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Abstract— This paper studies optimal control problems of
unknown linear systems subject to stochastic disturbances of
uncertain distribution. Uncertainty about the stochastic distur-
bances is usually described via ambiguity sets of probability
measures or distributions. Typically, stochastic optimal control
requires knowledge of underlying dynamics and is as such
challenging. Relying on a stochastic fundamental lemma from
data-driven control and on the framework of polynomial chaos
expansions, we propose an approach to reformulate distribu-
tionally robust optimal control problems with ambiguity sets as
uncertain conic programs in a finite-dimensional vector space.
We show how to construct these programs from previously
recorded data and how to relax the uncertain conic program
to numerically tractable convex programs via appropriate
sampling of the underlying distributions. The efficacy of our
method is illustrated via a numerical example.

Keywords: Distributional ambiguity, optimal control,
Willems’ fundamental lemma, uncertainty propagation, poly-
nomial chaos expansion

I. INTRODUCTION

In many real-world applications, stochastic disturbances
pose significant challenges, such as distributed energy sys-
tems facing uncertain wind speed and renewable energy gen-
eration, or building control systems dealing with uncertain
weather conditions and occupancy. To hedge against the
uncertainty surrounding the disturbance statistics, distribu-
tionally robust formulations optimize over an ambiguity set
of possible disturbance distributions ensuring robust satisfac-
tion of equality and inequality constraints [1]. Additionally,
the complexity and time-consuming nature of first principles
modeling and system identification further motivates the need
for data-driven approaches.

There are two prominent data-driven avenues to distri-
butionally robust optimal control: data-based synthesis of
ambiguity sets to capture the uncertainty surrounding the
distribution of disturbances while requiring explicit knowl-
edge of a system model [2]–[4] and robustness analysis of
data-driven system descriptions with respect to uncertainty
surrounding the distribution of the measurement noise [5].
However, uncertainty propagation through dynamics without
explicit knowledge of the system model and considering
distributional uncertainty of the disturbance is still an open
problem. In this work, we address this gap by generalizing
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the data-driven description of stochastic linear systems based
on Polynomial Chaos Expansion (PCE) from [6], [7] towards
uncertainty surrounding the disturbance distribution.

Specifically, the present paper appears to be the first to
combine data-driven descriptions of stochastic systems via
PCE and Hankel matrices, exact convex reformulation of
Gelbrich ambiguity sets, and exact reformulation of chance
constraints towards distributionally robust stochastic optimal
control without explicit model knowledge. The main con-
tributions are threefold: (i) we present a novel formulation
of ambiguity sets for distributionally robust optimization
using PCE including an exact convex reformulation for
Gelbrich ambiguity sets. Moreover, while [4], [5], [8] use the
conditional value at risk to reformulate chance constraints,
we consider an exact reformulation applicable under distri-
butional uncertainty. (ii) in contrast to [9], which considers
ambiguity sets specified by fixed values of the first two
moments, we allow for ranges of the first two moments via
Gelbrich sets. (iii) we present mild conditions under which
a distributionally robust Optimal Control Problem (OCP)
with Gelbrich ambiguity and stated in random variables can
be equivalently reformulated as an uncertain conic program
without explicit knowledge of the system matrices. We also
propose an approach to approximate this uncertain conic
program with sampled uncertainty distributions. Finally, we
draw upon a simulation example to demonstrate the efficacy
of the proposed scheme.

Notation: Given a vector x ∈ Rn and a matrix M ∈
Rn×m, we specify ∥x∥ as the 2-norm and ∥M∥ =√
tr(MM⊤) as the Frobenius norm. We denote the set of all

positive semi-definite (positive definite) matrices in Rn×n as
Sn+ (Sn++). The principal square root of Q ∈ Sn+ is written as
Q

1
2 . The vectorization of {xk}N−1

k=0 is denoted as x[0,N−1].

II. PROBLEM STATEMENT AND PRELIMINARIES

We first revisit the essential notions of probability theory.
For rigorous definitions, we refer to the textbook [10]. A
measurable space is a pair (Ω,F) where Ω is the sample
space and F is a σ-algebra on Ω. A probability measure
on the measurable space (Ω,F) is a function µ : F → [0, 1]
with µ(Ω) = 1. The triple (Ω,F , µ) is a probability space. A
random variable V is a measurable function V : Ω → Rnv

from the probability space (Ω,F , µ) to the measurable space
(Rnv ,B) where B represents the Borel σ-algebra. Moreover,
an L2 random variable V ∈ L2(Ω,F , µ;Rnv ) is finite in the
L2 norm, i.e., ∥V ∥2 .

