the computed graph set of the FNN π

over the domain X using Algorithm 1, i.e. Hπ = G(π,X ).
Let D =

[
Ad Bd

]
. Then, for any target set represented by

an HZ T = ⟨Gc
τ ,G

b
τ , cτ ,A

c
τ ,A

b
τ ,bτ ⟩ ⊂ Rn, the one-step

BRS of the neural feedback system (2) is an HZ given as

P(T ) = ⟨Gc
p,G

b
p, cp,A

c
p,A

b
p,bp⟩, (5)

where

Gc
p =

[
Gc

π[1 : n, :] 0
]
, Gb

p =
[
Gb

π[1 : n, :] 0
]
,

Ac
p =

 Ac
π 0
0 Ac

τ

DGc
π −Gc

τ

 , Ab
p =

 Ab
π 0
0 Ab

τ

DGb
π −Gb

τ

 ,

cp = cπ[1 : n, :], bp =

 bπ

bτ

cτ −Dcπ

 .

Proof: By the definition of the one-step BRS, we
have P(T ) = {x ∈ X | fcl(x) ∈ T } = {x | Adx +
Bdu ∈ T ,u = π(x),x ∈ X} = {x | D[xT uT ]T ∈
T , [xT uT ]T ∈ Hπ}. Denote the right-hand side of (5)
as Hp. We will first prove that P(T ) ⊆ Hp. Let x
be any element of set P(T ). Then, there exist ξcπ, ξ

b
π, ξ

c
τ

and ξbτ such that (ξcπ, ξ
b
π) ∈ B(Ac

π,A
b
π,bπ), (ξcτ , ξ

b
τ ) ∈

B(Ac
τ ,A

b
τ ,bτ ), [xT π(x)T ]T = Gc

πξ
c
π + Gb

πξ
b
π + cπ and

D[xT π(x)T ]T = Gc
τξ

c
τ +Gb

τξ
b
τ + cτ . Therefore, we have

x = [In 0] · [xT π(x)T ]T = [In 0] · (Gc
πξ

c
π + Gb

πξ
b
π +

cπ) = Gc
π[1 : n, :]ξcπ + Gb

π[1 : n, :]ξbπ + cπ[1 : n, :] and
D(Gc

πξ
c
π +Gb

πξ
b
π + cπ) = Gc

τξ
c
τ +Gb

τξ
b
τ + cτ .

Let ξc = [(ξcπ)
T (ξcτ )

T ]T and ξb = [(ξbπ)
T (ξbτ )

T ]T .
Then, it’s easy to check that x =

[
Gc

π[1 :n, :] 0
]
ξc +[

Gb
π[1 :n, :] 0

]
ξb + cπ[1 : n, :] = Gc

pξ
c + Gb

pξ
b + cp and

(ξc, ξb) ∈ B(Ac
p,A

b
p,bp). Thus, we have x ∈ Hp. And

since x is arbitrary, we know that P(T ) ⊆ Hp. Next, we
will show that Hp ⊆ P(T ). Let x ∈ Hp. Then, there exist
ξc and ξb such that (ξc, ξb) ∈ B(Ac

p,A
b
p,bp) and x =

Gc
pξ

c +Gb
pξ

b + cp. Partitioning ξc as ξc = [(ξcπ)
T (ξcτ )

T ]T

and ξb as ξb = [(ξbπ)
T (ξbτ )

T ]T , it follows that (ξcπ, ξ
b
π) ∈

B(Ac
π,A

b
π,bπ), (ξcτ , ξ

b
τ ) ∈ B(Ac

τ ,A
b
τ ,bτ ) and x = Gc

π[1 :

n, :]ξcπ+Gb
π[1 : n, :]ξbπ+cπ[1 : n, :]. Choose u = Gc

π[n+1 :
m+n, :]ξcπ +Gb

π[n+1 : m+n, :]ξbπ + cπ[n+1 : m+n, :].
Then, we can get [xT uT ]T = Gc

πξ
c
π + Gb

πξ
b
π + cπ and

D[xT uT ]T = Gc
τξ

c
τ +Gb

τξ
b
τ + cτ . Thus, x ∈ P(T ). Since

x is arbitrary, Hp ⊆ P(T ). Therefore, we conclude that
P(T ) = Hp.

To the best of our knowledge, Theorem 2 is the first result
that can compute the exact BRS of a neural feedback system
that consists of a linear model and an FNN controller.