=
∫
Ω
V (ω)⊤V (ω)dµ(ω) < +∞. The

random variable V induces the probability measure µV on
(Rnv ,B), i.e., for all E ∈ B, µV (E) = µ({ω ∈ Ω |V (ω) ∈
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E}), denoted as the distribution of the random variable V .
For compactness, we write V ∼ µV . Consider two random
variables V, Ṽ ∈ L2(Ω,F , µ;Rnv ). The expectation of V is
written as E[V ] ∈ Rnv , its variance is V[V ] ∈ Rnv , and the
covariance of V and Ṽ is denoted by Σ[V, Ṽ ].

Definition 1 (Gelbrich distance [11]): Consider two tu-
ples of mean vectors and covariance matrices (m,Γ) and
(m̄, Γ̄), their Gelbrich distance G((m,Γ), (m̄, Γ̄))

.
= d ≥ 0

is

d =

√
∥m− m̄∥2 + tr(Γ + Γ̄− 2(Γ̄

1
2ΓΓ̄

1
2 )

1
2 ). □

A. Stochastic linear time-invariant systems

We consider stochastic discrete-time Linear Time-
Invariant (LTI) systems

Xk+1 = AXk +BUk + EWk, X0 = xini (1a)
Yk = CXk +DUk + FWk, (1b)

with state Xk ∈ L2(Ω,F , µ;Rnx), input Uk ∈
L2(Ω,F , µ;Rnu), output Yk ∈ L2(Ω,F , µ;Rny ), and
stochastic disturbance Wk ∈ L2(Ω,F , µ;Rnw) for k ∈ N.
Note that the stochastic processes X , Y , and U are adapted
to the filtration containing all historical information, cf. [10].
In this paper, we consider a deterministic initial condition
xini ∈ Rnx for (1) and identically independently distributed
(i.i.d.) (not necessarily Gaussian) disturbances Wk ∼ µW .

Instead of exact knowledge of µW , we model it as an
element of a given ambiguity set. The most commonly used
ambiguity sets employ the Wasserstein metric. However,
tractable reformulations of Wasserstein ambiguity sets are
limited to certain empirical distributions [1] or to ambiguity
sets comprising Gaussians [12]. As an alternative, Gelbrich
ambiguity sets include all distributions with moments that
closely match a given empirical pair (m̄, Γ̄) based on the
Gelbrich distance in Definition 1. Specifically, we consider
the Gelbrich ambiguity set with a given radius ρ ∈ R+

A .
=

{
µW ∈ (Rnw ,B)

∣∣∣∣ µW ∈ D(m,Γ), Γ ⪰ 0
G
(
(m,Γ), (m̄, Γ̄)

)
≤ ρ

}
. (2)

Here D(m,Γ) is the set of distributions with mean m ∈ Rnw

and covariance Γ ∈ Snw
+ . It is worth to be noted that

the Gelbrich ambiguity set is an outer approximation for
the corresponding Wasserstein set [11]. Additionally, we
remark that [9] considers the special case of more restrictive
ambiguity sets with fixed first two moments, i.e. D(m̄, Γ̄).
This corresponds to Gelbrich sets with ρ = 0.

Moving from distributions (or probability measures) to
random variables, we note that the ambiguity set induces
an uncertainty set for the sequence of i.i.d. random variables
W[0,N−1] with respect to N ∈ N

W .
=

{
W[0,N−1]

∣∣∣∣∣ ∀i ̸= k, i, k ∈ [0, N − 1],

Wk ∼ µW ∈ A, Σ[Wk,Wi] = 0

}
. (3)

Note that A ⊂ (Rnw ,B) while W ⊂ (L2(Ω,F , µ;Rnw))N .

B. Model-based distributionally robust optimal control

Our analysis begins with a distributionally robust OCP
with the explicit knowledge of the system model, while
its data-driven counterpart is presented in Section IV-B.
Consider the uncertainty set (3), we have

min
ū, K, α,U, Y,X

α (4a)

s.t. ∀W[0,N−1] ∈ W, ∀k ∈ I[0,N−1],∑N−1
k=0 E

[
∥Yk∥2Q + ∥Uk∥2R

]
≤ α, (4b)

Xk+1 = AXk +BUk + EWk, X0 = xini, (4c)
Yk = CXk +DUk + FWk, (4d)

Uk = ūk +
∑k−1

i=0 Kk,iWi, U0 = ū0, (4e)

P[a⊤u,iUk ≤ 1] ≥ 1− εu, ∀i ∈ I[1,Nu], (4f)

P[a⊤y,iYk ≤ 1] ≥ 1− εy, ∀i ∈ I[1,Ny ]. (4g)

Given the uncertainy set W ⊂ (L2(Ω,F , µ;Rnw))N , we
minimize the worst-case value α ∈ R of the objective
function over the horizon N ∈ N in (4a)–(4b). The objective
function is the expected value of a quadratic form with
Q ∈ Sny

+ and R ∈ Snu
++. We consider i.i.d. disturbances

directly entering the dynamics in (4c)-(4d). Similar to [4],
[13] we aim at affine and causal disturbance feedback. This
is encoded in (4e) and it can be written as

U[0,N−1] = ū[0,N−1] +KwW[0,N−1],

Kw =

 0 0 ··· 0
K1,0 0 ··· 0

...
. . . 0

...
KN−1,0 ··· KN−1,N−2 0

 ∈ RNnu×Nnw .
(5)

Chance constraints are specified as individual half-space
constraints by au,i ∈ Rnu , i ∈ I[1,Nu], and ay,i ∈ Rny ,
i ∈ I[1,Ny ] with probabilities of 1−εu and 1−εy , respectively,
in (4f)-(4g).

We remark that the conceptual formulation (4) poses
several challenges. First, the optimization involves infinite-
dimensional L2 random variables. Second, distributional
robustness requires (4b)–(4g) to be satisfied for all possible
random variable sequences in W , resulting in infinitely many
infinite-dimensional constraints. To address these challenges,
we use the PCE framework to reformulate the random
variables, the ambiguity sets, and the chance constraints.

III. THE PCE PERSPECTIVE ON GELBRICH AMBIGUITY

A. Primer on polynomial chaos expansion

The core idea of PCE is that L2 random variables can
be expressed as a series expansion in a suitable basis
[10]. To this end, consider an orthogonal polynomial basis
{ϕj(ξ)}∞j=0 which spans L2(Ω,F , µ;R), i.e. ⟨ϕi, ϕj⟩ =∫∞
−∞ ϕi (ξ(ω))ϕj (ξ(ω)) dµ(ω) = δij∥ϕj∥2 where δij is the

Kronecker delta. We remark that it is customary in PCE to
consider ϕ0 = 1.

Definition 2 (Polynomial chaos expansion): The PCE of
a random variable V ∈ L2(Ω,F , µ;R) with respect to the
basis {ϕj}∞j=0 is V =

∑∞
j=0 v

jϕj with vj = ⟨V, ϕj⟩/∥ϕj∥2,
where vj is called the jth PCE coefficient. □
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We remark that by applying PCE component-wise the
jth PCE coefficient vector of a vector-valued ran-
dom variable V ∈ L2(Ω,F , µ;Rnv ) reads vj =[
v1,j v2,j · · · vnv,j

]⊤
, where vi,j is the jth PCE coeffi-

cient of component V i. Moreover, we introduce a shorthand
of the matrix generated by horizontally stacking the PCE
coefficients as V[0,L−1] .

=
[
v0, v1, . . . , vL−1

]
∈ Rnv×L.

Definition 3 (Exact PCE representation [14]): The PCE
of a random variable V ∈ L2(Ω,F , µ;Rnv ) is said to be
exact with dimension L if V −

∑L−1
j=0 vjϕj = 0. □

Furthermore, with Definition 3, the expectation E[V ], the
variance V[V ], and the covariance Σ[V, Ṽ ] can be obtained
from the PCE coefficients as E[V ] = v0, V[V ] =

∑L−1
j=1 vj ◦

vj∥ϕj∥2, Σ[V, Ṽ ] =
∑L−1

j=1 vj ṽj⊤∥ϕj∥2, where vj ◦vj refers
to the Hadamard product [15].

B. PCE representation of disturbances

For i.i.d. (not necessarily Gaussian) disturbances Wk, k ∈
N, we first construct an exact PCE of finite dimension. For
starters, we denote the map Ψ : Snw

+ → Rnw×nw , Γ 7→
Ψ(Γ) as a generalized matrix square root if it is bijective
and satisfies Γ = Ψ(Γ)Ψ(Γ)⊤.