Based on Theorem 2, the exact T -step BRS of system (2)
can be computed iteratively as follows:

P0(T ) = T , Pt(T ) = P(Pt−1(T )), t = 1, . . . , T. (6)

Assuming that the target set T has ng,τ continuous genera-
tors, nb,τ binary generators and nc,τ equality constraints, the
set complexity of the T -step BRS computed using (6) and
Theorem 2 is given by ng,p = T ·(ng,x+4Nπ)+ng,τ , nb,p =
T · (nb,x +Nπ) + nb,τ , nc,p = T · (nc,x + 3Nπ + n) + nc,τ ,
where the subscript p represents the one-step BRS P(T ).

Remark 2: Linear Programming (LP)-based methods
were proposed in [8], [9], [10] to over-approximate the
BRS for neural feedback systems. Our method relies on
the exact HZ representation of the nonlinearities of ReLU-
activated FNNs and can compute exact BRSs without the
necessity of partition when the system model is linear. For
general nonlinear feedback systems, our approach can be
readily extended by abstracting nonlinear dynamics with
piece-wise linear bounds as in [27]. In the presence of
modeling error and measurement noise, our method remains
applicable provided that these uncertainties are bounded by
hybrid zonotopes.

Remark 3: In [16], a novel HZ-based approach was pro-
posed to compute the precursor set of MLD systems by
constructing the state-update sets. Although one might apply
the results there for the backward reachability analysis of
neural feedback systems, this will require the transformation
from the ReLU-activated FNN to an equivalent MLD system
using the big-M formulation. However, this transformation
will induce additional auxiliary variables and result in a more
complex hybrid zonotope representation than Theorem 2.

Remark 4: The analysis in the preceding subsections can
be readily extended to neural feedback systems with satu-
rated control inputs, using techniques similar to [4]. Specif-
ically, assume that the system (1) has interval control input
constraints, i.e. u ∈ U = [u,u]. Then the closed-loop system
(2) becomes x(t+1) = Adx(t)+Bd satuu(π(x(t))), where
the saturation function can be equivalently described by
the ReLU functions as satuu(u) = min{max{u,u},u} =
ReLU(−ReLU(u−u)+u−u)+u. Therefore, the saturated
NN controller π̂(x) = satuu(π(x)) is an (ℓ+2)-layer ReLU-
activated FNN. Then, all preceding results can be directly
applied to this modified FNN.

IV. SAFETY VERIFICATION FOR NEURAL FEEDBACK
SYSTEMS VIA BRS

In this section, the backward reachability analysis in the
preceding section will be utilized for the safety verification
of neural feedback systems.
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Consider an initial state set X0 ⊂ X and an unsafe region
O ⊂ X , both of which are represented as HZs. We consider
the unsafe set O as the target set in Section III and suppose
that the exact t-step BRS of O can be computed as Pt(O) by
(6), where t = 1, . . . , T with T an arbitrary positive integer.
Clearly, if X0 does not intersect with any Pt for t = 1, . . . , T ,
any state trajectory that starts from X0 will not enter into
the unsafe region O within T time steps, in other words, the
neural feedback system (2) is safe within T steps. By [15,
Proposition 7] and Lemma 1, checking the emptiness of the
intersection of X0 and Pt is equivalent to solving an MILP.

The safety verification of neural feedback systems via
BRSs is summarized in the following proposition whose
proof is omitted due to space limitations.

Proposition 1: Suppose that an initial state set X0 = ⟨Gc
0,

Gb
0, c0,A

c
0,A

b
0,b0⟩ ⊂ X and an unsafe set O ⊂ X are both

HZs, and Pt = ⟨Gc
t ,G

b
t , ct,A

c
t ,A

b
t ,bt⟩ is the exact t-step

BRS of O where t = 1, . . . , T with T an arbitrary positive
integer. Then, the state trajectories of the neural feedback
system (2) starting from X0 can avoid the unsafe region O
within T steps, if and only if the following condition holds
for t = 1, . . . , T :

min

∥ξc∥∞
∣∣∣∣∣∣
Ac

t 0
0 Ac

0

Gc
t −Gc

0

 ξc+

Ab
t 0

0 Ab
0

Gb
t −Gb

0

 ξb

=

 bt

b0

c0 − ct

 , ξc ∈ Rng,t , ξb ∈ {−1, 1}nb,t

>1.

(7)

Remark 5: Denote the number of continuous generators,
binary generators and equality constraints of the HZ O
(resp. X0) as ng,o, nb,o and nc,o (resp. ng,0, nb,0 and nc,0),
respectively. The T MILPs in (7) include ng,t continuous
variables, nb,t binary variables, and nc,t linear constraints,
where ng,t = t · (ng,x + 4Nπ) + ng,o + ng,0, nb,t =
t ·(nb,x+Nπ)+nb,o+nb,0 and nc,t = t ·(nc,x+3Nπ+n)+
nc,o + nc,0 + n. Commercial solvers such as Gurobi have
shown promising performance in solving MILPs. To further
reduce the computation burden, Lemma 5 in [18] can be used
to get the tightest convex relaxation of the exact BRS Pt by
replacing the binary generators with continuous generators.
If relaxed BRSs are used in Proposition 1, (7) will degenerate
into linear programs which are much easier to solve.