Consider ξk with E[ξk] = 0 and Σ[ξk, ξk] = Inw such
that Wk = m + Ψ(Γ)ξk holds. Notice that the elements of
ξk—i.e. ξik, i ∈ I[1,nw]—are independently distributed and
satisfy E[ξik] = 0 as well as V[ξik] = 1. Using the basis
{ϕj

w(ξk)}
nw
j=0 = {1, {ξik}

nw
i=1} with polynomials of degree of

at most 1, the exact and finite PCE of Wk is obtained as

Wk = m+Ψ(Γ)ξk =
∑nw

j=0 w
jϕj

w(ξk), (6)

with w0 = m and W[1,nw] .
=

[
w1, . . . ,wnw

]
= Ψ(Γ).

For any finite horizon N ∈ N in OCP (4) and let the inputs
Uk satisfy (4e) the following orthonormal basis

{ϕj(ξ)}L−1
j=0 = {1, {{ξik}

nw
i=1}

N−1
k=0 }, (7)

where ξ = [ξ⊤0 , ..., ξ⊤N−1]
⊤ ∈ L2(Ω,F , µ;RNnw) and L =

Nnw+1, allows exact PCEs for (U, Y,W,X)k, k ∈ I[0,N−1],
cf. [6].

Applying Galerkin projection onto the basis in (7) yields
the dynamics of the PCE coefficients

xjk+1 = Axjk +Bujk + Ewj
k, xj0 = δ0jxini, (8a)

yjk = Cxjk +Dujk + Fwj
k, ∀j ∈ I[0,L−1] (8b)

where δ0j is the Kronecker delta [16]. Due to the i.i.d.
property of Wk, the PCE coefficients for W[0,N−1] satisfy[

1N ⊗ w0, IN ⊗W[1,nw]
]
= W

[0,L−1]
[0,N−1] (9)

where W
[0,L−1]
[0,N−1] ∈ RNnw×L is the vertically stacked block

matrix comprising {W[0,L−1]
k }N−1

k=0 .
At first glance, the PCE representation of Wk in (6)

seemingly resembles a usual moment-based representation.
However, using the generalized square root of the covari-
ance, we obtain a linear parametrization of WK , which
in turn simplifies the data-driven uncertainty propagation.
Furthermore, for all Wk collecting the normalized random

variables ξk, k ∈ I[0,N−1] in the basis (7), we obtain the
coefficient dynamics (8). These dynamics are structurally
similar to the original dynamics in random variables (1).
Put differently, for all j ∈ I[0,L−1] the coefficient dynamics
(8) capture the influence of the corresponding disturbance
component. We remark that considering the explicit state
covariance propagation Σk+1 = (A+BK)Σk(A+BK)⊤+
EΣ[Wk,Wk]E

⊤ would render it more difficult to work with
data-driven system descriptions. We refer to [7] for a more
detailed comparison of moment propagation and PCE.

C. Representation of Gelbrich ambiguity sets

The PCE reformulation of Wk in (6) suggest to translate
the Gelbrich ambiguity set A to an uncertainty set of the
PCE coefficients, i.e., translation to a set of matrices with real
numbers. Specifically, the distributions in A are bijectively
paired to the PCE coefficients matrices by the map

ΠΨ : µW ∈ D(m,Γ) 7→
[
m |Ψ(Γ)

]
. (10a)

Notice the design degree of freedom to use any generalized
matrix square root Ψ. As the principal square root (·) 1

2 in
the Gelbrich metric (Def. 1) is a non-convex function, we
choose

Ψ(Γ) = Γ̄− 1
2 (Γ̄

1
2ΓΓ̄

1
2 )

1
2 . (10b)

The map Γ 7→ Ψ(Γ) is bijective and it satisfies
Ψ(Γ)Ψ(Γ)⊤ = Γ. For (Γ̄)−

1
2 to exist, we assume Γ̄ ∈ Snw

++.
Moreover, consider the PCE coefficient ambiguity set

A =

 W[0,nw] ∈
Rnw×(nw+1)

∣∣∣∣∣∣
∥∥∥W[0,nw] −

[
m̄

∣∣∣ Γ̄ 1
2

]∥∥∥ ≤ ρ

Γ̄
1
2W[1,nw] ⪰ 0

 . (11)

Lemma 1 (ΠΨ(A) = A): Given the empirical moments
(m̄, Γ̄) with mean m̄ ∈ Rnw and covariance Γ̄ ∈ Snw

++.
Consider ΠΨ from (10), the Gelbrich ambiguity set A from
(2), and the PCE coefficient ambiguity set A from (11). Then,
the element-wise image of A under ΠΨ is given by A. □

Proof: First, we show that under the map ΠΨ,
the Gelbrich distance G in the definition of A (2)
corresponds to the norm expression in A (11). With
ΠΨ and Ψ as specified in (10), we have w0 = m,
W[1,nw] = Ψ(Γ) and d = G

(
(m,Γ), (m̄, Γ̄)

)
=√

∥w0 − m̄∥2 + tr(Γ̄ + Γ− 2Γ̄
1
2W[1,nw]). Moreover, with

M = Γ̄
1
2 −W[1,nw] and since Γ = W[1,nw]W[1,nw]⊤, we have

d =
√

∥w0 − m̄∥2 + tr (MM⊤) = ∥W[0,nw] − [m̄ | Γ̄ 1
2 ]∥,

where we used the properties of the Frobenius norm.
Next we prove that Γ̄

1
2W[1,nw] ⪰ 0 in (11) is equivalent

to Γ ⪰ 0 in (2) provided W[1,nw] = Ψ(Γ) as in (10). That
is, we aim to show

W[1,nw] = Ψ(Γ),Γ ⪰ 0 ⇔ Γ̄
1
2W[1,nw] ⪰ 0. (12)

The ⇒ implication holds, since Γ̄
1
2W[1,nw] =

(Γ̄
1
2ΓΓ̄

1
2 )

1
2 ⪰ 0. ⇐: since Ψ is bijective, its inverse

map Ψ−1 : Rnw×nw → Snw
+ , W[1,nw] 7→ Ψ−1(W[1,nw])

exists. Thus, if the right hand side of (12) holds, we find
Γ = Ψ−1(W[1,nw]) ∈ Snw

+ and then the left hand side holds.
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Gelbrich ambiguity set (2)
A ⊂ (Rnw ,B)

PCE coefficient
ambiguity set (11)

A ⊂ Rnw×(nw+1)

Random variable
sequence uncertainty set

W ⊂ (L2(Ω,F , µ;Rnw ))N

PCE coefficient
sequence uncertainty set

W ⊂ RNnw×L

ΠΨ (10)

Lem. 1

(3)

(14)

(13)

Fig. 1. Relations and maps between the sets A,A, W , and W.

Recall that the Gelbrich distance in Definition 1 is a non-
convex function of (m,Γ). However, it is convex in the
PCE coefficients W[0,nw]. Hence the PCE ambiguity set A
from (11) is a compact and convex subset of Rnw×(nw+1).
Finally, we arrive at the uncertainty description for the PCE
coefficient sequences W[0,N−1]

W .
=

W
[0,L−1]
[0,N−1] ∈
RNnw×L

∣∣∣∣∣∣W
[0,L−1]
[0,N−1]

(
W[0,nw]

)
s.t. (9)

W[0,nw] ∈ A

 , (13)

and at the PCE reformulation of W from (3)

W =

{
W

∣∣∣∣∣W =
∑L−1

j=0 W
jϕj(ξ), ϕ cf. (7)

W[0,L−1] ∈ W, ξ ∈ D(0, INnw
)

}
. (14)

Figure 1 summarizes the relations and maps between the am-
biguity sets A,A and the sequence uncertainty descriptions
W,W.

IV. DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMAL
CONTROL IN PCE COFFICIENTS

The above reformulation of the ambiguity set A to W
enables us to the cast the distributionally robust OCP (4) as
an uncertain conic problem, whereby we will use a data-
driven representation in lieu of explicit knowledge of the
system matrices.

A. Data-driven representation of stochastic LTI systems

For a specific uncertainty outcome ω ∈ Ω the realization
of Wk is written as wk

.
= Wk(ω), k ∈ N. Likewise, the

realizations of inputs, outputs, and states are uk
.
= Uk(ω),

yk
.
= Yk(ω), and xk

.
= Xk(ω), respectively. Given {wk}k∈N,

the stochastic system (1) induces the realization dynamics

xk+1 = Axk +Buk + Ewk, x0 = xini (15a)
yk = Cxk +Duk + Fwk. (15b)

Assumption 1 (System properties and data): Consider
stochastic LTI system (1) and its realization dynamics (15),
we assume that (A, [B,E]) is a controllable pair, and
respectively, (A,C) is a observable pair. In addition, we
suppose the matrices (A,B,C,D,E, F ) are unknown, while
measurements of past input-output-disturbance realizations
uk, yk and wk are available. □

Definition 4 (Persistency of excitation [17]): Let T, t ∈
N+. A sequence of inputs u[0,T−1] is said to be persistently

exciting of order t if the Hankel matrix Ht(u[0,T−1])
.
=[ u0 ··· uT−t

...
. . .