V. SIMULATION EXAMPLES

In this section, two simulation examples will be presented
to demonstrate the effectiveness of the proposed method. The
method proposed in this work is implemented in MATLAB
R2022a and executed on a desktop with an Intel Core i7-
8700k CPU and 32GB of RAM.

Example 1: Consider the discrete-time double integrator

model given in [6]: x(t+1) =

[
1 1
0 1

]
x(t)+

[
0.5
1

]
u(t). The

NN controller u(t) = π(x(t)) has two hidden layers with
ReLU activation functions and [10, 5] neurons. Similar to [8],
this NN controller was trained using the dataset generated by
an MPC controller. The saturation bounds u = −1,u = 1
was imposed on the controller, i.e., u(t) ∈ U = [−1, 1].

Fig. 2. Simulation results in Example 1. The exact BRSs computed by our
HZ-based approach are shown in cyan. Over-approximated BRSs computed
by BReach-LP and ReBReach-LP algorithms in [8] are bounded by orange
and magenta lines, respectively. The target set as the unsafe region is in red
and the initial set is in green.

We chose the initial set as X0 = [−1.25, 0.25] × [0.4, 0.6],
the unsafe region as O = [4.5, 5.0]× [−0.25, 0.25], the state
region as X = [−40, 40]× [−40, 40], and α = β = 400.

We denote our method based on Theorem 2 and equations
(6) as BReach-HZ. To facilitate comparison with other BRS
computation methods, we implement BReach-HZ to compute
5 exact BRSs P1(T ), . . . ,P5(T ) which are shown by the
sets in cyan in Figure 2. The set complexity of the last-
step BRS P5(T ) is given by: ng = 352, nb = 85 and
nc = 265. We also verified that condition (7) in Proposition
1 holds true, which implies the safety of the neural feedback
system. The time for computing the BRSs is 0.0452 seconds,
and the time for solving the MILPs given in (7) via the
commercial solver Gurobi is 0.639 seconds. For comparison,
we also ran the BReach-LP and ReBReach-LP algorithms
proposed in [8], which were implemented in Python with
default parameters provided by the authors of [8]. The times
for computing the BRSs using BReach-LP and ReBReach-
LP are 1.23 seconds and 11.7 seconds, respectively. The
computed BRSs are shown by the rectangles with orange and
magenta lines in Figure 2. It can be observed that our method
provides more accurate BRSs for all the time steps compared
with the BReach-LP and the ReBReach-LP algorithms. In
addition, the exact BRSs computed by our method certify
safety in this scenario, while the over-approximated BRSs
computed by the two algorithms given in [8] lead to false
unsafe detection.

Example 2: Consider the 4-dimensional linearized ground
robot model that is described by two discrete integrators

corresponding to the x−y plane: x(t+1) =

[
I2 I2
0 I2

]
x(t)+[

0.5 · I2
I2

]
u(t), where x = [px, py, vx, vy]

⊤ is the position

and velocity in the x − y plane. The target set is T =
[−1.5,−0.5] × [−2.5,−1.5] × [−0.1, 0.1] × [−0.1, 0.1] and
the initial set is X0 = [0.5, 1.5] × [−1, 0] × [−1.1,−0.9] ×
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Fig. 3. Simulation results in Example 2. Note that there are set overlapping
areas when projecting the BRSs onto the x− y plane.

[−0.1, 0.1].
Similar to Example 1, we trained a ReLU-activated neural

network comprising [10, 5] neurons to learn an MPC policy
while adhering to the saturation constraints of u = −1 and
u = 1. Figure 3 shows the projections of the computed exact
BRSs P1(T ), · · · ,P5(T ) on the x − y plane by using our
proposed method. The set complexity of the last-step BRS
P5(T ) is given by: ng = 404, nb = 95 and nc = 305. The
time for computing BRSs is 0.0116 seconds, and the time for
solving MILPs to verify the safety is 0.745 seconds, which
has the same order of magnitude as that in Example 1.

VI. CONCLUSION

We proposed a novel HZ-based approach to compute the
exact BRSs of neural feedback systems. We showed that the
input-output relationship of a ReLU-activated FNN can be
exactly described by its graph set represented by an HZ. We
provided an exact HZ formulation for the BRSs of neural
feedback systems and extended the result to the saturated
input case. We also proposed a sufficient and necessary
condition in the form of MILPs for the safety verification
of neural feedback systems via BRSs. The performance of
the proposed approach was compared with state-of-the-art
using two numerical examples.
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