...
ut−1 ··· uT−1

]
is of full row rank. □

Next we recall crucial insights from [6, Lem. 4, Cor. 2]
which allow to represent the PCE coefficients dynamics (8)
by previous recorded data of the realization dynamics (15).

Lemma 2 ( [6]): Let Assumption 1 hold. Consider system
(1) and a T -length realization trajectory tuple (u,w, y)[0,T−1]

of its corresponding realization dynamics (15). We suppose
that (u,w)[0,T−1] is persistently exciting of order nx + t.
Then (U,W, Y )[0,t−1] is a trajectory of (1) if and only if there
exists G ∈ L2(Ω,F , µ;RT−t+1) such that Ht(v[0,T−1])G =
V[0,t−1] holds for all (v, V ) ∈ {(u, U), (w,W ), (y, Y )}.

Moreover, (u,w, y)j[0,t−1],, j ∈ I[0,L−1] is a trajectory of
the dynamics of PCE coefficients (8) if and only if there
exists gj ∈ RT−t+1 such that Ht(v[0,T−1])g

j = vj[0,t−1], j ∈
I[0,L−1], holds for all (v, v) ∈ {(u, u), (w,w), (y, y)}. □
It is worth be remarked that the structural similarity of the
PCE coefficient dynamics (8) with (1) and (15) is at the core
of the above lemma. Note that this similarity is jeopardized
by co-variance based uncertainty propagation.

B. Distributionally robust data-driven OCP

Combining the above results, we turn to the data-driven
reformulation of OCP (4) in terms of PCE coefficients.

Assumption 2 (Data availability): Consider a given T -
length realization trajectory tuple (u,w, y)[0,T−1] of the
corresponding realization dynamics (15). We suppose that
(u,w)[0,T−1] is persistently exciting of order nx +N + Tini
with Tini not smaller than the system lag of (1), cf. [6]. □

Consider Tini past measurements of (u, y, w)[−Tini,−1] and
a T -length realization trajectory tuple (u, y, w)[0,T−1] satis-
fying Assumption 2. Let p and f denote the ranges [−Tini,−1]
and [0, N − 1], respectively. Let Hv,p and Hv,f be the first
Tininv rows and, respectively, the remaining Nnv rows of the
Hankel matrix HN+Tini(v[0,T−1]) for v ∈ {u, y, w}. Consider
the stacked Hankel matrices as Hp

.
= [H⊤

u,p,H⊤
y,p,H⊤

w,p]
⊤

and Hf
.
= [H⊤

u,f,H⊤
y,f,H⊤

w,f]
⊤. The uncertainty set W for the

PCE coefficient sequences (13) gives the finite-dimensional
and convex reformulation of OCP (4)

min
ū,K,α,u,y,g

α (16a)

s.t. ∀W[0,L−1]
f ∈ W, ∀k ∈I[0,N−1],∑N−1

k=0

∑L−1
j=0 (∥y

j
k∥2Q + ∥ujk∥2R) ≤ α, (16b)

Hpg
j = δ0j [u⊤

p , y⊤p , w⊤
p ]⊤,∀j ∈ I[0,L−1], (16c)

Hfg
j = [uj⊤f , yj⊤f ,wj⊤

f ]⊤,∀j ∈ I[0,L−1], (16d)

u0f = ū+Kww
0
f , u

j
f = Kww

j
f ,∀j ∈ I[1,L−1], (16e)

a⊤u,iu
0
k + σ(εu)∥a⊤u,iU

[1,L−1]
k ∥ ≤ 1,∀i ∈ I[1,Nu], (16f)

a⊤y,iy
0
k + σ(εy)∥a⊤y,iY

[1,L−1]
k ∥ ≤ 1,∀i ∈ I[1,Ny ], (16g)

where δ0j is the Kronecker delta, Kw collects all feedback
gains Kk,i similar to (5), and σ(ε) =

√
(1− ε)/ε.

Lemma 2 justifies the data-driven representation of the
dynamics of PCE coefficients (8) in (16c)-(16d). Note that
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δ0j in (16c) specifies the PCE coefficients of the initial con-
dition to be zero for j > 0, i.e., we consider a deterministic
initial condition. Causality and affiness of polices in (4e)
are stated in (16e). The next result gives the exactness of
the reformulation of the chance constraints from (4f)-(4g) to
(16f)-(16g).

Proposition 1 (PCEs for DRO chance constraints):
Consider a random variable V ∈ L2(Ω,F , µ;Rnv ) with its
PCE V (ξ) =

∑L−1
j=0 vjϕj(ξ) regarding the basis (7). For

a ∈ Rnv , the distributionally robust chance constraint

P[a⊤V (ξ) ≤ 1]] ≥ 1− ε, ∀ξ ∈ D(0, INnw
)

is equivalent to a⊤v0 +
√

(1− ε)/ε∥a⊤V[1,L−1]∥ ≤ 1. □
Proof: Using (7) we have V (ξ) = v0 +V[1,L−1]ξ, and

thus the DRO chance constraint reads

P
[
a⊤V[1,L−1]ξ ≤ 1− a⊤v0

]
≥ 1− ε, ∀ξ ∈ D(0, INnw).

Since this expression is bilinear in ξ ∈ L2(Ω,F , µ;RNnw)
and the decision variables V[0,L−1] ∈ Rnv×L, it is equiv-
alent to a⊤V[1,L−1]E[ξ] +

√
(1− ε)/ε(a⊤V[1,L−1]Σ[ξ, ξ]

V[1,L−1]⊤a)1/2 ≤ 1−a⊤v0, cf. [18, Th. 3.1]. With E[ξ] = 0
and Σ[ξ, ξ] = INnw

, we conclude the assertion.
Theorem 1 (Equivalence of OCP minimizers): Consider

OCP (4) with the random-variable uncertainty set W (3)
and OCP (16) with the PCE uncertainty set W (13). Let
Assumptions 1–2 and the conditions of Lemma 1 hold.
Then, for any given initial condition (u, y, w)[−Tini,−1]

for OCP (16), there exists xini ∈ Rnx for OCP (4) such
that—provided they are non-empty—the sets of minimizers
(ū⋆,K⋆, α⋆) of OCP (4) and OCP (16) are the same. □

Proof: The proof relies on that the PCE reformulation
of all random variables in the basis (7) is exact and the
omission of the basis from OCP (4) to OCP (16) is without
loss of information. Due to Assumption 1 the system is
observable and the measurements of (u, y, w) are exact.
Hence (u, y, w)[−Tini,−1] determines a unique initial state xini
in OCP (4) given Tini is not smaller than the system lag.

Using the basis (7) all random variables in OCP (4) admit
exact PCEs with at most L = Nnw+1 terms cf. [6, Prop. 1].
Replacing all random variables with their PCEs the constraint
(4b) is equivalent to (16b) due to the orthonormality of the
basis (7). With Assumption 2, (16c)-(16d) exactly captures
the PCE coefficient dynamics, cf. Lemma 2. Moreover,
(16e) expresses the causal and affine policies (4e) in PCE
coefficients. With (14) we split the uncertainty description
∀Wf ∈ W into two conditions ∀W[0,L−1]

f ∈ W and
∀ξ ∈ D(0, INnw

). Using the latter condition and applying
Proposition 1 the chance constraints (4f)-(4g) are exactly
reformulated to (16f)-(16g). Notice that the reformulated
objective constraint and chance constraints are independent
of the PCE basis (7). Thus, without loss of information,
we drop the basis and finally obtain OCP (16). Since the
reformulation from OCP (4) to OCP (16) is exact, the sets
of their minimizers restricted to the variables (ū⋆,K⋆, α⋆)
coincide.

C. Numerical implementation

Observe that OCP (16) is an uncertain conic problem.
Hence tractable reformulations are possible for specific types
of uncertainty sets [19]. In our approach, we approximate the
uncertainty set A in (11) by a polytope and than define the
approximation of W accordingly. To this end, we uniformly
sample s ∈ N+ points δj ∈ Rnw×(nw+1) from A for
j ∈ I[1,s]. 1 We approximate A by the convex hull of
the sample points, denoted as Ã = Conv(δ1, ..., δs) ⊂ A.
By linearly lifting each vertex of Ã via (9), we obtain W̃
similarly as in (13).

We denote the vertices of W̃ by ∆
.
=

{
δ̃j , j ∈ {1, . . . , s̃}

}
which are a subset of the lifted sample points with s̃ ≤ s.
Replacing W with the countable set ∆, we obtain

min
ū,K,α,u,y,g

α s.t. ∀W[0,L−1]
f ∈ ∆, (16b) − (16g). (17)

Observe that with (16f)–(16g), (17) is a second-order
cone program whose computational complexity is
O(

√
N(Nu +Ny)s̃), cf. [20]. Due to the tight page

limit, a detailed analysis of the sample efficiency of the
proposed approximation strategy is postponed to future
work. Instead, we demonstrate its efficacy numerically.

V. NUMERICAL EXAMPLE

We consider the discrete-time stochastic double integrator

Xk+1 =

[
1 1
0 1

]
Xk +

[
0.5
1

]
Uk +Wk, Yk =

[
1 0

]
Xk,

where the Wk are i.i.d. with Gaussian mixture distribu-
tions. Especially, µW is the mixture of N ([ 0.10.1 ] , 0.01I2)
and N (

[−0.1
−0.1

]
, 0.01I2) with mean mtrue = [0, 0]⊤ and

covariance Γtrue = [ 0.03 0.02
0.02 0.03 ]. Notice that these true values

of mean and covariance are unknown to the OCP. We specify
Tini = 2 which corresponds to the system lag. The weighting
matrices are Q = R = 1 for Y and U , and the prediction
horizon is N = 10. Chance constraints on the input require
Uk ≤ 0.5 and Uk ≥ −0.5 to be satisfied individually with
probability of no less than 80% for k = 0, ..., 9.

To construct OCP (17) based on measured data, we first
apply 70 random inputs to the system and record the output
responses as well as the realized disturbances. Then we use
this data to construct Hankel matrices and to estimate the
moments of W as [m̄ | Γ̄] = [ 0.00250.0025 | 0.0211 0.0100

0.0100 0.0157 ] . Using
[m̄ | Γ̄] as the empirical moment pair and setting the radius
ρ = ρ̄ · ∥[m̄ | Γ̄]∥ for a user-chosen ρ̄ ∈ R+, we obtain
Gelbrich ambiguity sets A (2) and the corresponding PCE
uncertainty sets A (11). To construct ∆, we uniformly sample
s points from A. Subsequently, we investigate the effect of
varying radius ρ and the number of samples s.

We consider three cases of OCP (17) :
(I) The robust case, where OCP (17) is solved with ∆ for

different values of ρ̄ and s.

1An intuitive strategy is to sample uniformly over hypercubes which
contain A and to neglect any samples which are not in A.

3071



TABLE I
COMPARISON OF THE AVERAGED COST J AND THE NUMBER OF

CONSTRAINTS VIOLATION #V FOR 1000 REALIZATION TRAJECTORIES.

case I ρ̄ = 0.1 ρ̄ = 0.3 ρ̄ = 0.5 ρ̄ = 0.7
s J #V J #V J #V J #V

10 24.54 138 24.79 68 25.24 27 25.56 11
50 24.58 124 25.15 53 25.79 24 26.65 6

100 24.58 124 25.15 53 25.79 24 26.65 6
J #V J #V

case II 24.47 184 case III 25.04 26

Fig. 2. Input and output response for 1000 disturbance sequences of case
I with ρ̄ = 0.5, s = 50 (top), case II (middle), and case III (bottom). The
most constraint-violating realization is highlighted.

(II) The optimistic case, where OCP (17) is solved with
∆ =

{
[m̄ |Ψ(Γ̄)]

}
, using the empirical moments esti-

mated from the 70 recorded disturbance samples.
(III) The ideal case, i.e., OCP (17) with ∆ =

{[mtrue |Ψ(Γtrue)]}, utilizing the true moments.
Each OCP is solved using the same initial data up, yp, and
wp. Note that with ambiguity sets of fixed moments, cases
II and III are instances of the approach in [9].

Using 1000 different sampled disturbance realization se-
quence of length 10 each, Table I compares the averaged
cost J and the number of constraint violations #V for case
I with different values of ρ̄ and s with cases II & III. We see
that increasing ρ̄ and s leads to fewer constraint violations
and decreased performance. Comparing case I with cases II
& III, it is evident that the former provides a more robust
solution. Figure 2 shows the corresponding input and output
responses of case I with ρ̄ = 0.5 and s = 50 as well as
cases II & III. Observe that the input responses of case
I violate the constraints much less frequently compared to
case II (with moments estimated from data) and still achieve
similar output responses as case III (with the true moments).

VI. CONCLUSION AND OUTLOOK

This paper discussed distributionally robust uncertainty
propagation for LTI systems via data-driven stochastic op-

timal control. We leveraged polynomial chaos expansions to
derive an exact reformulation of model-based distributionally
robust OCPs with Gelbrich ambiguity sets to data-driven
uncertain conic problems with a finite-dimensional convex
uncertainty set in PCE coefficients. A tractable approxima-
tion to convex programs has been proposed and illustrated
via an example. Future work will consider tailored sampling
strategies for the PCE coefficient ambiguity set, exact refor-
mulations for robust second-order cone constraints [19], and
the effect of the size of the previously recorded data.
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